高考数学复习基础知识专题训练(4)
- 格式:doc
- 大小:116.00 KB
- 文档页数:3
第1讲空间几何体专题强化训练1.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4 B.8C.12 D.16解析:选D.如图,以AA1为底面矩形一边的四边形有AA1C1C、AA1B1B、AA1D1D、AA1E1E这4个,每一个面都有4个顶点,所以阳马的个数为16个.故选D.2.正方体ABCDA1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的正视图为( )解析:选C.过点A,E,C1的平面与棱DD1相交于点F,且F是棱DD1的中点,截去正方体的上半部分,剩余几何体的直观图如图所示,则其正视图应为选项C.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C .323cm 3D .403cm 3解析:选C.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3).4.(2019·某某模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于( )A .34B .41C .5 2D .215解析:选C.由正视图、侧视图、俯视图的形状,可判断该几何体为三棱锥,形状如图,其中SC ⊥平面ABC ,AC ⊥AB ,所以最长的棱长为SB =5 2.5.(2019·某某十校联考)某几何体的三视图如图所示,则该几何体的体积是( )A .15π2B .8π C.17π2D .9π解析:选B.依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,选B.6.如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.如果三棱柱的体积为123,圆柱的底面直径与母线长相等,则圆柱的侧面积为( )A .12πB .14πC .16πD .18π解析:选C.设圆柱的底面半径为R ,则三棱柱的底面边长为3R ,由34(3R )2·2R =123,得R =2,S 圆柱侧=2πR ·2R =16π.故选C.7.(2019·某某市第一次模拟)某几何体的三视图如图所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )A .48B .54C .64D .60解析:选D.根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.8.在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4πB.9π2C.6πD.32π3解析:选B.由题意可得若V 最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时球的半径R =32,该球的体积最大,V max =43πR 3=4π3×278=9π2.9.(2019·某某八校联考)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为( )A.12B.24C.22 D.32解析:选C.依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-(a2a)2=22,选C. 10.已知圆柱OO 1的底面半径为1,高为π,ABCD 是圆柱的一个轴截面.动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.现将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则y =f (θ)的图象大致为( )解析:选A.将圆柱的侧面沿轴截面ABCD 展平,则曲线Γ是展开图形(即矩形)的对角线,根据题意,将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则f (θ)应当是一次函数的一段,故选A.11.(2019·某某省重点中学高三12月期末热身联考)某空间几何体的三视图如图所示,则该几何体的体积是________;表面积是________.解析:根据三视图可得,该几何体是长方体中的四棱锥C BB 1D 1D ,由三视图可得:AB =2,BC =2,BB 1=4,VC BB 1D 1D =23×12×2×2×4=163,S C BB 1D 1D =12×2×2+22×4+12×2×4+12×2×4+12×22×18=16+8 2.答案:16316+8 212.(2019·某某市余姚中学期中检测)某几何体的三视图如图所示(单位:cm),则该几何体的体积为________ cm 3,表面积为________cm 2.解析:由三视图可知:该几何体是由一个半球去掉14后得到的几何体.所以该几何体的体积=34×12×43×π×13=π2cm 3.表面积=34×12×4π×12+12×π×12+34×π×12=11π4 cm 2.答案:π211π413.(2019·某某省“五校联盟”质量检测)已知球O 的表面积为25π,长方体的八个顶点都在球O 的球面上,则这个长方体的表面积的最大值等于________.解析:设球的半径为R ,则4πR 2=25π,所以R =52,所以球的直径为2R =5,设长方体的长、宽、高分别为a 、b 、c ,则长方体的表面积S =2ab +2ac +2bc ≤a 2+b 2+a 2+c 2+b 2+c 2=2(a 2+b 2+c 2)=50.答案:5014.(2019·某某省高三考前质量检测)某几何体的三视图如图所示,当xy 取得最大值时,该几何体的体积是____________.解析:分析题意可知,该几何体为如图所示的四棱锥P ABCD ,CD =y2,AB=y ,AC =5,CP =7,BP =x ,所以BP 2=BC 2+CP 2,即x 2=25-y 2+7,x 2+y2=32≥2xy ,则xy ≤16,当且仅当x =y =4时,等号成立.此时该几何体的体积V =13×2+42×3×7=37.答案:3715.(2019·某某市高考数学二模)在正方体ABCD A 1B 1C 1D 1中,E 是AA 1的中点,则异面直线BE 与B 1D 1所成角的余弦值等于________,若正方体棱长为1,则四面体B EB 1D 1的体积为________.解析:取CC 1中点F ,连接D 1F ,B 1F ,则BE 綊D 1F , 所以∠B 1D 1F 为异面直线BE 与B 1D 1所成的角.设正方体棱长为1,则B 1D 1=2,B 1F =D 1F =1+14=52.所以cos ∠B 1D 1F =12B 1D 1D 1F =2252=105. V B EB 1D 1=V D 1BB 1E =13S △BB 1E ·A 1D 1=13×12×1×1×1=16.答案:1051616.已知棱长均为a 的正三棱柱ABC A 1B 1C 1的六个顶点都在半径为216的球面上,则a 的值为________.解析:设O 是球心,D 是等边三角形A 1B 1C 1的中心,则OA 1=216,因为正三棱柱ABC A 1B 1C 1的所有棱长均为a ,所以A 1D =32a ×23=33a ,OD =a 2,故A 1D 2+OD 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫a 22=⎝ ⎛⎭⎪⎫2162,得712a 2=2136,即a 2=1,得a =1. 答案:117.(2019·瑞安四校联考)已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为________.解析:如图,设球心为O ,三棱柱的上、下底面的中心分别为O 1,O 2,底面正三角形的边长为a ,则AO 1=23×32a =33a .由已知得O 1O 2⊥底面, 在Rt △OAO 1中,由勾股定理得OO 1=12-⎝ ⎛⎭⎪⎫33a 2=3·3-a 23,所以V 三棱柱=34a 2×2×3·3-a 23=3a 4-a62,令f (a )=3a 4-a 6(0<a <2), 则f ′(a )=12a 3-6a 5=-6a 3(a 2-2),令f ′(a )=0,解得a = 2.因为当a ∈(0,2)时,f ′(a )>0;当a ∈(2,2)时,f ′(a )<0,所以函数f (a )在(0,2)上单调递增,在(2,2)上单调递减. 所以f (a )在a =2处取得极大值.因为函数f (a )在区间(0,2)上有唯一的极值点,所以a =2也是最大值点.所以(V 三棱柱)max=3×4-82=1. 答案:118.如图,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.解:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD .(2)取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN , 则PN ⊥CD ,所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3. 所以四棱锥P ABCD 的体积V =13×2×(2+4)2×23=4 3.19.如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′PBCD 的体积最大时,求PA 的长;(2)若P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE . 解:(1)设PA =x ,则PA ′=x , 所以V A ′PBCD =13PA ′·S 底面PBCD =13x ⎝ ⎛⎭⎪⎫2-x 22.令f (x )=13x ⎝ ⎛⎭⎪⎫2-x 22=2x 3-x36(0<x <2),则f ′(x )=23-x22.当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎪⎫0,233233 ⎝ ⎛⎭⎪⎫233,2 f ′(x )0 f (x )单调递增极大值单调递减由上表易知,当PA =x =233时,V A ′PBCD 取最大值.(2)证明:取A ′B 的中点F ,连接EF ,FP . 由已知,得EF 綊12BC 綊PD .所以四边形EFPD 是平行四边形, 所以ED ∥FP .因为△A ′PB 为等腰直角三角形, 所以A ′B ⊥PF .所以A ′B ⊥DE .。
2020年高考数学专题一 压轴选择题第五关 以向量与解析几何、三角形等相结合为背景的选择题 【名师综述】近年来以平面向量知识为背景,与三角函数、数列、三角形、解析几何知识相结合的题目屡见不鲜,题目对基础知识和技能的考查一般由浅入深,入手并不难,但要圆满解决,则需要严密的逻辑推理.平面向量融数、形于一体,具有几何与代数的“双重身份”,从而它成为了中学数学知识交汇和联系其他知识点的桥梁.平面向量的运用可以拓宽解题思路和解题方法.类型一 平面向量与解三角形的结合典例 1 . 在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c 满足222b c a bc +-=,0AB BC ⋅>,a ,则b c +的取值范围是( ) A .31 , 2⎛⎫ ⎪⎝⎭ B.32⎫⎪⎪⎝⎭C .13 , 22⎛⎫⎪⎝⎭ D .13( , ]22 【答案】B【解析】∵bc a c b =-+222,由余弦定理可得2122cos 222==-+=bc bc bc a c b A ,因为C 是三角形内角,∴ 60=A ,23sin =A .0AB BC ⋅>,∴()0o s >-=⋅B π,∴B 是钝角.由正弦定理可得B B Aab sin sin sin =⨯=,同理C C sin =.三角形ABC 中,3π=A ,∴32π=+B C . ⎪⎭⎫ ⎝⎛+=+=-+=+=+6sin 3cos 23sin 32)32sin(sin sin sin ππB B B B B C B c b ,∵ππ322<<B ,∴⎪⎭⎫ ⎝⎛∈+55,326πππB ∴⎪⎪⎭⎫ ⎝⎛∈⎪⎭⎫ ⎝⎛+23,236sin 3πB ,∴c b +的取值范围为:32⎫⎪⎪⎝⎭,故选项为B .【名师指点】由余弦定理可得角A 的大小,平面向量数量积向量式是实现向量和三角形边、角转化的桥梁,而正弦定理又是进行三角形边角转化的工具.最值将的取值范围问题转化为三角函数的值域问题处理.【举一反三】已知O 是ABC 所在平面内一点,若对m R ∀∈,恒有()1O A m O C m O BO B O A +--≥-,则ABC 一定是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 不确定 【答案】B【解析】由题知: ()1OA m OC mOB OB OA +--≥-化简得到CA mBC BA +≥, 设△ABC 的三个内角A ,B ,C 所对的边为a ,b ,c ,两边平方可得,22222cos b m a mab C c +-≥即22222cos 0m a mab C b c -+-≥, 由题意可得2220cos 0c b b C ≤⇒≤-≤ , 即为c≤bsinC ,由正弦定理可得sinC≤sinBsinC ,则sinB≥1,但sinB≤1,则sinB=1,可得B=90°. 即三角形ABC 为直角三角形. 故答案为:B 。
高考数学复习典型题型与知识点专题讲解4 函数的基本性质一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x =+>的单调性知识点2 二次函数区间求最值知识点3 已知一半求另一半(奇偶性) 知识点4单调奇偶联袂 二、题型归类练专练一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x=+>的单调性例1.(2021·宁夏·平罗中学高一期中)已知4()f x x x=+. (1)判断()f x 的奇偶性;(2)判断函数()f x 在(2,)+∞的单调性并用定义证明. 【答案】(1)函数()f x 为奇函数;(2)()f x 在区间()2,+∞上是增函数;证明见详解. (1)解:由题可知,4()f x x x=+,则函数()f x 的定义域为{}|0x x ≠ ,关于原点对称,又44()()()f x x x f x x x-=--=-+=-, 所以函数()f x 为奇函数.(2)解:()f x 在区间()2,+∞上是增函数, 证明:12,(2,)x x ∀∈+∞且12x x <, 有12121244()()()()f x f x x x x x -=+-+ 121244()()x x x x =-+-121212(4)x x x x x x -=-, 122x x <<,1212124,40,0x x x x x x >->-<∴,121212(4)0x x x x x x -∴-<,即12()()f x f x <, ∴函数()f x 在区间()2,+∞上是增函数.名师点评:对于函数()(0)af x x a x =+>主要性质如下:①定义域(,0)(0,)-∞+∞; ②奇偶性:奇函数;③单调性:当0x >时;()(0)af x x a x =+>在上单调递减;在)+∞的单调增;④值域与最值:当0x >时;()(0)af x x a x =+>值域为)+∞,当x =小值特别提醒同学们函数()(0)af x x a x =+>我们称为对钩函数(耐克函数),注意需要0a >这个大前提,当0a ≤时都不再是对钩函数,此时不具有对钩函数的性质。
高考数学复习考点知识与题型专题讲解训练专题04 函数的图象、零点及应用考点1 作函数的图象 1.作出下列函数的图象. (1)y =⎩⎨⎧-2x +3,x ≤1,-x 2+4x -2,x >1;(2)y =2x +2;【解析】(1)分段分别画出函数的图象,如图①所示.(2)y =2x +2的图象是由y =2x 的图象向左平移2个单位长度得到的,其图象如图②所示.考点2 识图与辨图2.已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )【答案】D【解析】法一:先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D. 法二:先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.3.(2021·浙江省诸暨市第二高级中学高三模拟)函数()21xy x e =-的图象是( )A .B .C .D .【答案】A【解析】因为()21xy x e =-,则()21xy x e '=+,1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()210x y x e '=+<,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()210x y x e '=+>,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,且12x <时,()210xy x e =-<,所以BCD 均错误,故选:A.4.(2021·吉林高三模拟)函数()6cos 2sin xf x x x=-的图象大致为( ).A .B .C .D .【答案】A 【解析】函数()6cos 2sin xf x x x=-为奇函数,所以排除选项BC ,又当0x >时,()f x 第一个零点为2x π=,所以令4x π=,则有222sin 0,cos0242x x ππ--=>=>,所以排除D.故选:C 考点3 函数图象的应用 考向1 研究函数的性质5.已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0) 【答案】C【解析】将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎨⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.6.(2021·山东烟台高三模拟)设函数()2,01,0x x f x x -⎧≤=⎨>⎩,则满足()()12f x f x +<的x 的取值范围是( ) A .(],1-∞- B .()0,∞+ C .()1,0- D .(),0-∞【答案】D【解析】作出函数()f x 的图象如下图所示:所以,函数()f x 在(),0-∞上为减函数,且当0x ≥时,()1f x =, 因为()()12f x f x +<,观察图象可得2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是(),0-∞.故选:D. 考向2 求不等式解集7.若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( ) A .(1,2] B.)1,22(C .(1,2) D .(2,2) 【答案】A【解析】要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].8.(2021·甘肃省会宁县第一中学高三模拟)已知)(f x 在R 上是可导函数,)(f x 的图象如图所示,则不等式)()(2230x x f x '-->解集为( )A .)()(,21,-∞-⋃+∞B .)()(,21,2-∞-⋃C .)()()(,11,02,-∞-⋃-⋃+∞D .)()()(,11,13,-∞-⋃-⋃+∞ 【答案】D【解析】原不等式等价于()22300x x f x '⎧-->⎪⎨>⎪⎩或()22300x x f x '⎧--<⎪⎨<⎪⎩,结合)(f x 的图象可得,3111x x x x ><-⎧⎪⎨-⎪⎩或或或1311x x -<<⎧⎨-<<⎩,解得1x <-或3x >或11x -<<.故选:D . 考点4 函数图象对称性的应用9.已知lga +lgb =0,函数f(x)=a x 与函数g(x)=-log b x 的图像可能是( )【答案】B【解析】∵lga +lgb =0,∴lgab =0,ab =1,∴b =1a .∴g(x)=-log b x =log a x ,∴函数f(x)与g(x)互为反函数,图像关于直线y =x 对称,故选B.10.(2021·云南高三模拟)已知函数()f x 是R 上的奇函数,且满足()()11f x f x =+-,当(]0,1x ∈,()ln f x x =,则下列关于函数()f x 叙述正确的是( )A .函数()f x 的最小正周期为1B .函数()f x 在()0,2021内单调递增C .函数()f x 相邻两个对称中心的距离为2D .函数()ln y f x x =+在区间()0,2021内有1010个零点 【答案】D【解析】由()()11f x f x =+-得:()()2f x f x +=,()f x ∴最小正周期为2,A 错误; 当(]0,1x ∈时,()ln f x x =,又()f x 为R 上的奇函数,则()00f =, 可得()f x 大致图象如下图所示:由图象可知:()f x 在()0,2021上没有单调性,B 错误;()f x 的对称中心为()()0,k k Z ∈,则相邻的对称中心之间距离为1,C 错误;()ln y f x x =+在区间()0,2021内的零点个数等价于()f x 与ln y x =-在()0,2021内的交点个数,在平面直角坐标系中画出()f x 与ln y x =-大致图象如下图所示:由图象可知:()f x 与ln y x =-在每个()()2,22k k k Z +∈内都有1个交点,且在区间内的交点横坐标等于或小于21k +,∴两个函数在()0,2021内有1010个交点,即()ln y f x x =+在区间()0,2021内有1010个零点,D正确.故选:D.11.(2021·山东淄博高三模拟)已知函数()y f x =的定义域为{|0}x x x ∈≠R ,,且满足()()0f x f x --=,当0x >时,()ln 1f x x x =-+,则函数()y f x =的大致图象为().A .B .C .D .【答案】D【解析】由()()0f x f x --=得函数()f x 为偶函数,排除A 、B 项, 又当0x >时,()ln 1f x x x =-+,∴(1)0f =,()20f e e =-<.故选:D 考点5 判断函数零点所在的区间12.设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间)1,1(e,(1,e)内均有零点B .在区间)1,1(e,(1,e)内均无零点C .在区间)1,1(e 内有零点,在区间(1,e)内无零点D .在区间)1,1(e内无零点,在区间(1,e)内有零点【答案】D【解析】法一:图象法 令f (x )=0得13x =ln x .作出函数y =13x 和y =ln x 的图象,如图, 显然y =f (x )在)1,1(e内无零点,在(1,e)内有零点.法二:定理法当x ∈),1(e e 时,函数图象是连续的,且f ′(x )=13-1x =x -33x <0,所以函数f (x )在),1(e e 上单调递减.又f )1(e =13e +1>0,f (1)=13>0,f (e)=13e -1<0,所以函数有唯一的零点在区间(1,e)内.13.(2021·黑龙江高三模拟)函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()A .()1,2B .()1,0-C .()0,1D .()2,1--【答案】D【解析】如图,绘出函数13xy ⎛⎫= ⎪⎝⎭与函数29y x =+的图像,结合图像易知,函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()2,1--,故选:D.考点6 判断函数零点(或方程根)的个数14.(2021·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .3【答案】C【解析】解方程法,令f (x )+3x =0, 则⎩⎨⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x +3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.15.(2021·山东潍坊高三模拟)已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( ) A .()1,0- B .[]1,0-C .(0,1)D .[]0,1【答案】C【解析】因为函数()()g x f x m =-有3个零点,所以()()0g x f x m =-=有三个实根,即直线y m =与函数()y f x =的图象有三个交点.作出函数()y f x =图象,由图可知,实数m 的取值范围是(0,1).故选:C .16.(2021·浙江镇海中学高三模拟)函数4()log (||1)cos f x x x π=+-的零点个数为( ) A .9 B .8C .7D .6【答案】D【解析】令()4log (||1)x g x =+ ,因为10x +>恒成立,则()g x 的定义域为R , 由()()44log (||1)log (||1)x g x x g x --+=+==,所以()g x 为偶函数, 当0x >时,()4log (1)g x x +=,在()0,∞+上单调递增,令()cos h x x π=, 分别画出()g x 与()h x 的函数图象,由图可知,()g x 与()h x 有六个交点, 即函数4()log (||1)cos f x x x π=+-有六个零点.故选: D.考点7 函数零点的应用 考向1 根据零点的范围求参数17.若函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D .(0,2) 【答案】C【解析】由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a -3)<0,解之得0<a<3.18.(2021·浙江高一期末)已知函数()()2log 1,1212,1x x x f x x ⎧-<-⎪=⎨-+≥-⎪⎩,若函数()()F x f x k =- 恰有3个零点,则实数k 的取值范围是( )A .52,2⎛⎤⎥⎝⎦B .()2,3C .(]3,4D .()2,+∞【答案】A【解析】函数()()F x f x k =- 恰有3个零点,即函数()y f x =与()h x k =的图象有三个交点,分别画出()y f x =与()h x k =的图象,如图所示,5(1)2f -=,观察图象可得,当522k <≤时,两图象有3个交点,即函数()()F x f x k =-恰有3个零点.故选:A.19.(2021·江西高三模拟)设函数,10()11,01(1)x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩,若函数()4y f x t =-在区间()1,1-内有且仅有一个零点,则实数的取值范围是( )A .1,4⎛⎫-+∞ ⎪⎝⎭B .1,04⎛⎫- ⎪⎝⎭C .1,4⎛⎫-∞- ⎪⎝⎭D .1,{0}4⎛⎤-∞- ⎥⎝⎦【答案】D【解析】因为()(),1011,011x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩所以(),1011,011x x f x x x -<≤⎧⎪=⎨+<<⎪-⎩,其图象如下:函数()4y f x t =-在区间()1,1-内有且仅有一个零点,等价于()40f x t -=在区间()1,1-内有且仅有一个实数根,又等价于函数()y f x =的图象与直线4y t =在区间()1,1-内有且仅有一个公共点. 于是41t ≤-或40t =,解得14t ≤-或0t =.故选:D 考向2 已知函数零点或方程根的个数求参数20.(2020·湖南高三模拟)已知函数2141,0()1,02x x x x f x x +⎧-+≥⎪=⎨⎛⎫<⎪ ⎪⎝⎭⎩,若()()g x f x a =-恰好有3个零点,则实数a 的取值范围为( ) A .[0,1) B .(0,1)C .1,12⎡⎫⎪⎢⎣⎭D .1,12⎛⎤ ⎥⎝⎦【答案】D【解析】由条件可知()0f x a -=()a f x ⇒=()()g x f x a =-恰好有3个零点,等价于y a =与()y f x =有3个交点,如图画出函数的图象,由图象可知112a <≤.故选:D21.(2021·安庆摸底)若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________.【答案】]2,41[-【解析】∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =2)412(-x -14,∵x ∈[-1,1],∴2x ∈]2,21[,∴2)412(-x -14∈]2,41[-∴实数a 的取值范围是]2,41[-考点8 用函数图象刻画变化过程22.甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ 【答案】B【解析】由题知速度v =st 反映在图象上为某段图象所在直线的斜率.由题知甲骑自行车速度最大,跑步速度最小,甲与图①符合,乙与图④符合.23.(2021·重庆高三模拟)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A【解析】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,xhr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得2223333222333r H vt H v h vt h h t H r r πππ⋅=⇒=⇒=⋅,而,,r H v 都是常数,即2323H v r π是常数,所以盛水的高度h 与注水时间t 的函数关系式是23323H v h tr π=⋅,203r H t v π≤≤,223323103H v h t r π-'=⋅>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同.故选:A 24.(2021·浙江高三模拟)如图,设有圆O 和定点C ,当l 从0l 开始在平面上绕O 匀速旋转(旋转角度不超过90︒)时,它扫过圆内阴影部分面积S 是时间t 的函数,它的图像大致是如下哪一种( )A .B .C .D .【答案】C【解析】当直线l 从初始位置0l 转到经过点C 的过程中阴影部分面积增加的越来越快,图像越来越“陡峭”;l 从过点C 的位置转至结束时阴影部分面积增加的越来越慢,图像越来越“平缓”,故选:C.考点9 应用所给函数模型解决实际问题25.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎨⎧C ,0<x ≤A ,C +B x -A ,x >A .已知某家庭2018年前三个月的煤气费如表: 月份 用气量 煤气费 一月份 4 m 3 4元 二月份 25 m 3 14元 三月份35 m 319元若四月份该家庭使用了20 m 3的煤气,则其煤气费为( ) A .11.5元 B .11元 C .10.5元 D .10元 【答案】A【解析】根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12x -5,x >5,所以f (20)=4+12×(20-5)=11.5.26.(2021·湖南高三期末)某工厂8年来某种产品年产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速度越来越慢; ③第三年后这种产品停止生产; ④第三年到第八年每年的年产量保持不变. 其中说法正确的序号是________. 【答案】②④【解析】由图可知,前3年的产量增长的速度越来越慢,故①错误,②正确; 第三年后这种产品的产量保持不变,故③错误,④正确; 综合所述,正确的为:②④. 故答案为:②④.27.(【百强校】福建师范大学附属中学2020-2021学年高一上学期期末考试数学试题)如图所示,边长为 1的正方形PABC 沿 x 轴从左端无穷远处滚向右端无穷远处,点B 恰好能经过原点.设动点P 的纵坐标关于横坐标的函数解析式为()y f x =,则对函数()y f x =有下列判断:①函数()y f x = 是偶函数; ②()y f x =是周期为 4 的函数;③函数 ()y f x =在区间[10,12] 上单调递减; ④函数 ()y f x = 在区间[1,1] 上的值域是[1,2] 其中判断正确的序号是_______.(写出所有正确结论的序号) 【答案】①②④【解析】当2x 1-≤<-时,P 的轨迹是以A 为圆心,半径为1的14圆当1x 1-≤<时,P 的轨迹是以B 为圆心,半径为2的14圆 当1x 2≤<时,P 的轨迹是以C 为圆心,半径为1的14圆当2x 3≤≤时,P 的轨迹是以A 为圆心,半径为1的14圆 故函数的周期为4因此最终构成图象如下所示:①根据图象的对称性可知函数()y f x =是偶函数;故正确②由图可得()f x 的周期为4,故正确③函数()y f x =在区间[2,4]上为增函数,故在区间[10,12]上也是增函数,故错误 ④在区间[1,1]上的值域是[1,2],故正确 综上,正确的序号是①②④考点10 构建函数模型解决实际问题 考向1 构建二次函数模型28.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计) 【答案】2 500【解析】设围成的矩形场地的长为x m ,则宽为200-x4 m ,则S =x ·200-x 4=14(-x 2+200x ). 当x =100时,S max =2 500 (m 2).29.(2021·四川高三模拟)某市出租车的计价标准为1.2元/km ,起步价为6元,即最初3km (不含3km )计费6元.若某人乘坐该市的出租车去往13km 处的目的地,且一路畅通,等候时间为0,那么他需要支付的车费为_____. 【答案】19.2【解析】乘车距离为x km ,车费为y 元,由题意得:6,036 1.2,346 1.22,456 1.23,56x x y x x <<⎧⎪+≤<⎪⎪=+⨯≤<⎨⎪+⨯≤<⎪⎪⎩, 所以当13x =时,()6132 1.219.2y =+-⨯=元,所以他需要支付的车费为19.2元,故答案为:19.230(2021·河南郑州一中高三模拟)在“绿水青山就是金山银山”的环保理念指引下,结合最新环保法规和排放标准,各企业单位勇于担起环保的社会责任,采取有针对性的管理技术措施,开展一系列卓有成效的改造.已知某化工厂每月收入为100万元,若不改善生产环节将受到环保部门的处罚,每月处罚20万元.该化工厂一次性投资500万元建造垃圾回收设备,一方面可以减少污染避免处罚,另一方面还能增加废品回收收入.据测算,投产后的累计收入是关于月份x 的二次函数,前1月、前2月、前3月的累计收入分别为100.5万元、202万元和304.5万元.当改造后累计纯收入首次多于不改造的累计纯收入时,x =( )A .18B .19C .20D .21【答案】A【解析】不妨设投产后的累计收入2y ax bx c =++,则100.520242304.593a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩,解得1,100,02a b c ===, 211002y x x ∴=+, ∴改造后累计纯收入为215001005002y x x -=+-, 不改造的累计纯收入为()10020x -,令()21100500100202x x x +->-, 即212050002x x +->, 解得201014x >-+201014x <--,20101417.4x ∴>-+,x N *∈,x 的最小值为18.故选:A 考向2 构建指数函数、对数函数模型31.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况【答案】B【解析】设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.32.声强级1L (单位:dB )与声强I 的函数关系式为:11210lg 10I L -⎛⎫= ⎪⎝⎭.若普通列车的声强级是95dB ,高速列车的声强级为45dB ,则普通列车的声强是高速列车声强的( ) A .610倍B .510倍C .410倍D .310倍【答案】B【解析】设普通列车的声强为1I ,高速列车的声强为2I ,因为普通列车的声强级是95dB ,高速列车的声强级为45dB ,所以1129510lg 10I -⎛⎫= ⎪⎝⎭,2124510lg 10I -⎛⎫= ⎪⎝⎭, ()11129510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得12.5lg I -=,所以 2.5110I -=, ()22124510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得27.5lg I -=,所以7.5210I -=, 两式相除得 2.5517.52101010I I --==, 则普通列车的声强是高速列车声强的510倍.故选:B.33.(2020·重庆市酉阳第一中学校高三月考)为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,英国天文学家普森又提出了亮度的概念,并提出著名的普森公式:22112.51g E m m E -=-,联系两个天体的星等1m 、2m 和它们对应的亮度1E 、2E .这个星等尺度的定义一直沿用至今.已知南十字星座的“十字架三”星等是1.26,猎户星座的“参宿一”星等是1.76,则“十字架三”的亮度大约是“参宿一”的( )倍.(当x 较小时,2101 2.3 2.7x x x ≈++)A .1.567B .1.568C .1.569D .1.570 【答案】B【解析】设“十字架三”的星等是1m ,“参宿一”的星等是2m ,“十字架三”的亮度是1E ,“参宿一”的亮度是2E ,则1 1.26m =,2 1.76m =,设12E rE =, 两颗星的星等与亮度满足22112.51gE m m E -=-, 211.76 1.26 2.51g E E ∴-=-,0.21210E E =0.22101 2.30.2 2.7(0.2) 1.568r ∴=≈+⨯+⨯=,∴与r 最接近的是1.568,故选B . 考向3 构建分段函数模型34(2021·广东江门市·高三模拟)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.【答案】7916【解析】当01t ≤≤时,函数图象是一个线段,由于过原点与点()1,4,故其解析式为4,01y t t =≤≤,当 1t ≥时,函数的解析式为12t a y -⎛⎫= ⎪⎝⎭,因为()1,4M 在曲线上,所以1142a -⎛⎫= ⎪⎝⎭,解得 3a =, 所以函数的解析式为31,12t y t -⎛⎫=≥ ⎪⎝⎭, 综上,34(01)()1(1)2t t t y f t t -≤<⎧⎪==⎨⎛⎫≥ ⎪⎪⎝⎭⎩,由题意有340.2510.252t t -≥⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩,解得1165t t ⎧≥⎪⎨⎪≤⎩,所以1516t ≤≤, 所以服药一次治疗疾病有效的时间为17951616-=个小时,故答案为:7916. 35.(2020·福建三明市·三明一中高三期中)某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是21300,0300()245000,300x x x P x x ⎧-≤<⎪=⎨⎪≥⎩,则总利润最大时店面经营天数是__________,最大总利润是__________.【答案】200 10000元【解析】由题意,0300x ≤<时,221130010010000(200)1000022y x x x x =---=--+,200x ∴=时,10000max y =;300x ≥时,4500010010000350001005000y x x =--=-≤,200x ∴=天时,总利润最大为10000元 故答案为:200, 10000元。
专题4.2 三角函数的图像与性质【647】.(2022·全国·高考真题·★★★)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【648】.(2020·全国·高考真题·★★★)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【649】.(2019·全国·高考真题·★★★)函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【650】.(2019·全国·高考真题·★★★★) 关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③【651】.(2007·海南·高考真题·★★)函数sin(2)3y x π=-在区间[,]2ππ-的简图是A .B .C .D .【652】.(2015·全国·高考真题·★★)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【653】.(2012·浙江·高考真题·★★★)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是( )A .B .C .D .【654】.(2011·全国·高考真题·★★) 设函数,则()A .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; B .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; C .函数()f x 在(0,)2π上单调递减,其图象关于直线对称; D .函数()f x 在(0,)2π上单调递减,其图象关于直线对称;【655】.(2018·全国·高考真题·★★★)若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .4πB .2π C .34π D .π【656】.(2018·天津·高考真题·★★★)将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增B .在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减【657】.(2016·全国·高考真题·★★★) 函数sin()y A x ωϕ=+的部分图象如图所示,则A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π=【658】.(2013·全国·高考真题·★★)若函数()()sin 0y x ωϕω=+>的部分图象如图,则=ω( )A .5B .4C .3D .2【659】.(2020·海南·高考真题·★★)(多选题)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x - 2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【660】.(2022·全国·高考真题·★★★★)(多选题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( ) A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线 【661】.(2021·全国·高考真题·★★)已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【662】.(2021·全国·高考真题·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【663】.(2020·全国·高考真题·★★★★)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【664】.(2011·江苏·高考真题·★★★)函数()sin()(,,f x A x A ωϕωϕ=+是常数,0,0A ω>>)的部分图象如图所示,则_____________【665】.(2022·全国·模拟预测·★★★★)(多选题)已知函数()()sin cos sin f x x x x =-,则下列说法正确的是( )A .函数()f x 的最小正周期为2πB .()f xC .()f x 的图像关于直线8x π=-对称D .将()f x 的图像向右平移8π个单位长度,再向上平移12个单位长度后所得图像对应的函数为奇函数 【666】.(2022·全国·模拟预测·★★★)(多选题)已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是( )A .()3cos 26f x x π⎛⎫=- ⎪⎝⎭B .()f x 在()3,4ππ上单调递增C .()32f x >的解集为()4,43k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z .D .()f x 的图象的对称轴方程为()3x k k ππ=-∈Z【667】.(2022·全国·模拟预测·★★★)(多选题)函数()()()cos 02f x x ωϕϕπ=+≤<的部分图像如图所示,则( )A .3ω=B .65ϕπ=C .函数()f x 在314,55ππ⎡⎤⎢⎥⎣⎦上单调递增D .函数()f x 图像的对称轴方程为()315k x k ππ=-∈Z 【668】.(2022·山东师范大学附中模拟预测·★★★★)(多选题)已知函数()()sin 0,R f x x x x ωωω=>∈的图象与x 轴交点的横坐标构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π3个单位,横坐标伸长到原来的2倍得到函数()g x 的图象,则下列关于函数()g x 的结论正确的是( ) A .函数()g x 是偶函数 B .()g x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称C .()g x 在ππ,33⎡⎤-⎢⎥⎣⎦上是增函数D .当ππ,66x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域是[1,2]【669】.(2022·湖南·长沙县第一中学模拟预测·★★★)(多选题) 已知函数()cos 2sin f x x x =+,则下列说法正确的是( ) A .直线2x π=为函数f (x )图像的一条对称轴B .函数f (x )图像横坐标缩短为原来的一半,再向左平移2π后得到()cos22sin 2g x x x =+ C .函数f (x )在[-2π,2π]上单调递增D .函数()f x 的值域为[-2 【670】.(2022·内蒙古包头·二模·★★★)已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足条件()54f x f π⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()703f x f π⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎭<⎝的最小正偶数x 为___________.【671】.(2022·天津河西·一模·★★★)函数()()sin f x A x ωϕ=+(其中0>ω,0A >,π2ϕ<)的图象如图所示,则()f x 在点,66f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为______. 【672】.(2022·四川·成都七中三模·★★★★)已知函数()[]()()sin ,0,212,2,2x x f x f x x π∞⎧∈⎪=⎨-∈+⎪⎩,则函数()ln(1)y f x x =--的零点个数是______个.【673】.(2022·甘肃·武威第六中学模拟预测·★★★★)已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( ) A .6π=ϕ B .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【674】.(2022·上海青浦·二模·★★★)已知函数()sin cos f x x x =+的定义域为[],a b ,值域为⎡-⎣,则b a -的取值范围是( ) A .3ππ,42⎡⎤⎢⎥⎣⎦B .π3π,24⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .3π3π,42⎡⎤⎢⎥⎣⎦【675】.(2022·青海·海东市第一中学模拟预测·★★★)将函数()πsin(2)6f x x =+的图象向右平移6π个单位长度,然后将所得图象上所有点的横坐标缩小到原来的12(纵坐标不变),得到函数()y g x =的图象,则下列说法正确的是( ) A .π()sin 46g x x ⎛⎫=+ ⎪⎝⎭B .()g x 在ππ,123⎡⎤⎢⎥⎣⎦上单调C .()g x 的图象关于直线π2x =对称D .当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()g x 的值域为1,12⎡⎤-⎢⎥⎣⎦【676】.(2022·青海·海东市第一中学模拟预测·★★★) 函数sin cos yx x x 在[]π,π-上的图像大致是( )A .B .C .D .【677】.(2022·广东茂名·二模·★★★)已知函数π())(||)2f x x ϕϕ+< 的部分图象如图所示.将函数()f x 的图象向左平移 π12个单位得到()g x 的图象,则( )A . ()3sin(2)6g x x π=+) B .()3sin(2)12g x x 5π=+C .()2g x x =D .()2g x x =【678】.(2022·河南·开封市东信学校模拟预测·★★★)若函数()f x 过点,其导函数()cos(2)0,02f x A x A πϕϕ⎛⎫'=+><< ⎪⎝⎭的部分图象如图所示,则()f π=( )A .0B .12C .22D .2 【679】.(2022·黑龙江·哈九中三模·★★★★)已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x ,[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π【680】.(2022·河南·平顶山市第一高级中学模拟预测·★★)函数sin 22cos x x y x=-的部分图像大致为( ) A . B .C .D .【681】.(2022·贵州·贵阳一中模拟预测·★★)如图是函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的图像的一部分,则要得到该函数的图像,只需要将函数()2cos2g x x x =-的图像( )A .向左平移4π个单位长度B .向右平移4π个单位长度 C .向左平移2π个单位长度 D .向右平移2π个单位长度 【682】.(2022·浙江·湖州市菱湖中学模拟预测·★★★)函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭的大致图象为( ) A . B . C . D .【683】.(2022·山东潍坊·模拟预测·★★★)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,现将()f x 的图像向左平移6π个单位长度,得到函数()g x 的图像,则()g x 的表达式可以为( )A .2sin 2g x xB .()2cos 23g x x π=-⎛⎫ ⎪⎝⎭ C .()2sin 6g x x π⎛⎫=- ⎪⎝⎭ D .()2cos 3g x x π⎛⎫=+ ⎪⎝⎭ 【684】.(2022·全国·模拟预测·★★★)已知函数()|sin()|0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像如图,则()f x 的解析式为( )A .()2sin 213f x x π⎛⎫=++ ⎪⎝⎭ B .()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭ C .()3sin 213f x x π⎛⎫=++ ⎪⎝⎭ D .()3sin 213f x x π⎛⎫=-+ ⎪⎝⎭ 【685】.(2022·上海金山·二模·★★)已知向量()()sin2,2cos ,3,cos a x x b x ==,则函数()1,,22f x a b x ππ⎡⎤=⋅-∈-⎢⎥⎣⎦的单调递增区间为__________. 【686】.(2022·上海闵行·二模·★★)若函数cos y x x +的图像向右平移ϕ个单位后是一个奇函数的图像,则正数ϕ的最小值为___________;【687】.(2022·山东日照·三模·★★)已知函数()()(2sin 0,||)f x x ωϕωϕπ=+><的部分图像如图所示,则ϕ=________.【688】.(2022·上海·模拟预测·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条7π4π()()043f x f f x f ⎡⎤⎡⎤⎛⎫⎛⎫---< ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦的最大负整数x 为_________.【689】.(2022·北京工业大学附属中学三模·★★★) 已知函数ππ()sin()sin()44f x x x =+-给出下列四个结论: ①f (x )的值域是[1,1]-;②f (x )在π[0,]2上单调递减: ③f (x )是周期为π的周期函数④将f (x )的图象向左平移π2个单位长度后,可得一个奇函数的图象 其中所有正确结论的序号是___________.【690】.(2022·四川·模拟预测·★★★★)已知函数()cos 22cos 2f x x x π=+-⎛⎫ ⎪⎝⎭,则下列结论正确的是________.(写出所有正确结论的序号) ①()f x 的最小正周期为2π;②()f x 是奇函数;③()f x 的值域为33,2⎡⎤-⎢⎥⎣⎦;④()f x 在,26ππ⎡⎤-⎢⎥⎣⎦上单调递增. 【691】.(2022·江西·新余市第一中学三模·★★★★)已知函数()()()cos 210,0πf x A x A ϕϕ=+-><<,若函数()y f x =的部分图象如图,函数()g x =()sin A Ax ϕ-,则下列结论正确的是___________.(填序号) ①函数()g x 的图象关于直线π12x =-对称; ②函数()g x 的图象关于点π,02⎛⎫ ⎪⎝⎭对称; ③将函数()1y f x =+的图象向左平移π12个单位长度可得到函数()g x 的图象;④函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的单调递减区间为06,π⎡⎤⎢⎥⎣⎦. 【692】.(2022·天津红桥·二模·★★★)已知函数()sin()f x A x ωϕ=+,0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,则ϕ=__________. 【693】.(2022·黑龙江·哈尔滨三中三模·★★★)函数()()()sin 0,0,0f x A x A ωφωφπ=+>><<的部分图象如图所示,则φ=___________.【694】.(2022·江西·模拟预测·★★★★) 如图是函数()sin(2)||,02f x A x A πθθ⎛⎫=+≤> ⎪⎝⎭的部分图像,()()0f a f b ==,且对不同的12,[,]x x a b ∈,若12()()f x f x =,有12()f x x +=θ=____________.【695】.(2022·河南·灵宝市第一高级中学模拟预测·★★★)已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移π4个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有______.(填序号)①方程()()3π60,2f x g x x ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为7π12;②不等式()()g x f x ≥ππ5ππ,3262k k ⎡⎫++⎪⎢⎣⎭,k ∈Z ③函数()y f x =与函数()y g x =图象关于7π24x =对称.。
专题4.4 三角函数的图象与性质【考试要求】1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质. 【知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )【微点提醒】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )【答案】 (1)× (2)× (3)× (4)√【解析】 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条.(2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 【教材衍化】2.(必修4P46A2,3改编)若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2【答案】 A【解析】 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 3.(必修4P47B2改编)函数y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为________. 【答案】 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )【解析】 由-π2+k π<2x -3π4<π2+k π(k ∈Z ),得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为⎝⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 【真题体验】4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2【答案】 C【解析】 由题意T =2π2=π.5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B.1C.35D.15【答案】 A【解析】 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3,函数的最大值为65.6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________. 【答案】 -π6【解析】 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 【考点聚焦】考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【答案】(1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎪⎨⎪⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 【规律方法】1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法 (1)利用三角函数线求解. (2)利用三角函数的图象求解.【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.【答案】 (1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z 【解析】 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 【规律方法】 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A.4 B.5 C.6 D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤π3,π【解析】 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π.考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【答案】 A【解析】 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【答案】 A【解析】 f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.【规律方法】1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( ) A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增 (2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)(一题多解)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.【答案】 (1)C (2)sin 68°>cos 23°>cos 97° (3)32【解析】 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【答案】 (1)B (2)A【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.【规律方法】 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5 【答案】 (1)C (2)B【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. (2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ). 又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9. 【规律方法】1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2 C.π D.2π(2)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( ) A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 【答案】 (1)C (2)D【解析】 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z . f (x )=sin x cos x1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x , ∴f (x )的最小正周期T =2π2=π. (2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确. C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.【反思与感悟】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.【易错防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.3.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π【答案】 C【解析】 ∵y =2⎝⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π. 2.(2019·石家庄检测)若⎝⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8 【答案】 C【解析】 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C.2D.3【答案】 B【解析】 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32. 4.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2【答案】 C【解析】 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2. 5.若f (x )为偶函数,且在⎝⎛⎭⎪⎫0,π2上满足:对任意x 1<x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )可以为( ) A.f (x )=cos ⎝⎛⎭⎪⎫x +5π2 B.f (x )=|sin(π+x )| C.f (x )=-tan xD.f (x )=1-2cos 22x 【答案】 B 【解析】 ∵f (x )=cos ⎝⎛⎭⎪⎫x +5π2=-sin x 为奇函数,∴排除A ;f (x )=-tan x 为奇函数,∴排除C ;f (x )=1-2cos 22x =-cos 4x 为偶函数,且单调增区间为⎣⎢⎡⎦⎥⎤k π2,k π2+π4(k ∈Z ),排除D ;f (x )=|sin(π+x )|=|sin x |为偶函数,且在⎝⎛⎭⎪⎫0,π2上单调递增. 二、填空题6.(2019·烟台检测)若函数f (x )=cos ⎝⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________. 【答案】 5π6【解析】 因为f (x )为奇函数,所以φ-π3=π2+k π(k ∈Z ),φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6. 7.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) 【解析】 由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ), 所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 8.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.【答案】 23【解析】 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 三、解答题9.(2018·北京卷)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值. 【答案】见解析【解析】(1)f (x )=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12. 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎪⎫2x -π6+12. 由题意知-π3≤x ≤m , 所以-5π6≤2x -π6≤2m -π6. 要使得f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32, 即sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3. 故实数m 的最小值为π3. 10.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 【答案】见解析【解析】(1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.【能力提升题组】(建议用时:20分钟)11.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为() A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z )C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z )D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z )【答案】 D【解析】 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ).12.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24 【答案】 A【解析】 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12. 13.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ) 【解析】 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点, 所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ), 得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值. 【答案】见解析【解析】(1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝⎛⎭⎪⎫2x -π3.当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1. (2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π. 又方程f (x )=23在(0,π)上的解为x 1,x 2. ∴x 1+x 2=56π,则x 1=56π-x 2, ∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23. 【新高考创新预测】15.(思维创新)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.【答案】 π2【解析】 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2.。
专题四立体几何与空间向量第1讲空间几何体的三视图、表面积与体积年份卷别考查内容及考题位置命题分析2018卷Ⅰ空间几何体的三视图及侧面展开问题·T71.“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面的位置关系(特别是平行与垂直).2.考查一个小题时,此小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一个小题难度稍高,一般会出现在第10~16题的位置上,此小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.空间几何体的截面问题·T12卷Ⅱ圆锥的侧面积·T16卷Ⅲ三视图的识别·T3三棱锥的体积及外接球问题·T102017卷Ⅰ空间几何体的三视图与直观图、面积的计算·T7卷Ⅱ空间几何体的三视图及组合体体积的计算·T4卷Ⅲ球的内接圆柱、圆柱的体积的计算·T82016卷Ⅰ有关球的三视图及表面积的计算·T6卷Ⅱ空间几何体的三视图及组合体表面积的计算·T6卷Ⅲ空间几何体的三视图及组合体表面积的计算·T9直三棱柱的体积最值问题·T10空间几何体的三视图(基础型) 一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.由三视图还原到直观图的三个步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.[注意]在读图或者画空间几何体的三视图时,应注意三视图中的实线和虚线.[考法全练]1.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N 的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.3.把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12B.22C.24D.14解析:选D.由三棱锥C -ABD 的正视图、俯视图得三棱锥C -ABD 的侧视图为直角边长是22的等腰直角三角形,如图所示,所以三棱锥C -ABD 的侧视图的面积为14,故选D.4.(2018·长春质量监测(二))如图,网格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为( )A .2 B. 5 C .2 2D .3解析:选D.如图,三棱锥A -BCD 即为所求几何体,根据题设条件,知辅助的正方体棱长为2,CD =1,BD =22,BC =5,AC =2,AB =3,AD =5,则最长棱为AB ,长度为3.5.(2018·石家庄质量检测(一))如图,网格纸上的小正方形的边长为1,粗线表示的是某三棱锥的三视图,则该三棱锥的四个面中,最小面的面积是( )A .2 3B .2 2C .2D. 3解析:选C.在正方体中还原该几何体,如图中三棱锥D -ABC 所示,其中正方体的棱长为2,则S △ABC =2,S △DBC =22,S △ADB =22,S △ADC =23,故该三棱锥的四个面中,最小面的面积是2,选C.空间几何体的表面积和体积(综合型)柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch (c 为底面周长,h 为高). (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).柱体、锥体、台体的体积公式 (1)V 柱体=Sh (S 为底面面积,h 为高). (2)V 锥体=13Sh (S 为底面面积,h 为高).(3)V 台=13(S +SS ′+S ′)h (S ,S ′分别为上下底面面积,h 为高)(不要求记忆).[典型例题]命题角度一 空间几何体的表面积(1)(2018·潍坊模拟)某几何体的三视图如图所示,则该几何体的表面积为( )A .4+23B .4+4 2C .6+2 3D .6+4 2(2)(2018·合肥第一次质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6【解析】 (1)由三视图还原几何体的直观图如图所示,易知BC ⊥平面P AC ,又PC ⊂平面P AC ,所以BC ⊥PC ,又AP =AC =BC =2,所以PC =22+22=22,又AB =22,所以S △PBC =S △P AB =12×2×22=22,S △ABC =S △P AC =12×2×2=2,所以该几何体的表面积为4+4 2.(2)由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6. 【答案】 (1)B (2)C求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得几何体的表面积.命题角度二 空间几何体的体积(1)(2018·武汉调研)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.22C.33D.23(2)(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.【解析】 (1)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,四棱锥D -ABC 1D 1的底面积为S 四边形ABC 1D 1=2×2=22,高h =22,其体积V =13S 四边形ABC 1D 1h =13×22×22=23.故选D.(2)由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,得12l 2=8,得l =4.在Rt △ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.【答案】 (1)D (2)8π求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算体积的几何体.[对点训练]1.(2018·洛阳第一次统考)一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为( )A .8-2π3B .4-π3C .8-π3D .4-2π3解析:选A.由三视图可得该几何体的直观图如图所示,该几何体是一个棱长为2的正方体上、下各挖去一个底面半径为1,高为1的圆锥后剩余的部分,其体积为23-2×13×π×12×1=8-2π3.故选A.2.(2018·唐山模拟)如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图,则该几何体的体积为( )A .3 B.113 C .7D.233解析:选B.由题中的三视图可得,该几何体是由一个长方体切去一个三棱锥所得的几何体,长方体的长,宽,高分别为2,1,2,体积为4,切去的三棱锥的体积为13,故该几何体的体积V =4-13=113.故选B.多面体与球(综合型)[典型例题]命题角度一 外接球(2018·南宁模拟)三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A⊥PB ,三棱锥P -ABC 的外接球的体积为( )A.272π B.2732πC .273πD .27π【解析】 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC ≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B.【答案】 B解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.命题角度二 内切球已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6B.4π3C.2π3D.π2【解析】 当注入水的体积是该三棱锥体积的78时,设水面上方的小三棱锥的棱长为x (各棱长都相等),依题意,⎝⎛⎭⎫x 43=18,得x =2.易得小三棱锥的高为263,设小球半径为r ,则13S 底面·263=4·13·S 底面·r ,得r =66,故小球的表面积S =4πr 2=2π3.故选C.【答案】 C求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.命题角度三 与球有关的最值问题(2018·高考全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3【解析】 如图,E 是AC 中点,M 是△ABC 的重心,O 为球心,连接BE ,OM ,OD ,BO .因为S △ABC =34AB 2=93,所以AB =6,BM =23BE =23AB 2-AE 2=2 3.易知OM ⊥平面ABC ,所以在Rt △OBM 中,OM =OB 2-BM 2=2,所以当D ,O ,M 三点共线且DM =OD +OM 时,三棱锥D -ABC 的体积取得最大值,且最大值V max =13S △ABC ×(4+OM )=13×93×6=18 3.故选B.【答案】 B多面体与球有关的最值问题,主要有三种:一是多面体确定的情况下球的最值问题,二是球的半径确定的情况下与多面体有关的最值问题;三是多面体与球均确定的情况下,截面的最值问题.[对点训练]1.(2018·福州模拟)已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A.83π B.323π C .16πD .32π解析:选B.设该圆锥的外接球的半径为R ,依题意得,R 2=(3-R )2+(3)2,解得R =2,所以所求球的体积V =43πR 3=43π×23=323π,故选B.2.(2018·洛阳第一次联考)已知球O 与棱长为4的正四面体的各棱均相切,则球O 的体积为( )A.823πB.833πC.863π D.1623π解析:选A.将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长22,则球O 的体积V =43πR 3=823π,故选A.3.已知四棱锥S -ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积等于( )A.42π3B.162π3C.322π3D.642π3解析:选D.由题意得,当四棱锥的体积取得最大值时,该四棱锥为正四棱锥.因为该四棱锥的表面积等于16+163,设球O 的半径为R ,则AC =2R ,SO =R ,如图,所以该四棱锥的底面边长AB =2R ,则有(2R )2+4×12×2R × (2R )2-⎝⎛⎭⎫22R 2=16+163,解得R =22,所以球O 的体积是43πR 3=6423π.故选D.一、选择题1.(2018·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )解析:选A.正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A.2.(2018·高考北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选C.将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC ∥AD ,BC =1,AD =AB =P A =2,AB ⊥AD ,P A ⊥平面ABCD ,故△P AD ,△P AB 为直角三角形, 因为P A ⊥平面ABCD ,BC ⊂平面ABCD , 所以P A ⊥BC ,又BC ⊥AB ,且P A ∩AB =A ,所以BC ⊥平面P AB ,又PB ⊂平面P AB ,所以BC ⊥PB ,所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22, 故△PCD 不是直角三角形,故选C.3.(2018·沈阳教学质量监测(一))如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3解析:选A.由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.4.(2018·西安八校联考)某几何体的三视图如图所示,则该几何体的体积是( )A.4π3B.5π3 C .2+2π3D .4+2π3解析:选B.由三视图可知,该几何体为一个半径为1的半球与一个底面半径为1,高为2的半圆柱组合而成的组合体,故其体积V =23π×13+12π×12×2=5π3,故选B.5.(2018·长春质量检测(一))已知矩形ABCD 的顶点都在球心为O ,半径为R 的球面上,AB =6,BC =23,且四棱锥O -ABCD 的体积为83,则R 等于( )A .4B .2 3 C.479D.13解析:选A.如图,设矩形ABCD 的中心为E ,连接OE ,EC ,由球的性质可得OE ⊥平面ABCD ,所以V O ABCD =13·OE ·S 矩形ABCD =13×OE×6×23=83,所以OE =2,在矩形ABCD 中可得EC =23,则R =OE 2+EC 2=4+12=4,故选A.6.(2018·南昌调研)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.23 B.43 C .2D.83解析:选A.由三视图可知,该几何体为三棱锥,将其放在棱长为2的正方体中,如图中三棱锥A -BCD 所示,故该几何体的体积V =13×12×1×2×2=23.7.(2018·辽宁五校协作体联考)如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是三棱锥的三视图,则此三棱锥的体积是( )A .8B .16C .24D .48解析:选A.由三视图还原三棱锥的直观图,如图中三棱锥P ABC 所示,且长方体的长、宽、高分别为6,2,4,△ABC 是直角三角形,AB ⊥BC ,AB =2,BC =6,三棱锥P -ABC 的高为4,故其体积为13×12×6×2×4=8,故选A.8.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A.π27B.8π27C.π3D.2π9解析:选B.如图所示,设圆柱的半径为r ,高为x ,体积为V ,由题意可得r 1=2-x2,所以x =2-2r ,所以圆柱的体积V =πr 2(2-2r )=2π(r 2-r 3)(0<r <1),设V (r )=2π(r 2-r 3)(0<r <1),则V ′(r )=2π(2r -3r 2),由2π(2r -3r 2)=0得r =23,所以圆柱的最大体积V max =2π⎣⎡⎦⎤⎝⎛⎭⎫232-⎝⎛⎭⎫233=8π27. 9.(2018·福州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为 ( )A .14B .10+4 2 C.212+4 2 D.21+32+4 2解析:选D.由三视图可知,该几何体为一个直三棱柱切去一个小三棱锥后剩余的几何体,如图所示.所以该多面体的表面积S =2×⎝⎛⎭⎫22-12×1×1+12×(22-12)+12×22+2×22+12×32×(2)2=21+32+42,故选D. 10.(2018·太原模拟)某几何体的三视图如图所示,则该几何体中最长的棱长为( )A .3 3B .2 6 C.21D .2 5解析:选B.由三视图得,该几何体是四棱锥P -ABCD ,如图所示,ABCD 为矩形,AB =2,BC =3,平面P AD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱PC =PE 2+CE 2=26,故选B.11.(2018·南昌调研)已知三棱锥P -ABC 的所有顶点都在球O 的球面上,△ABC 满足AB =22,∠ACB =90°,P A 为球O 的直径且P A =4,则点P 到底面ABC 的距离为( )A. 2 B .2 2 C. 3D .2 3解析:选B.取AB 的中点O 1,连接OO 1,如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆O 1是以AB 为直径的圆,所以O 1A =2,且OO 1⊥AO 1,又球O 的直径P A =4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC ,所以点P 到平面ABC 的距离为2OO 1=2 2.12.(2018·高考全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32解析:选A.记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×⎝⎛⎭⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A. 二、填空题13.(2018·洛阳第一次联考)一个几何体的三视图如图所示,则该几何体的体积为________.解析:由题图可知该几何体是一个四棱锥,如图所示,其中PD ⊥平面ABCD ,底面ABCD 是一个对角线长为2的正方形,底面积S =12×2×2=2,高h =1,则该几何体的体积V =13Sh =23.答案:2314.(2018·福州四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为________.解析:在长、宽、高分别为3,33,33的长方体中,由几何体的三视图得几何体为如图所示的三棱锥C -BAP ,其中底面BAP 是∠BAP =90°的直角三角形,AB =3,AP =33,所以BP =6,又棱CB ⊥平面BAP 且CB =33,所以AC =6,所以该几何体的表面积是12×3×33+12×3×33+12×6×33+12×6×33=27 3. 答案:27 315.(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π16.(2018·潍坊模拟)已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为________.解析:设正四棱柱的底面边长为a ,高为h ,球的半径为r ,由题意知4πr 2=12π,所以r 2=3,又2a 2+h 2=(2r )2=12,所以a 2=6-h 22,所以正四棱柱的体积V =a 2h =⎝⎛⎭⎫6-h 22h ,则V ′=6-32h 2,由V ′>0,得0<h <2,由V ′<0,得h >2,所以当h =2时,正四棱柱的体积最大,V max =8.答案:2。
专题4.2 三角恒等变换试题 文【三年高考】1. 【2016高考天津文数】已知函数)0(21sin 212sin)(2>-+=ωωωx xx f ,R x ∈.若)(x f 在区间)2,(ππ内没有零点,则ω的取值范围是( )(A )]81,0( (B ))1,85[]41,0( (C )]85,0( (D )]85,41[]81,0(【答案】D2.[2016高考新课标Ⅲ文数]若tan 13θ= ,则cos 2θ=( ) (A )45-(B )15- (C )15 (D )45【答案】D【解析】2222222211()cos sin 1tan 43cos 21cos sin 1tan 51()3θθθθθθθ---====+++. 3. 【2016高考浙江文数】已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =______,b =______.1.【解析】22cos sin21cos2sin2)14x x x x x π+=++++,所以 1.A b =4. 【2016高考新课标1文数】已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. 【答案】43-5. 【2016高考山东文数】设2()π)sin (sin cos )f x x x x x =--- . (I )求()f x 得单调递增区间;(II )把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象,求π()6g 的值. 【解析】(I )由()()()2sin sin cos f x x x x x π=---()212sin cos x x x =--)1cos 2sin 21x x =-+-sin 21x x =2sin 21,3x π⎛⎫=- ⎪⎝⎭由()222,232k x k k Z πππππ-≤-≤+∈得()5,1212k x k k Z ππππ-≤≤+∈ 所以,()f x 的单调递增区间是()5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(或()5(,)1212k k k Z ππππ-+∈)(∏)由(I )知()f x 2s i n 23x π⎛⎫=-⎪⎝⎭把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin 13x π⎛⎫=-+ ⎪⎝⎭的图象,再把得到的图象向左平移3π个单位,得到y 2sin 1x =的图象,即()2sin 1.g x x =所以 2sin 166g ππ⎛⎫=+=⎪⎝⎭6. 【2015高考福建,文6】若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512- 【答案】D7.【2015高考重庆,文6】若11tan ,tan()32a ab =+=,则tan =b ( ) (A) 17 (B) 16 (C) 57 (D) 56【答案】A【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯,故选A.8.【2015高考上海,文17】已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ). A.233 B. 235 C. 211 D. 213【答案】D【解析】设直线OA 的倾斜角为α,)0,0)(,(>>n m n m B ,则直线OB 的倾斜角为απ+3,因为)1,34(A ,所以341tan =α,m n =+)3tan(απ,3313341313413=⋅-+=mn,即2216927n m =, 因为491)34(2222=+=+n m ,所以491692722=+n n ,所以213=n 或213-=n (舍去),所以点B 的纵坐标为213. 9.【2015高考广东,文16】已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值.10. 【2014高考全国2卷文第14题】 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________. 【答案】1【解析】由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.11. 【2014高考陕西卷文第13题】 设20πθ<<,向量)cos ,1(),cos ,2(sin θθθ-==b a ,若0=⋅,则=θtan ______. 【答案】1212. 【2014高考江西文第16题】已知函数()()()θ++=x x a x f 2cos cos 22为奇函数,且04=⎪⎭⎫⎝⎛πf ,其中()πθ,,0∈∈R a . (1)求θ,a 的值; (2)若⎪⎭⎫ ⎝⎛∈-=⎪⎭⎫⎝⎛ππαα,,2524f ,求⎪⎭⎫ ⎝⎛+3sin πα的值.【三年高考命题回顾】纵观前三年各地高考试题,三角函数的化简、求值及最值问题,是每年高考必考的知识点之一,题型一般是选择和填空的形式,大题往往结合三角函数图像与性质,解三角形,主要考查同角三角函数的基本关系式,三角函数的诱导公式,和、差、倍、半、和积互化公式在求三角函数值时的应用,考查利用三角公式进行恒等变形的技能,以及基本运算的能力,特别突出算理方法的考查.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出,三角恒等变换是研究三角函数的图象与性质,解三角形的基础,在高考中单独命题的情况很少,大多数省份对于三角恒等变换的考查,是结合三角函数的图象与性质,解三角形进行命题,由此可见,高考加大了对三角恒等变换的考查力度,高考命题考查的重点是诱导公式公式,同角三角函数基本关系,两角和与差的正弦、余弦、正切公式以及二倍角公式.预测在2017年的高考试卷中,三角函数式的恒等变形,如利用有关公式求值,与三角函图象与性质结合,或与解三角形结合,解决简单的综合问题,在填空题和选择题中出现,主要考查"三基"(基础知识、基本技能、基本思想和方法)以及综合能力,难度多为容易题和中档题.故在2017年复习备考过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质.以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识.这部分常常以选择题和填空题的形式出现,有时也以大题的形式出现,因此能否掌握好本重点内容,在一定的程度上制约着在高考中成功与否.在2017年复习备考过程中既要注重以下几点:1.两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在学习时应注意以下几点:(1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉;(2)善于拆角、拼角,如()ββαα-+=,()()()αβαβαβαβαα++=+-++=22,等; (3)注意倍角的相对性 (4)要时时注意角的范围(5)化简要求:熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等. 2.证明三角等式的思路和方法.(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式.(2)证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等. 3.解答三角高考题的策略.(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”. (2)寻找联系:运用相关公式,找出差异之间的内在联系. (3)合理转化:选择恰当的公式,促使差异的转化. 4.加强三角函数应用意识的训练由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成思维障碍,思路受阻.实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点.总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法. 5.变为主线、抓好训练变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化变意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律. 针对高考中题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法.另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点.同时应掌握三角函数与二次函数相结合的题目.[易错提示] 三角函数求值中要特别注意角的范围,如根据21cos 2sin 2αα-=求sin α的值时,sin α=α的范围使得sin 0α≥时,取正号,反之取负号.注意在运用同角三角函数关系时也有类似问题.【2017年高考考点定位】高考对本部分内容的考查主要以小题的形式出现,即利用三角函数的定义、诱导公式及同角三角函数的关系及和、差、倍、半、和积互化公式进行求值、变形,求参数的值,求值域,而大题常常在综合性问题中涉及三角函数的定义、诱导公式及同角三角函数的关系及和、差、倍、半、和积互化公式的应用等,在这类问题的求解中,常常使用的方法技巧是“平方法”,“齐次化切”等. 【考点1】利用诱导公式恒等变换 【备考知识梳理】诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,其中k Z ∈诱导公式二: sin(180)α+= sin α-; cos(180)α+=- cos α诱导公式三: sin()sin αα-=-; cos()cos αα-=诱导公式四:sin(180)sin αα-= ; cos(180)cos αα-=-诱导公式五:sin(360)sin αα-=- ; cos(360)cos αα-= 公式六:sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. 公式七:sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭公式八:3sin cos 2παα⎛⎫-=- ⎪⎝⎭,3cos sin 2παα⎛⎫-=- ⎪⎝⎭. 公式九:3sin cos 2παα⎛⎫+=-⎪⎝⎭,3cos sin 2παα⎛⎫+= ⎪⎝⎭诱导公式口诀:纵变横不变,符号看象限用诱导公式化简,一般先把角化成,2k k z πα+∈的形式,然后利用诱导公式的口诀化简(如果前面的角是纵轴(即y 轴)上的角,就是 “纵”,是横轴(即x 轴)上的角,就是“横”;符号看象限是,把α看作是锐角,判断角2k πα+在第几象限,在这个象限的前面三角函数的符号是 “+”还是“--”,就加在前面). 用诱导公式计算时,一般是先将负角变成正角,再将正角变成区间0(0,360)的角,再变到区间0(0,180)的角,再变到区间00(0,90)的角计算. 【规律方法技巧】 1. 利用诱导公式求值:i.给角求值的原则和步骤:(1)原则:负化正、大化小、化到锐角为终了.(2)步骤:利用诱导公式可以把任意角的三角函数转化为02π:之间角的三角函数,然后求值,其步骤为:ii.给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现2π的倍数,则通过诱导公式建立两者之间的联系,然后求解. 常见的互余与互补关系 (1)常见的互余关系有:3πα+与6πα-;3πα-与6πα+;4πα+与4πα-等.(2)常见的互补关系有:3πα+ 与23πα-;4πα+与34πα-等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题. 2. 利用诱导公式化简、证明i.利用诱导公式化简三角函数的原则和要求(1)原则:遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行三角函数名称转化,以保证三角函数名称最少.(2)要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.ii.证明三角恒等式的主要思路(1)由繁到简法:由较繁的一边向简单一边化简.(2)左右归一法:使两端化异为同,把左右式都化为第三个式子. (3)转化化归法:先将要证明的结论恒等变形,再证明.提醒:由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如()()cos 5cos cos παπαα-=-=-. 【考点针对训练】1. 【2016届淮南市高三第二次模拟】已知sin()2sin()2ππαα-=-+,则tan α的值为( )A .12 B . 2 C .12- D .-2 【答案】D2. 【2016届河南省洛阳市一中高三下学期第二次模拟】已知sin()sin 032ππααα++=-<<,则2cos()3πα+等于( ) A.45- B.35- C. 45 D. 35【答案】C【考点2】利用同角三角函数关系式恒等变换 【备考知识梳理】同角三角函数的基本关系式: (1)sin tan cos ααα=,(2)22sin cos 1αα+=. 【规律方法技巧】1.正、余弦三兄妹“sin cos x x ±、sin cos x x ⋅”的应用sin cos x x ±与sin cos x x ⋅通过平方关系联系到一起,即2(sin cos )12sin cos x x x x ±=±,2(sin cos )1sin cos ,2x x x x +-=21(sin cos )sin cos .2x x x x --=因此在解题中若发现题设条件有三者之一,就可以利用上述关系求出或转化为另外两个.sin cos αα、的求值技巧:当已知sin 4πα⎛⎫± ⎪⎝⎭,cos 4πα⎛⎫± ⎪⎝⎭时,利用和、差角的三角函数公式展开后都含有sin cos x x +或sin cos αα-,这两个公式中的其中一个平方后即可求出2sin cos αα,根据同角三角函数的平方关系,即可求出另外一个,这两个联立即可求出sin cos αα、的值.或者把sin cos αα+、sin cos αα-与22sin cos αα+=1联立,通过解方程组的方法也可以求出sin cos αα、的值. 2.如何利用“切弦互化”技巧(1)弦化切:把正弦、余弦化成切得结构形式,这样减少了变量,统一为“切”得表达式,进行求值. 常见的结构有:①sin ,cos αα的二次齐次式(如22sin sin cos cos a b c αααα++)的问题常采用“1”代换法求解;②sin ,cos αα的齐次分式(如sin cos sin cos a b c d αααα++)的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式tan α=sin cos αα,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧.温馨提示:(1)求同角三角函数有知一求三规律,可以利用公式求解,最好的方法是利用画直角三角形速解.(2)利用平方关系求三角函数值时,注意开方时要结合角的范围正确取舍“±”号. 【考点针对训练】1. 【2016届湖南省常德一中高三第十一次月考】已知,sin 2cos R ααα∈+=,则tan 2α=( ) A .43B .34C .34-D .43- 【答案】 C2. 【2016年安徽淮南高三二模】已知()1sin cos ,0,2αααπ+=∈,则1tan 1tan αα-=+( ) A. B.【答案】A【解析】21(sin cos )4αα+=,3sin cos 8αα=-,所以cos 0,sin 0αα<>,27(cos sin )12sin cos 4αααα-=-=,cos sin 2αα-=-,所以1tan cos sin 211tan cos sin 2αααααα--===++A . 【考点3】利用和、差、倍、半、和积互化公式恒等变换 【备考知识梳理】 1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos( =±;tan tan tan()1tan tan αβαβαβ±±=.2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 22tan tan 21tan ααα=-.3.降幂公式ααα2sin 21cos sin =;21cos 2cos 2αα+=,21cos 2sin 2αα-=.4.辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中5.有关公式的逆用、变形等()()tan tan tan 1tan tan αβαβαβ±=±mααα2sin 21cos sin =;21cos 2cos 2αα+=,21cos 2sin 2αα-= ()()cos cos sin sin cos αββαββα+++=,()()tan tan tan tan tan tan αβαβαβαβ+=+--,()()tan tan tan tan tan tan αβαβαβαβ+++=+,sin cos 4πααα⎛⎫±=± ⎪⎝⎭,21sin 212sin cos (sin cos )x x x x x ±=±=±,,αααsin 22sin cos =【规律方法技巧】1.三角函数的化简、计算、证明的恒等变形的基本思路与基本的技巧基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心.第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点. 基本的技巧有:(1)巧变角:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等.(2)三角函数名互化:切割化弦,弦的齐次结构化成切. (3)公式变形使用:如()()cos cos sin sin cos αββαββα+++=,()()tan 1tan tan tan tan αβαβαβ+-=+()()tan tan tan tan tan tan αβαβαβαβ+=+--,()()tan tan tan tan tan tan αβαβαβαβ+++=+,sin cos 4πααα⎛⎫±=± ⎪⎝⎭,21sin 212sin cos (sin cos )x x x x x ±=±=±等(4)三角函数次数的降升:降幂公式与升幂公式:ααα2sin 21cos sin =;21cos 2cos 2αα+=,21cos 2sin 2αα-=. (5)式子结构的转化.(6)常值变换主要指“1”的变换:221sin cos x x =+22sec tan tan cot x x x x =-=⋅tan sin 42ππ===等.(7)辅助角公式:()sin cos a x b x x θ+=+(其中θ角所在的象限由a b 、的符号确定,θ的值由tan baθ=确定.在求最值、化简时起着重要作用,这里只要掌握辅助角θ为特殊角的情况即可.如sin cos ),sin 2sin(cos 2sin()436x x x x x x x x x πππ±=±±=±±=±等.2.题型与方法:题型一,利用两角和与差的三角函数公式可解决求值求角问题,常见有以下三种类型:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-,()()()=--+=+--+=βαββαβαβαβαβ2222,,()ββα+-2,()()()ααβββαβαβαβα=-+=+-=--+,,等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角,给值求角的本质还是给值求值,即欲求某角,也要先求该角的某一三角函数值.由于三角函数的多值性,故要对角的范围进行讨论,确定并求出限定范围内的角.要仔细观察分析所求角与已知条件的关系,灵活使用角的变换,如α=(α+β)-β,α=α+β2+α-β2等题型二,三角函数式的化简与证明 三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等.(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明. 题型三. 辅助角公式函数()sin cos fa b ααα=+(,a b 为常数),可以化为()()f ααϕ=+或()()f ααϕ=-,其中ϕ可由,a b 的值唯一确定.【考点针对训练】1. 【2016年江西师大附中高三上学期期末】已知11sin(),sin()23αβαβ+=-=,那么5tan log tan αβ的值是. 【答案】12. 【2016届高三江西师大附中、鹰潭一中联考】已知θθθθcos sin 1cos sin 1-+++=21,则tan θ=( ) A .34B .43C .43-D .34- 【答案】D【应试技巧点拨】1.利用诱导公式化简三角函数的原则和要求(1)原则:遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行三角函数名称转化,以保证三角函数名称最少.(2)要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2. 利用诱导公式证明三角恒等式的主要思路 (1)由繁到简法:由较繁的一边向简单一边化简.(2)左右归一法:使两端化异为同,把左右式都化为第三个式子. (3)转化化归法:先将要证明的结论恒等变形,再证明.提醒:由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如()()cos 5cos cos παπαα-=-=-. 3.正、余弦三兄妹“sin cos x x ±、sin cos x x ⋅”的应用sin cos x x ±与sin cos x x ⋅通过平方关系联系到一起,即2(sin cos )12sin cos x x x x ±=±,2(sin cos )1sin cos ,2x x x x +-=21(sin cos )sin cos .2x x x x --=因此在解题中若发现题设条件有三者之一,就可以利用上述关系求出或转化为另外两个. 4.如何利用“切弦互化”技巧(1)弦化切:把正弦、余弦化成切得结构形式,这样减少了变量,统一为“切”得表达式,进行求值. 常见的结构有:①sin ,cos αα的二次齐次式(如22sin sin cos cos a b c αααα++)的问题常采用“1”代换法求解;②sin ,cos αα的齐次分式(如sin cos sin cos a b c d αααα++)的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式tan α=sin cos αα,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧.5.三角函数的化简、计算、证明的恒等变形的基本思路基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心.第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点.基本的技巧有: (1)巧变角:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等.(2)三角函数名互化:切割化弦,弦的齐次结构化成切. (3)公式变形使用:如()()()()()()()()cos cos sin sin cos tan 1tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan .αββαββααβαβαβαβαβαβαβαβαβαβαβ+++=+-=++=+--+++=+,,,(4)三角函数次数的降升:降幂公式与升幂公式. (5)式子结构的转化.(6)常值变换主要指“1”的变换:221sin cos x x =+22sec tan tan cot x x x x =-=⋅tan sin 42ππ===等.(7)辅助角公式:()sin cos a x b x x θ+=+(其中θ角所在的象限由a b 、的符号确定,θ的值由tan baθ=确定.在求最值、化简时起着重要作用,这里只要掌握辅助角θ为特殊角的情况即可.如sin cos ),sin 2sin(cos 2sin()436x x x x x x x x x πππ±=±±=±±=±等.二年模拟1.【2016年湖南师大附中高三二模】设f (x )=1+cos 2x +sin 2x 2sin ⎝ ⎛⎭⎪⎫π2+x +a sin ⎝ ⎛⎭⎪⎫x +π4的最大值为3,则常数a=( )A .1B .a =1或a =-5C .a =-2或a =4D .a =±7 【答案】B【解析】)4sin(sin 2cos 2)4sin(cos 2cos sin 2cos 2)(2ππ+++=+++=x a x x x a xx x x x f)4sin()2()4sin()4sin(2πππ++=+++=x a x a x ,则:32=+a ,∴1=a 或5-=a .故正确选项为B .2.【2016届湖南省郴州市高三第四次教学质量检测】已知()20,,sin cos 324x x x πππ⎛⎫⎛⎫∈-=+ ⎪ ⎪⎝⎭⎝⎭,则tan x 等于 ( ) A .12 B .2- C.2D【答案】D3. 【2016届重庆一中高三5月模拟】计算sin 47cos17cos47cos107+ 的结果等于( )A. -12 D. 12 【答案】D【解析】sin 47cos17cos 47cos107︒︒︒︒+()sin 47cos17cos 47sin17sin 4717sin 30︒︒︒︒︒︒︒=-=-=12=,故选D. 4.【2016届海南省华侨中学高三考前模拟】2cos10sin 20sin 70-的值是( )A .12 B .2C 【答案】C【解析】2cos10sin 202cos(3020)sin 20sin 70sin 70---=== C.5.【2016届安徽省淮北一中高三最后一卷】若点()cos ,sin P αα在直线2y x =-上,则sin 2α的值等于( ) A .45-B .45C .35-D .35【答案】A6.【2016届海南省海南中学高考模拟十】若()tan lg 10,tan lg a a αβ==,且4παβ-=,则实数a 的值为( )A .1B .110C .1或 110D .1或10 【答案】C【解析】()2tan tan lg10lg tan 11lg lg 01tan tan 1lg10lg a aa a a aαβαβαβ---=⇒==⇒+=-+,所以lg 0a =或lg 1a =-,即1a =或110,选C. 7.【2016届河南省郑州市高三第二次模拟】已知C B A ,,为ABC ∆的三个内角,向量26=,且)2cos ,2sin 2(CB C B -+=,若A 最大时,动点P的最大值是( ) A .332 B .322 C .42 D .423 【答案】A.【解析】2m === ,∴222313cos2cos [0,1]cos 222424B C A A -=-∈⇒≤≤,又∵(0,)22A π∈,∴12cos 2262333A A A ππππ≤≤⇒≤≤⇒≤≤,故A 的最大值为23π,取到最大值时6B C π==,又∵||PB ,||BC ,||PC 成等差数列,∴2||||||BC PB PC =+,故P 点的轨迹是以B ,C为焦点的椭圆,8. 【2016届江苏省清江中学高三考前一周双练冲刺四】tan10tan 20tan150tan10tan 20++=.【答案】-【解析】因为()tan10tan 20tan 301tan10tan 20+=-,将其代入可得原式=tan 30-=-9.【2016届四川省成都七中高三下学第三次周练】已知函数44()cos 2sin cos sin f x x x x x =--.(Ⅰ)若x 是某三角形的一个内角,且()2f x =-,求角x 的大小; (Ⅱ)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的最小值及取得最小值时x 的集合.【解析】(Ⅰ)2222()(cos sin )(cos sin )sin 2f x x x x x x =-+-cos 2sin 224x x x π⎛⎫=-=-⎪⎝⎭ ,由)42x π-=-,即1s i n (2)42x π-=,所以2246x k πππ-=+,k Z ∈,或52246x k πππ-=+,k Z ∈,解得524x k ππ=+,k Z ∈,或1324x k ππ=+,k Z ∈,因为0x π<<,所以524x π=,或1324x π=(Ⅱ)由(1)知())4f x x π=-,因为0,2x π⎡⎤∈⎢⎥⎣⎦, 所以32,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()1f x ≤≤,所以当且仅当242x ππ-=,即38x π=时,()f x 取得最小值()f x 的最小值为x 的取值集合为38π⎧⎫⎨⎬⎩⎭.10. 【2016届山东省师大附中高三最后一模】已知函数()2sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(Ⅰ)求()f x 的最小正周期和单调增区间; (Ⅱ)若()0002x x x f x π⎛⎫=≤≤⎪⎝⎭为的一个零点,求0cos 2x 的值.11. 【2015届江苏省扬州市高三第四次调研测试】已知α为第三象限角,且tan 2α=,则sin 2α=. 【答案】45【解析】2222sin cos 2tan 4sin 2sin cos tan 15ααααααα===++. 12.【浙江省杭州外国语学校2015届高三期中】已知=+=-=+)tan(,31)6tan(,21)6tan(βαπβπα则 【答案】1【解析】()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+66tan tan πβπαβα⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6tan 6tan 16tan 6tan πβπαπβπα1312113121=⨯-+=,故答案为1.13.【2015届江西省高安中学高三命题中心模拟押题一】若将函数x x x f cos 41sin 43)(-=的图象向右平移(0)m m π<<个单位长度,得到的图象关于原点对称,则m =( ) A .65πB .6πC .32πD .3π【答案】A .14.【广东省佛山市第一中学2015届高三上学期期中】已知530,0,sin ,cos(),22135ππαββαβα<<-<<=--==则sin . 【答案】3365. 【解析】利用同角三角函数平方关系,求出cos sin βαβ-、(),再利用角的变换,即可得出结论. 512sin 0cos 13213πβββ=--∴= ,<<,,34000cos sin 2255ππαβαβπαβαβ-∴--=∴-= <<,<<,<<,(),(), []4123533sin sin sin cos cos sin ()51351365ααββαββαββ∴=-+=-+-=⨯+⨯-=()()().15.【2015届江苏省盐城市高三第三次模拟】已知(2sin ,sin cos )m x x x =- ,,sin cos )n x x x =+ ,记函数()f x m n =⋅ .(1)求函数()f x 取最大值时x 的取值集合;(2)设ABC ∆的角,,A B C 所对的边分别为,,a b c ,若()2f C =,c =ABC ∆面积的最大值.拓展试题以及解析1. 设α为锐角,若31)6sin(=-πα,则αcos 的值为. 【答案】6162-. 【解析】因20πα<<且31)6sin(=-πα,故366ππαπ<-<-,所以322)31(1)6cos(2=-=-πα,而]6)6cos[(cos ππαα+-=,故61622131233226sin )6sin(6cos )6cos(cos -=⨯-⨯=---=ππαππαα. 【入选理由】本题考查同角三角函数的基本关系、两角和与差的三角函数公式等基础知识,意在考查学生转化与化归能力、综合分析问题解决问题的能力以及运算求解能力.本题难度不大,故选此题.2.已知1sin tan(),(,)72ααβαπ=+=∈π,那么tan β的值为_______. 【答案】3【解析】由sin (,)2ααπ=∈π得cos tan 2αα==-,因此127tan tan() 3.21()7βαβα+=+-==+- 【入选理由】本题考查同角三角函数的基本关系、两角和与差的三角函数公式等基础知识,意在考查学生转化与化归能力、综合分析问题解决问题的能力以及运算求解能力.本题考查拆角技巧,难度不大,故选此题.3.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【答案】1【入选理由】本题考查三角恒等变换、三角函数的对称性与三角函数的最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.本题考查内容重点突出,综合性较强,难度不大,故选此题.4.已知函数()sin 2()f x x =+ϕ(0ϕ<<π),若角ϕ的终边经过点,则()4f π的值为( )A .2 D .【答案】A【解析】根据三角函数的定义得tan 3ϕ=,故6ϕπ=,则()sin 26f x x π⎛⎫=+ ⎪⎝⎭,所以()sin 2cos 4466f ππππ⎛⎫=⨯+== ⎪⎝⎭,故选A . 【入选理由】本题考查诱导公式、三角函数的定义等基础知识,意在考查数形结合思想和基本运算能力.本题三角函数定义与诱导公式巧妙结合,难度不大,故选此题.5.已知函数21()cos cos 2f x x x x =+,将函数()y f x =的图象向下平移14个单位,再将图象上各点的纵坐标伸长到原来的2倍(横坐标不变),得到函数()yg x =的图象,则使1()2g x >成立的x 的取值集合为. 【答案】π{|ππ,}3x k x k k <<+∈Z .【入选理由】本题考查三角恒等变形,函数图象变换,三角函数图象与性质等基础知识,意在考查分析问题、解决问题的能力,基本运算能力.本题考查内容重点突出,综合性较强,难度不大,故选此题.6.已知sin 2cos αα+=,那么tan 2α的值为_______. 【答案】34-【解析】由sin 2cos αα+=平方得225sin +4sin cos +4cos ,2αααα= 因此1cos21cos25+2sin 2+4,222ααα-+⨯=即3cos22sin 2+02αα=,即3tan 2.4α=- 【入选理由】本小题主要考查同角三角函数基本关系式,二倍角的正、余弦公式等基础知识,意在考查分析问题的能力、基本运算能力.本题立意简单,难度不大, 故选此题.7.已知ABC ∆中,边,,a b c 的对角分别为,,A B C ,且a =c =23A π=. (Ⅰ)求,B C 及ABC ∆的面积;(Ⅱ)已知函数()sin sin 2cos cos 2f x B x C x ππ=+,把函数()y f x =的图象向右平移14个单位,然后 把所得函数图象上点的横坐标伸长为原来的2倍,纵坐标不变,即得函数()y g x =的图象,求函数 ()y g x =在[0,2]上的单调递增区间.【入选理由】本题考查三角恒等变换、三角函数的单调性、解三角形等基础知识,意在考查学生转化与化归能力、综合分析问题解决问题的能力以及运算求解能力.本题出题形式有新意,难度不大, 故选此题.。
45分钟滚动基础训练卷(四)(考查范围:第17讲~第20讲 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =|sin x |-2sin x 的值域是( ) A .[-3,-1] B .[-1,3] C .[0,3] D .[-3,0]2.函数f (x )=tan ωx (ω>0)图象的相邻两支截直线y =π4所得线段长为π4,则f ⎝ ⎛⎭⎪⎫π4的值是( )A .0B .1C .-1 D.π43.[2022·南阳模拟] sin 220°+cos 280°+3sin20°·cos80°的值为( ) A.23 B.12 C.14 D.134.设点P 是函数f (x )=sin ωx 的图象C 的一个对称中心,若点P 到图象C 的对称轴的距离的最小值是π8,则f (x )的最小正周期是( )A.π2B .πC .2π D.π45.已知函数y =2sin 2⎝⎛⎭⎪⎫x +π4-cos2x ,则它的周期T 和图象的一条对称轴方程是( ) A .T =2π,x =π8B .T =2π,x =3π8C .T =π,x =π8D .T =π,x =3π86.若将函数y =tan ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为( ) A.16 B.14 C.13 D.127.函数y =sin ⎝ ⎛⎭⎪⎫2x -π3在区间⎢⎡⎥⎤-π2,π上的简图是( )图G48.如图G4-2,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间t s 的函数关系式为s =6sin2πt +π6,那么单摆来回摆动一次所需的时间为( )A .2π sB .π sC .0.5 sD .1 s二、填空题(本大题共3小题,每小题6分,共18分)9.[2022·温州八校联考] 已知函数f (x )=|1-3sin2x |,若f (2x -a )=f (2x +a )恒成立,则实数a 的最小正值为________.10.已知函数f (x )=2sin ωx (ω>0)在区间-π3,π4上的最小值是-2,则ω的最小值等于________.11.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1;③该函数的图象关于x =5π4+2k π(k ∈Z )对称;④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22. 其中正确命题的序号是________.(请将所有正确命题的序号都填上)三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.据市场调查,某种商品一年内每件出厂价在6千元的基础上,按月呈f (x )=A sin(ωx +φ)+B 的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低为4千元;该商品每件的售价为g (x )(x 为月份),且满足g (x )=f (x -2)+2.(1)分别写出该商品每件的出厂价函数f (x )、售价函数g (x )的解析式; (2)问哪几个月能盈利?13.已知函数f (x )=sin 2ωx +3sin ωx sin ⎝⎛⎭⎪⎫ωx +π2(ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的取值范围.14.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.45分钟滚动基础训练卷(四)1.B [解析] 当0≤sin x ≤1时,y =sin x -2sin x =-sin x ,此时y∈[-1,0];当-1≤sin x<0时,y =-sin x -2sin x =-3sin x ,此时y∈(0,3],求其并集得y∈[-1,3].2.A [解析] 由题意知T =π4,由πω=π4得ω=4, ∴f(x)=tan 4x ,∴f ⎝ ⎛⎭⎪⎫π4=tan π=0.3.C [解析] 方法一:sin 220°+cos 280°+3sin 20°cos 80°=12(1-cos 40°)+12(1+cos 160°)+3sin 20°cos 80° =1-12cos 40°+12cos 160°+3sin 20°cos (60°+20°)=1-12cos 40°+12(cos 120°cos 40°-sin 120°sin 40°)+3sin 20°(cos 60°cos 20°-sin 60°sin 20°) =1-12cos 40°-14cos 40°-34sin 40°+34sin 40°-32sin 220°=1-34cos 40°-34(1-cos 40°)=14.方法二:设x =sin 220°+cos 280°+3sin 20°cos 80°, y =cos 220°+sin 280°-3cos 20°sin 80°,则x +y =1+1-3sin 60°=12,x -y =-cos 40°+cos 160°+3sin 100°=-2sin 100°sin 60°+3sin 100°=0,∴x=y =14,即x =sin 220°+cos 280°+3sin 20°cos 80°=14.4.A [解析] 依题意得T 4=π8,所以最小正周期为T =π2.5.D [解析] ∵y=2sin 2⎝ ⎛⎭⎪⎫x +π4-cos 2x =1-cos ⎝ ⎛⎭⎪⎫2x +π2-cos 2x =1+sin 2x -cos 2x=1+2sin ⎝⎛⎭⎪⎫2x -π4,所以其周期T =π,对称轴方程的表达式可由2x -π4=k π+π2(k∈Z )得x =k π2+3π8(k ∈Z ),故当k =0时的一条对称轴方程为x =3π8,故答案为D.6.D [解析] 函数y =tan ⎝ ⎛⎭⎪⎫ωx +π4的图象向右平移π6后得到y =tan ⎣⎢⎡⎦⎥⎤ω·⎝ ⎛⎭⎪⎫x -π6+π4=tan ⎝ ⎛⎭⎪⎫ωx -ωπ6+π4的图象.又因为y =tan ⎝⎛⎭⎪⎫ωx +π6,∴令π4-ωπ6=π6+k π,∴π12=ωπ6+k π(k ∈Z ),得ω的最小值为12.7.A [解析] 令x =0得y =sin ⎝ ⎛⎭⎪⎫-π3=-32,淘汰B ,D.由f ⎝ ⎛⎭⎪⎫-π3=0,f ⎝ ⎛⎭⎪⎫π6=0,淘汰C ,故选A.8.D [解析] T =2π2π=1,故选D.9.π [解析] 由f (2x -a )=f (2x +a )得f 2x -a 2=f 2x +a2即f (2(X ))=f (2(X +a )),∴f (x )的周期为a ,而由f (x )=|1-3sin2x |的最小正周期为π,∴实数a 的最小正值为π. 10.32 [解析] 由题意知T 4≤π3,T =2πω,∴2ω≥3,ω≥32, ∴ω的最小值等于32.11.③④ [解析] 画出f (x )在一个周期[0,2π]上的图象.由图象知,函数f (x )的最小正周期为2π,在x =π+2k π(k ∈Z )和x =32π+2k π(k ∈Z )时,该函数都取得最小值-1,故①②错误;由图象知,函数图象关于直线x =54π+2k π(k ∈Z )对称,在2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22,故③④正确.12.解:(1)f (x )=A sin(ωx +φ)+B ,由题意可得A =2,B =6,ω=π4,φ=-π4,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6(1≤x ≤12,x 为正整数),g (x )=2sin ⎝ ⎛⎭⎪⎫π4x -34π+8(1≤x ≤12,x 为正整数).(2)由g (x )>f (x ),得sin π4x <22,得2k π+34π<π4x <2k π+94π,k ∈Z .∴8k +3<x <8k +9,k ∈Z ,∵1≤x ≤12,k ∈Z ,∴k =0时,3<x <9,∴x =4,5,6,7,8; k =1时,11<x <17,∴x =12. ∴x =4,5,6,7,8,12.故4,5,6,7,8,12月份能盈利.13.解:(1)f (x )=1-cos2ωx 2+32sin2ωx=32sin2ωx -12cos2ωx +12=sin ⎝⎛⎭⎪⎫2ωx -π6+12. 因为函数f (x )的最小正周期为π,且ω>0,所以2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin ⎝⎛⎭⎪⎫2x -π6+12. 因为0≤x ≤2π3,所以-π6≤2x -π6≤7π6,所以-12≤sin ⎝⎛⎭⎪⎫2x -π6≤1, 所以0≤sin ⎝⎛⎭⎪⎫2x -π6+12≤32, 即f (x )的取值范围为⎣⎢⎡⎦⎥⎤0,32. 14.解:(1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin ⎝⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴-2a sin ⎝⎛⎭⎪⎫2x +π6∈[-2a ,a ], ∴f (x )∈[b ,3a +b ].又-5≤f (x )≤1. ∴⎩⎪⎨⎪⎧b =-5,3a +b =1,解得⎩⎪⎨⎪⎧a =2,b =-5. (2)由(1)知f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1, g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1=4sin ⎝⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎪⎫2x +π6-1>1, ∴sin ⎝⎛⎭⎪⎫2x +π6>12, ∴π6+2k π<2x +π6<56π+2k π,k ∈Z , 由π6+2k π<2x +π6≤2k π+π2,得 k π<x ≤k π+π6,k ∈Z .由π2+2k π≤2x +π6<56π+2k π得 π6+k π≤x <π3+k π,k ∈Z . ∴函数g (x )的单调递增区间为⎝ ⎛⎦⎥⎤k π,π6+k π(k ∈Z ), 单调递减区间为⎣⎢⎡⎭⎪⎫π6+k π,π3+k π(k ∈Z ).。
高考数学复习基础知识专题讲解与练习专题04函数的性质综合应用一、单选题1.(2021·黑龙江·牡丹江市第三高级中学高三月考(文))已知函数(1)f x +的定义域为(-2,0),则(21)f x -的定义域为() A .(-1,0) B .(-2,0) C .(0,1)D .1,02⎛⎫- ⎪⎝⎭【答案】C 【分析】由题设函数的定义域,应用换元法求出()f t 的定义域,进而求(21)f x -的定义域即可. 【详解】由题设,若1t x =+,则(1,1)t ∈-,∴对于(21)f x -有21(1,1)x -∈-,故其定义域为(0,1). 故选:C.2.(2021·湖南·高三月考)已知函数()f x 满足22()()326f x f x x x +-=++,则() A .()f x 的最小值为2B .x R ∃∈,22432()x x f x ++>C .()f x 的最大值为2D .x R ∀∈,22452()x x f x ++>【答案】D 【分析】先求得()f x ,然后结合二次函数的性质确定正确选项.【详解】因为22()()326f x f x x x +-=++(i ),所以用x -代换x 得22()()326f x f x x x -+=-+(ii ). (i )×2-(ii )得23()366f x x x =++, 即22()22(1)1f x x x x =++=++,从而()f x 只有最小值,没有最大值,且最小值为1.()2222222221243243122()222222x x x x x x f x x x x x x x ++-++++===-<++++++, ()2222222221245245122()222222x x x x x x f x x x x x x x +++++++===+>++++++. 故选:D.3.(2021·河南·孟津县第一高级中学高三月考(理))若函数()2021x x f x x ππ-=-+,则不等式(1)(24)0f x f x ++-≥的解集为() A .[1,)+∞ B .(,1]-∞ C .(0,1] D .[1,1]-【答案】A 【分析】判断出函数的奇偶性和单调性,再利用其性质解不等式即可 【详解】()f x 的定义域为R ,因为()2021(2021)()x x x x f x x x f x ππππ---=-=--+=--, 所以()f x 是奇函数,所以不等式(1)(24)0f x f x ++-≥可化为(1)(42)f x f x +≥-, 因为,,2021x x y y y x ππ-==-=在R 上均为增函数, 所以()f x 在R 上为增函数, 所以142x x +≥-,解得1x ≥, 故选:A.4.(2022·全国·高三专题练习)已知函数f (x 2+1)=x 4,则函数y =f (x )的解析式是( )A .()()21,0f x x x =-≥B .()()21,1f x x x =-≥C .()()21,0f x x x =+≥D .()()21,1f x x x =+≥【答案】B 【分析】利用凑配法求得()f x 解析式. 【详解】()()()2242211211f x x x x +==+-++,且211x +≥,所以()()22211,1f x x x x x =-+=-≥. 故选:B.5.(2021·湖南省邵东市第一中学高三月考)已知函数()f x 满足()()()222f a b f a f b +=+对,a b ∈R 恒成立,且(1)0f ≠,则(2021)f =() A .1010 B .20212C .1011D .20232【答案】B 【分析】利用赋值法找出规律,从而得出正确答案. 【详解】令0a b ==,则()()()()20020,00f f f f =+=,令0,1a b ==,则()()()()()221021,121f f f f f =+=,由于()10f ≠,所以()112f =.令1a b ==,则()()()221211f f f =+=, 令2,1a b ==,则()()()2133221122f f f =+=+=,令3,1a b ==,则()()()23144321222f f f =+=+=,以此类推,可得()202120212f =.故选:B.6.(2021·安徽·六安二中高三月考)设()f x 为奇函数,且当0x ≥时,()21x f x =-,则当0x <时,()f x =() A .21x -- B .21x -+C .21x ---D .21x --+【答案】D 【分析】根据题意,设0x <,则0x ->,由函数的解析式可得()21x f x --=-,结合函数的奇偶性分析可得答案. 【详解】根据题意,设0x <,则0x ->, 则()21x f x --=-,又由()f x 为奇函数,则()()21x f x f x ---=-+=,故选:D.7.(2021·河南·高三月考(理))||||2()x x x e f x e-=的最大值与最小值之差为()A .4-B .4eC .44e-D .0【答案】B 【分析】利用函数为奇函数,且其图像的对称性,利用导数可得函数的单调性和最值. 【详解】22()1xx xx e x f x ee-==-,设2()xx g x e=,则()()1g x f x =+则()g x 为奇函数,图像关于原点对称,其最大值与最小值是互为相反数,max max ()()1g x f x =+min ()()1min g x f x =+ max min ()()0g x g x +=max min max min max min max ()()(()1)(()1)()()2()f x f x g x g x g x g x g x ∴-=---=-=即()f x 的最大值与最小值之差为max 2()g x , 当0x >时2()xxg x e =,222(1)()x x x x g x e e --'==, 故2()xxg x e =的单调递增区间为(0,1),单调递减区间为(1,)+∞, 所以max 2()(1)g x g e==,所以()f x 的最大值与最小值之差为4e故选:B.8.(2021·黑龙江·牡丹江市第三高级中学高三月考(理))已知减函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为() A .(),3-∞ B .()3,+∞ C .(),3-∞- D .()3,-+∞【答案】C 【分析】根据函数奇偶性和单调性,列出不等式即可求出范围. 【详解】易知()f x 为R 上的奇函数,且在R 上单调递减, 由()()320f m f m -+-<,得()()()322f m f m f m -<--=, 于是得32m m ->,解得3m <-. 故选:C.9.(2021·陕西·西安中学高三期中)已知函数()(1ln 31xx a x f x x a +=++++-(0a >,1a ≠),且()5f π=,则()f π-=() A .5- B .2 C .1D .1-【答案】C 【分析】令()()3g x f x =-,由()()0g x g x -+=,可得()g x 为奇函数,利用奇函数的性质即可求解. 【详解】解:令()()(1ln 13x x a x g x f x x a +++=--+=,因为()()((11ln ln 011xxx x a a g x x x x x x aa g --++-++-++++=---+=,所以()g x 为奇函数,所以()()0g g ππ-+=,即()()330f f ππ--+-=, 又()5f π=, 所以()1f π-=, 故选:C.10.(2021·北京通州·高三期中)已知函数()f x 的定义域为R ,()54f =,()3f x +是偶函数,[)12,3,x x ∀∈+∞,有()()12120f x f x x x ->-,则()A .()04f <B .()14f =C .()24f >D .()30f <【答案】B 【分析】根据条件可得()f x 关于直线3x =对称,()f x 在[)3,+∞上单调递增,结合()54f =可判断出答案. 【详解】由()3f x +是偶函数可得()f x 关于直线3x =对称 因为[)12,3,x x ∀∈+∞,有()()12120f x f x x x ->-,所以()f x 在[)3,+∞上单调递增因为()54f =,所以()()064f f =>,()()154f f ==,()()244f f =< 无法比较()3f 与0的大小 故选:B.11.(2021·北京朝阳·高三期中)若函数()()221x f x a a R =-∈+为奇函数,则实数a =().A .2-B .1-C .0D .1【答案】D【分析】由奇函数的性质()00f =求解即可 【详解】因为函数()()221x f x a a R =-∈+为奇函数,定义域为R ,所以()00f =,即02021a -=+,解得1a =,经检验符合题意,故选:D.12.(2022·上海·高三专题练习)函数()2020sin 2f x x x =+,若满足()2(1)0f x x f t ++-≥恒成立,则实数t 的取值范围为() A .[2,)+∞ B .[1,)+∞C .3,4⎛⎤-∞ ⎥⎝⎦D .(,1]-∞【答案】C 【详解】∵()2020sin 2()f x x x f x -=--=-,且()20202cos20f x x '=+>, ∴函数()f x 为单调递增的奇函数.于是,()2(1)0f x x f t ++-≥可以变为()2(1)(1)f x x f t f t +--=-,即21x x t +≥-,∴21t x x ≤++,而221331244x x x ⎛⎫++=++≥ ⎪⎝⎭,可知实数34t ≤, 故实数t 的取值范围为3,4⎛⎤-∞ ⎥⎝⎦.故选:C.13.(2021·江苏·海安高级中学高三月考)已知定义在R 上的可导函数()f x ,对任意的实数x ,都有()()4f x f x x --=,且当()0,x ∈+∞时,()2f x '>恒成立,若不等式()()()1221f a f a a --≥-恒成立,则实数a 的取值范围是() A .1,02⎛⎫- ⎪⎝⎭ B .10,2⎡⎤⎢⎥⎣⎦C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭ 【答案】D 【分析】由题意可得()()()f x x f x x -=---,令()()2F x f x x =-,根据奇偶性的定义,可得()F x 为偶函数,利用导数可得()F x 的单调性,将题干条件化简可得()2(1)2(1)f a a f a a -≥---,即()(1)F a F a ≥-,根据()F x 的单调性和奇偶性,计算求解,即可得答案.【详解】由()()4f x f x x --=,得()2()2()f x x f x x -=---, 记()()2F x f x x =-,则有()()F x F x =-,即()F x 为偶函数, 又当(0,)x ∈+∞时,()()20F x f x ''=->恒成立, 所以()F x 在(0,)+∞上单调递增,所以由()()()1221f a f a a --≥-,得()2(1)2(1)f a a f a a -≥---, 即()(1)F a F a ≥-(||)(|1|)F a F a ⇔-,所以|||1|a a -,即2212a a a ≥+-,解得12a ,故选:D.14.(2021·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为() A .1个 B .2个C .3个D .0个【答案】B【分析】由已知函数()f x 的解析式作出图象,把函数()1y f x =-的零点转化为函数()f x 与1y =的交点得答案. 【详解】由函数解析式222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩由图可知,函数()1y f x =-的零点的个数为2个. 故选:B .15.(2020·广东·梅州市梅江区嘉应中学高三月考)已知函数()f x 是定义在R 上的奇函数,满足1(2)()f x f x +=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,()2log (31)f x x =-+,则()2021f 等于() A .4 B .2C .2-D .2log 7【答案】C 【分析】求得()f x 是周期为4的周期函数,从而求得()2021f . 【详解】因为函数()f x 是定义在R 上的奇函数,()11(4)(2)2()1(2)()f x f x f x f x f x +=++===+, 其最小正周期为4,所以()()2021450511)()1(f f f f ⨯+===--.因为31,02⎛⎫-∈- ⎪⎝⎭,且当3,02x ⎛⎫∈- ⎪⎝⎭时,()2log (31)f x x =-+, 所以()2()log 13)1(12f -=--+=⨯,所以()202112()f f =--=-. 故选:C.16.(2021·江西·九江市柴桑区第一中学高三月考(文))已知函数()f x 是定义在[3,2]a --上的奇函数,且在[3,0]-上单调递增,则满足()()0f m f m a +->的m 的取值范围是()A .5,82⎛⎤ ⎥⎝⎦B .5,32⎛⎤⎥⎝⎦C .[]2,3D .[]3,3-【答案】B 【分析】根据奇函数的定义可知定义域关于原点对称可得320a -+-=,即可解出a ,由奇函数的性质可得函数()f x 在[]3,3-上递增,再将()()0f m f m a +->等价变形为()()f m f a m >-,然后根据单调性即可解出. 【详解】依题意可得320a -+-=,解得5a =,而函数f x ()在[3,0]-上单调递增,所以函数()f x 在[0,3]上单调递增,又函数()f x 连续,故函数()f x 在[]3,3-上递增,不等式()()0f m f m a +->即为()()5f m f m >-,所以333535m m m m-≤≤⎧⎪-≤-≤⎨⎪>-⎩,解得532m <≤.故选:B .17.(2021·浙江·高三期中)已知0a >,0b >,则“2ln 39b a a b>-”是“a b >”成立的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B 【分析】构造函数,利用函数的单调性,结合充分性、必要性的定义进行判断即可. 【详解】解:由()22ln ln 2ln 33b a a a b b=->-,得()2ln 23ln 3a b a b +>+,令()ln 3x f x x =+,()f x 在()0,∞+上单调递增,又()()2f a f b >,则2a b >.即当0a >,0b >时,2ln 392b a a a b b>-⇔>.显然,2a b a b >⇒>,但由2a b >不能得到a b >. 故选:B .18.(2021·重庆市实验中学高三月考)已知函数()()2312,1,1x x a x x f x a x ⎧-++<⎪=⎨≥⎪⎩,若函数()f x 在R 上为减函数,则实数a 的取值范围为()A .1,13⎡⎫⎪⎢⎣⎭B .11,32⎡⎤⎢⎥⎣⎦C .10,3⎛⎤⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭【答案】B 【分析】利用二次函数、指数函数的单调性以及函数单调性的定义,建立关于a 的不等式组,解不等式组即可得答案. 【详解】解:因为函数()()2312,1,1x x a x x f x a x ⎧-++<⎪=⎨≥⎪⎩在R 上为减函数,所以()213112011312a a a a +⎧≥⎪⎪<<⎨⎪-++≥⎪⎩,解得1132a ≤≤,所以实数a 的取值范围为11,32⎡⎤⎢⎥⎣⎦, 故选:B.19.(2021·全国·高三期中)已知()2f x +是偶函数,当122x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫= ⎪⎝⎭,()3b f =,()4c f =,则a 、b 、c 的大小关系为() A .b a c << B .c b a << C .b c a << D .a b c <<【答案】A 【分析】分析可知函数()f x 在()2,+∞为增函数,由已知条件可得1722a f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合函数()f x 的单调性可得出a 、b 、c 的大小关系. 【详解】当122x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,则()()12f x f x <, 所以()f x 在()2,+∞为增函数.又因为()2f x +是偶函数,所以,()()22f x f x -+=+,即1722a f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以()()7342f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:A.20.(2021·宁夏·海原县第一中学高三月考(文))已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+,若()13f =,则()()()()1232022f f f f ++++=()A .2022B .0C .3D .2022-【答案】C 【分析】由条件可得()f x 是周期为4的周期函数,然后利用()()()()()()()()()()1232022505123412f f f f f f f f f f ++++=+++++⎡⎤⎣⎦算出答案即可.【详解】因为()f x 是定义域为()-∞+∞,的奇函数,所以()()f x f x -=-,()00f = 因为()()11f x f x -=+,所以()()()2f x f x f x -=+=-所以()()()42f x f x f x +=-+=,所以()f x 是周期为4的周期函数 因为()13f =,()()200f f ==,()()()3113f f f =-=-=-,()()400f f == 所以()()()()()()()()()()12320225051234123f f f f f f f f f f ++++=+++++=⎡⎤⎣⎦故选:C.21.(2021·河北·高三月考)已知函数()3()21sin f x x x x =+++,则()(32)4f x f x -+-<的解集为() A .(,1)-∞ B .(1,)+∞C .(,2)-∞D .(2,)+∞【答案】A 【分析】设3()()222sin g x f x x x x =-=++,然后可得函数()g x 为奇函数,函数()g x 在R 上单调递增,然后不等式()(32)4f x f x -+-<可化为()(32)g x g x -<-+,然后可解出答案. 【详解】设3()()222sin g x f x x x x =-=++,可得函数()g x 为奇函数,2()62cos 0g x x x '=++>,所以函数()g x 在R 上单调递增,()(32)4()2(32)2()f x f x f x f x g x -+-<⇒--<--+⇒-(32)()(32)g x g x g x <--⇒-<-+,所以321x x x -<-+⇒<. 故选:A.22.(2021·河南·高三月考(文))已知函数()()12x x f x e e -=+,记12a fπ⎛⎫⎪ ⎪⎝⎭=,1log 2b f π⎛⎫ ⎪⎝⎭=,()c f π=,则a ,b ,c 的大小关系为()A .a <b <cB .c <b <aC .b <a <cD .b <c <a【答案】C 【分析】先判断函数的奇偶性,然后根据导函数的符号求出函数的单调区间,利用函数的单调性即可得出答案. 【详解】解:因为()()()12x x f x e e f x --=+=,所以函数()f x 为偶函数,()()12x xf x e e -'=-, 当0x >时,()0f x '>,所以函数()f x 在()0,∞+上递增,则()1log log 22b f f ππ⎛⎫== ⎪⎝⎭,所以10log 212πππ<<<<, 所以b a c <<. 故选:C .23.(2021·安徽·高三月考(文))已知定义在R 上的函数()f x 满足:(1)f x -关于(1,0)中心对称,(1)f x +是偶函数,且312f ⎛⎫-= ⎪⎝⎭,则92f ⎛⎫ ⎪⎝⎭的值为() A .0 B .-1 C .1 D .无法确定【答案】B 【分析】由于(1)f x -关于(1,0)中心对称,又将函数(1)f x -向左平移1个单位后为()f x ,所以()f x 关于(0,0)中心对称,即()f x 是奇函数;又(1)f x +是偶函数,又将函数(1)f x +向右平移1个单位后为()f x ,所以()f x 关于直线1x =对称,可得函数()f x 的周期4T =, 由此即可求出结果. 【详解】由于(1)f x -关于(1,0)中心对称,又将函数(1)f x -向左平移1个单位后为()f x ,所以()f x 关于(0,0)中心对称,即()f x 是奇函数;又(1)f x +是偶函数,又将函数(1)f x +向右平移1个单位后为()f x ,所以()f x 关于直线1x =对称,即()(2)f x f x =-; 所以()(2)f x f x =--,所以(+2)()f x f x =-,所以(4)(2)()f x f x f x +=-+=, 所以函数()f x 的周期4T =,911334211222222f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==-==--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.故选:B.24.(2021·江西·赣州市赣县第三中学高三期中(理))函数()y f x =对任意x ∈R 都有(2)()f x f x +=-成立,且函数(1)y f x =-的图象关于点()1,0对称,(1)4f =,则(2020)(2021)(2022)f f f ++=()A .1B .2C .3D .4【答案】D 【分析】根据函数(1)y f x =-的图象关于点()1,0对称,得到函数是奇函数,然后结合(2)()f x f x +=-,得到函数的周期为4T =求解. 【详解】因为函数(1)y f x =-的图象关于点()1,0对称, 所以函数()y f x =的图象关于点()0,0对称, 即()()f x f x -=-, 又因为(2)()f x f x +=-,所以(2)()f x f x +=-,即(4)()f x f x +=, 所以函数的周期为4T =, 又(1)4f =,所以(2020)(2021)(2022)(0)(1)(0)4f f f f f f ++=++=. 故选:D.25.(2021·江西·高三月考(文))若定义在R 上的奇函数()f x 在区间(0,)+∞上单调递增,且()30f =,则满足0()2f x x -≤的x 的取值范围为()A .(][),15,-∞-+∞B .[][]3,05,-+∞C .[][]1,02,5-D .(][),10,5-∞-【答案】C 【分析】根据函数的单调性、奇偶性、函数图象变换,结合图象求得正确答案. 【详解】依题意()f x 是R 上的奇函数,且在(0,)+∞递增,且()30f =,所以()f x 在(),0-∞递增,且()30f -=.()2f x -的图象是由()f x 的图象向右平移2个单位得到,画出()2f x -的大致图象如下图所示,由图可知,满足0()2f x x -≤的x 的取值范围为[][]1,02,5-.故选:C.26.(2022·全国·高三专题练习)定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,1]上是减函数,则有() A .f 3()2<f 1()4-<f 1()4B .f 1()4<f 1()4-<f 3()2C .f 3()2<f 1()4<f 1()4-D .f 1()4-<f 3()2-<f 1()4【答案】C 【分析】首先判断函数的周期,以及对称性,画出函数的草图,即可判断选项. 【详解】因为f (x +2)=-f (x ),所以f (x +2+2)=-f (x +2)=f (x ),所以函数的周期为4,并且()()()2f x f x f x +=-=-,所以函数()f x 关于1x =对称,作出f (x )的草图(如图),由图可知3()2f <1()4f <1()4f -,故选:C.27.(2022·全国·高三专题练习)函数()342221x x f x x x⎧-≤⎪=⎨->⎪-⎩,,则不等式()1f x ≥的解集是( )A .()513⎡⎫-∞⋃+∞⎪⎢⎣⎭,,B .(]5133⎡⎤-∞⋃⎢⎥⎣⎦,,C .513⎡⎤⎢⎥⎣⎦,D .533⎡⎤⎢⎥⎣⎦,【答案】B【分析】将()f x 表示为分段函数的形式,由此求得不等式()1f x ≥的解集. 【详解】()342221x x f x x x ⎧-≤⎪=⎨->⎪-⎩,,443,3434,232,21x x x x x x ⎧-<⎪⎪⎪=-≤≤⎨⎪⎪>⎪-⎩, 当43x <时,431,11x x x -≥≤⇒≤,当423x ≤≤时,55341,233x x x -≥≥⇒≤≤,当2x >时,10x ->,则21,21,3231x x x x ≥≥-≤⇒<≤-,综上所述,不等式()1f x ≥的解集为(]5,1,33⎡⎤-∞⋃⎢⎥⎣⎦.故选:B.28.(2021·安徽省亳州市第一中学高三月考(文))函数()f x 满足()()4f x f x =-+,若()23f =,则()2022f =()A .3B .-3C .6D .2022【答案】B 【分析】根据函数()f x 满足()()4f x f x =-+,变形得到函数()f x 是周期函数求解. 【详解】因为函数()f x 满足()()4f x f x =-+,即()()4f x f x +=-, 则()()()84f x f x f x +=-+=,所以函数()f x 是周期函数,周期为8,所以()()()()202225286623f f f f =⨯+==-=-.故选:B .29.(2021·贵州·贵阳一中高三月考(理))函数2()ln(231)f x x x =-+的单调递减区间为()A .3,4⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .3,4⎛⎫+∞ ⎪⎝⎭D .(1,)+∞【答案】B【分析】先求出函数()f x 的定义域,再求出函数2231u x x =-+在所求定义域上的单调区间并结合复合函数单调性即可作答.【详解】在函数2()ln(231)f x x x =-+中,由22310x x -+>得12x <或1x >,则()f x 的定义域为1(,)(1,)2-∞+∞, 函数2231u x x =-+在1(,)2-∞上单调递减,在(1,)+∞上单调递增,又ln y u =在(0,)u ∈+∞上单调递增,于是得()f x 在1(,)2-∞上单调递减,在(1,)+∞上单调递增, 所以函数()f x 的单调递减区间为1(,)2-∞. 故选:B.30.(2021·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为()A .404B .804C .806D .402【答案】A【分析】 根据两个偶函数得()f x 的对称轴,由此得函数的周期,10是其一个周期,由周期性可得零点个数.【详解】因为(2)y f x =+与(7)y f x =+都为偶函数,所以(2)(2)f x f x +=-+,(7)(7)f x f x +=-+,所以()f x 图象关于2x =,7x =轴对称,所以()f x 为周期函数,且2(72)10T =⋅-=,所以将[0,2013]划分为[0,10)[10,20)[2000,2010][2010,2013]⋅⋅⋅.而[0,10)[10,20)[2000,2010]⋅⋅⋅共201组,所以2012402N =⨯=,在[2010,2013]中,含有零点(2011)(1)0f f ==,(2013)(3)0f f ==共2个,所以一共有404个零点.故选:A.31.(2021·安徽·池州市江南中学高三月考(理))已知定义域为R 的函数f (x )满足f (-x )=-f (x +4),且函数f (x )在区间(2,+∞)上单调递增,如果x 1<2<x 2,且x 1+x 2>4,则f (x 1)+f (x 2)的值()A .可正可负B .恒大于0C .可能为0D .恒小于0【答案】B【分析】首先根据条件()(4)f x f x -=-+转化为(4)()f x f x -=-,再根据函数()f x 在区间(2,)+∞上单调递增,将1x 转换为14x -,从而14x -,2x 都在(2,)+∞的单调区间内,由单调性得到它们的函数值的大小,再由条件即可判断12()()f x f x +的值的符号.【详解】解:定义域为R 的函数()f x 满足()(4)f x f x -=-+,将x 换为x -,有(4)()f x f x -=-,122x x <<,且124x x +>,2142x x ∴>->,函数()f x 在区间(2,)+∞上单调递增,21()(4)f x f x ∴>-,(4)()f x f x -=-,11(4)()f x f x ∴-=-,即21()()f x f x >-,12()()0f x f x ∴+>,故选:B .32.(2021·河南·模拟预测(文))已知非常数函数()f x 满足()()1f x f x -=()x R ∈,则下列函数中,不是奇函数的为()A .()()11f x f x -+ B .()()11f x f x +- C .()()1f x f x - D .()()1f x f x + 【答案】D【分析】根据奇函数的定义判断.【详解】因为()()1f x f x -=()x R ∈,所以()1()()1f x g x f x -=+,则11()11()()()()1()11()1()f x f x f xg x g x f x f x f x -----====--+++,()g x 是奇函数, 同理()()1()1f x h x f x +=-也是奇函数,1()()()()()p x f x f x f x f x =-=--,则()()()()p x f x f x p x -=--=-,是奇函数, 1()()()()()q x f x f x f x f x =+=+-,()()()()q x f x f x q x -=-+=为偶函数, 故选:D .33.(2021·四川郫都·高三月考(文))已知奇函数()f x 定义域为R ,()()1f x f x -=,当10,2x ⎛⎤∈ ⎥⎝⎦时,()21log 2f x x ⎛⎫=+ ⎪⎝⎭,则52f ⎛⎫= ⎪⎝⎭() A .2log 3B .1C .1-D .0【答案】D【分析】 根据函数的奇偶性和(1)()f x f x -=可得函数的周期是2,利用周期性进行转化求解即可.【详解】 解:奇函数满足(1)()f x f x -=,()(1)(1)f x f x f x ∴=-=--,即(1)()f x f x +=-,则(2)(1)()f x f x f x +=-+=,所以()f x 是以2为周期的周期函数, 所以225111()()log ()log 102222f f ==+==. 故选:D.34.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且满足()()()()2f x y f x y f x f y ++-=,且12f ⎛⎫= ⎪⎝⎭,()00f ≠,则()2021f =().A .2021B .1C .0D .1-【答案】C【分析】 分别令0x y ==,令12x y ==得到()()110f x f x ++-=,进而推得函数()f x 是周期函数求解. 【详解】令0x y ==,则()()()()00200f f f f +=,故()()()20010f f -=,故()01f =,(()00f =舍) 令12x y ==,则()()1110222f f f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 故()10f =.∴()()()()11210f x f x f x f ++-==,即()()()()()()1124f x f x f x f x f x f x +=--⇒+=-⇒+=,故()f x 的周期为4,即()f x 是周期函数.∴()()202110f f ==.故选:C .二、多选题35.(2021·全国·高三月考)()f x 是定义在R 上的偶函数,对x R ∀∈,均有()()2f x f x +=-,当[]0,1x ∈时,()()2log 2f x x =-,则下列结论正确的是()A .函数()f x 的一个周期为4B .()20221f =C .当[]2,3x ∈时,()()2log 4f x x =--D .函数()f x 在[]0,2021内有1010个零点【答案】AC【分析】 由()()2 x f f x +=-可判断A ,()()()2022450()5220f f f f =⨯+==-,可判断B ,当[]2,3x ∈时,[]20,1x -∈,结合条件可判断C ,易知()()()()()1 35201920210f f f f f ===⋯===,可判断D.【详解】()f x 是定义在R 上的偶函数,对x R ∀∈,均有()()2 x f f x +=-,()()4 (2,f x f x f x ∴+=-+=)故函数的周期为4,故选项A 正确;()()()2022452(05201)f f f f =⨯+==-=-,故选项B 错误;当[]2,3x ∈时,[]20,1x -∈,则()()()()222log 2 2log 4f x f x x x ⎡=--=---=-⎤⎦-⎣,故选项C 正确;易知()()()()()1 35201920210f f f f f ===⋯===,于是函数()f x 在[]0,2021内有1011个零点,故选项D 错误,故选:AC .36.(2021·重庆市第十一中学校高三月考)关于函数()321x f x x +=-,正确的说法是() A .()f x 有且仅有一个零点B .()f x 在定义域内单调递减C .()f x 的定义域为{}1x x ≠D .()f x 的图象关于点()1,3对称【答案】ACD【分析】将函数()f x 分离系数可得5()31f x x =+-,数形结合,逐一分析即可; 【详解】 解:323(1)55()3111x x f x x x x +-+===+---,作出函数()f x 图象如图:由图象可知,函数只有一个零点,定义域为{}|1x x ≠,在(),1-∞和()1,+∞上单调递减,图象关于()1,3对称,故B 错误,故选:ACD .37.(2021·福建·三明一中高三月考)下列命题中,错误的命题有()A .函数()f x x =与()2g x =是同一个函数B .命题“[]00,1x ∃∈,2001x x +≥”的否定为“[]0,1x ∀∈,21x x +<”C .函数4sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭的最小值为4 D .设函数22,0()2,0x x x f x x +<⎧⎪=⎨≥⎪⎩,则()f x 在R 上单调递增 【答案】ACD【分析】 求出两函数的定义域,即可判断A ;命题的否定形式判断B ;函数的最值判断C ;分段函数的性质以及单调性判断D ;【详解】解:函数()f x x =定义域为R ,函数2()g x =的定义域为[)0,+∞,所以两个函数的定义域不相同,所以两个函数不是相同函数;所以A 不正确;命题“0[0x ∃∈,1],2001x x +”的否定为“[0x ∀=,1],21x x +<”,满足命题的否定形式,所以B 正确; 函数4sin sin y x x =+(0)2x π<<,因为02x π<<,所以0sin 1x <<,可知4sin 4sin y x x =+>,所以函数没有最小值,所以C 不正确; 设函数22,0,()2,0,x x x f x x +<⎧⎪=⎨⎪⎩两段函数都是增函数,并且0x <时,0x →,()2f x →,0x 时,函数的最小值为1,两段函数在R 上不是单调递增,所以D 不正确;故选:ACD .38.(2021·福建·高三月考)已知()f x 是定义域为R 的函数,满足()()13f x f x +=-,()()13f x f x +=-,当02x ≤≤时,()2f x x x =-,则下列说法正确的是()A .()f x 的最小正周期为4B .()f x 的图象关于直线2x =对称C .当04x ≤≤时,函数()f x 的最大值为2D .当68x ≤≤时,函数()f x 的最小值为12- 【答案】ABC【分析】根据抽象函数关系式,可推导得到周期性和对称性,知AB 正确;根据()f x 在[]0,2上的最大值和最小值,结合对称性和周期性可知C 正确,D 错误.【详解】对于A ,()()13f x f x +=-,()()4f x f x ∴+=,()f x ∴的最小正周期为4,A 正确; 对于B ,()()13f x f x +=-,()()22f x f x ∴+=-,()f x ∴的图象关于直线2x =对称,B 正确;对于C ,当02x ≤≤时,()()max 22f x f ==,()f x 图象关于2x =对称,∴当24x ≤≤时,()()max 22f x f ==; 综上所述:当04x ≤≤时,()()max 22f x f ==,C 正确;对于D ,()f x 的最小正周期为4,()f x ∴在[]6,8上的最小值,即为()f x 在[]2,4上的最小值,当02x ≤≤时,()min 1124f x f ⎛⎫==- ⎪⎝⎭,又()f x 图象关于2x =对称, ∴当24x ≤≤时,()min 711224f x f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,()f x ∴在[]6,8上的最小值为14-,D 错误. 故选:ABC.39.(2022·全国·高三专题练习)设f (x )的定义域为R ,给出下列四个命题其中正确的是()A .若y =f (x )为偶函数,则y =f (x +2)的图象关于y 轴对称;B .若y =f (x +2)为偶函数,则y =f (x )的图象关于直线x =2对称;C .若f (2+x )=f (2-x ),则y =f (x )的图象关于直线x =2对称;D .若f (2-x )=f (x ),则y =f (x )的图象关于直线x =2对称.【答案】BC【分析】根据偶函数的对称性,结合函数图象变换性质、函数图象关于直线对称的性质进行逐一判断即可.【详解】A :中由y =f (x )关于y 轴对称,得y =f (x +2)的图象关于直线x =-2对称,所以结论错误;B :因为y =f (x +2)为偶函数,所以函数y =f (x +2)的图象关于y 轴对称,因此y =f (x )的图象关于直线x =2对称,所以结论正确;C :因为f (2+x )=f (2-x ),所以y =f (x )的图象关于直线x =2对称,因此结论正确;D :由f (2-x )=f (x ),得f (1+x )=f (1-x ),所以y =f (x )关于直线x =1对称,因此结论错误,故选:BC.40.(2021·广东·湛江二十一中高三月考)已知函数sin ()()x f x e x R =∈,则下列论述正确的是()A .()f x 的最大值为e ,最小值为0B .()f x 是偶函数C .()f x 是周期函数,且最小正周期为2πD .不等式()f x ≥5,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【答案】BD【分析】由|sin |[0,1]x ∈,得到函数的值域,可判定A 错误;由函数奇偶性的定义,可判定B 正确; 由函数周期的定义,可得判定C 错误;由()f x ≥,得到1|sin |2x ≥,结合三角函数的性质,可判定D 正确.【详解】由|sin |[0,1]x ∈,可得的sin [1,]x e e ∈,故A 错误; 由sin()|sin |()()x x f x e e f x --===,所以()f x 是偶函数,故B 正确;由|sin()||sin ||sin |(=e )()x x x f x e e f x ππ+-+===,所以π是()f x 的周期,故C 错误; 由()f x ≥,即1sin 2x e e ≥,可得1|sin |2x ≥, 解得x 的取值范围是5,66xk x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ,故D 正确. 故选:BD. 41.(2021·全国·模拟预测)已知函数()21x f x x =-,则下列结论正确的是() A .函数()f x 在(),1-∞上是增函数B .函数()f x 的图象关于点()1,2中心对称C .函数()f x 的图象上存在两点A ,B ,使得直线//AB x 轴D .函数()f x 的图象关于直线1x =对称【答案】AC【分析】()2,112,11x x x f x x x x ⎧-<⎪⎪-=⎨⎪>⎪-⎩,然后画出其图象可得答案. 【详解】()2,112,11x x x f x x x x ⎧-<⎪⎪-=⎨⎪>⎪-⎩,其大致图象如下,结合函数图象可得AC 正确,BD 错误.故选:AC.42.(2022·全国·高三专题练习)对于定义在R 上的函数()f x ,下列说法正确的是()A .若()f x 是奇函数,则()1f x -的图像关于点()1,0对称B .若对x ∈R ,有()()11f x f x =+-,则()f x 的图像关于直线1x =对称C .若函数()1f x +的图像关于直线1x =-对称,则()f x 为偶函数D .若()()112f x f x ++-=,则()f x 的图像关于点()1,1对称【答案】ACD【分析】四个选项都是对函数性质的应用,在给出的四个选项中灵活的把变量x 加以代换,再结合函数的对称性、周期性和奇偶性就可以得到正确答案.【详解】对A ,()f x 是奇函数,故图象关于原点对称,将()f x 的图象向右平移1个单位得()1f x -的图象,故()1f x -的图象关于点(1,0)对称,正确;对B ,若对x ∈R ,有()()11f x f x =+-,得()()2f x f x +=,所以()f x 是一个周期为2的周期函数,不能说明其图象关于直线1x =对称,错误.;对C ,若函数()1f x +的图象关于直线1x =-对称,则()f x 的图象关于y 轴对称,故为偶函数,正确;对D ,由()()112f x f x ++-=得()()()()112,202f f f f +=+=,()()()()312,422,f f f f +-=+-=,()f x 的图象关于(1,1)对称,正确.故选:ACD.第II 卷(非选择题)三、填空题43.(2021·广东·高三月考)请写出一个函数()f x =__________,使之同时具有如下性质:①图象关于直线2x =对称;②x R ∀∈,(4)()f x f x +=. 【答案】()cos 2f x x π=(答案不唯一). 【分析】根据性质①②可知()f x 是以4为周期且图象关于2x =对称点的函数,即可求解.【详解】解:由题可知,由性质①可知函数()f x 图象关于直线2x =对称;由性质②x R ∀∈,(4)()f x f x +=,可知函数()f x 以4为周期, 写出一个即可,例如:()cos 2f x x π=, 故答案为:()cos 2f x x π=(答案不唯一). 44.(2021·湖南·高三月考)已知偶函数()f x 满足()()416f x f x +-=,且当(]0,1x ∈时,()[]222()f x f x =,则()3f -=___________.【答案】12【分析】利用函数的奇偶性及赋值法,可以解决问题.【详解】由()()416f x f x +-=,令2x =,可得()28f =.因为[]22(2)(1)16f f ==,212(1)02f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦≥,所以()10f ≥,所以()14f =,由()()416f x f x +-=,令1x =,可得()312f =.因为()f x 是偶函数,所以()()3312f f -==.故答案为:12.45.(2021·北京·中国人民大学附属中学丰台学校高三月考)定义在R 上的函数f (x )满足()()22f x f x -=+,且x ∈(0,1)时,1()24x f x =+,则23(log 8)2f +=___. 【答案】74【分析】 由条件可得2233(log 8)(log )22f f +=,然后可算出答案. 【详解】因为()()22f x f x -=+,且x ∈(0,1)时,1()24x f x =+, 所以23log 222331317(log 8)(log )2224244f f +==+=+= 故答案为:74. 46.(2021·上海奉贤区致远高级中学高三月考)定义在R 上的函数()f x 满足(6)()f x f x +=,2(2),[3,1)(),[1,3)x x f x x x ⎧-+∈--⎪=⎨∈-⎪⎩,数列{}n a 满足(),n a f n n N =∈*,{}n a 的前n 项和为n S ,则2021S =_________.【答案】337【分析】先判断出周期为6,再求出126a a a ++⋅⋅⋅+的值,最后求出2021S 的值【详解】因为函数()f x 满足(6)()f x f x +=,所以函数()f x 是周期为6的周期函数,()()()()12311,22,331a f a f a f f ======-=-,()()()()()456420,511,00a f f a f f a f ==-===-=-==,()()7711a f f ===,1261210101a a a ++⋅⋅⋅+=+-+-+=,因为202163365=⨯+,所以()2021126125336336112101337S a a a a a a =+⋅⋅⋅+++⋅⋅⋅+=⨯++-+-=故答案为:337.47.(2021·辽宁沈阳·高三月考)若函数()3121x f x m x ⎛⎫=-⋅⎪-⎝⎭为偶函数,则m 的值为________. 【答案】12- 【分析】先根据()()11f f =-求出m 的值,再根据奇偶性的定义证明即可.【详解】解:由已知210x -≠,即0x ≠,故函数定义域为()(),00,-∞⋃+∞,因为函数()3121x f x m x ⎛⎫=-⋅⎪-⎝⎭为偶函数, 则()()11f f =- 即1112121m m -⎛⎫-=-- ⎪--⎝⎭, 解得12m =-, 当12m =-时, ()()()()333331111212221211221x x x x x f x f x x x x x x -⎛⎫⎛⎫--=+⋅--+⋅=⋅--- ⎪ ⎪----⎝⎭⎝⎭3332102121x x x x x x =⋅--=--. 故12m =-时,函数()3121x f x m x ⎛⎫=-⋅ ⎪-⎝⎭为偶函数 故答案为:12-. 48.(2021·全国·高三月考(理))已知函数2()sin f x x x x =-,则不等式(21)(1)f x f x -<+的解集为______.【答案】(0,2)【分析】利用导数可判断函数在(0,)+∞为增函数,再利用函数奇偶性的定义可判断函数为偶函数,从而将(21)(1)f x f x -<+转化为|21||1|x x -<+,进而可求出不等式的解集【详解】定义域为R ,由题意,()2sin cos (2cos )sin f x x x x x x x x '=--=--,当0x >时,()1sin 0f x x x '≥⋅->,故()f x 在(0,)+∞为增函数.因为22()()()sin()sin ()f x x x x x x x f x -=----=-=,所以()f x 为偶函数,故(21)(1)f x f x -<+即(|21|)(|1|)f x f x -<+,则|21||1|x x -<+,故22(21)(1)x x -<+,解得02x <<,故原不等式的解集为(0,2).故答案为:(0,2).49.(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________. 【答案】2【分析】先利用诱导公式、二倍角公式化简,再将函数零点个数问题转化为两个函数图象的交点个数问题,进而画出图象进行判定.【详解】2π()2sin sin()2f x x x x =+- 222sin cos sin 2x x x x x =-=-,函数f (x )的零点个数可转化为函数1sin 2y x =与22y x =图象的交点个数,在同一坐标系中画出函数1sin 2y x =与22y x =图象的(如图所示):由图可知两函数图象有2个交点,即f (x )的零点个数为2.故答案为:2.50.(2021·河南·高三月考(文))已知偶函数()f x 和奇函数()g x 均定义在R 上,且满足()()224359x f x g x x x +=-++,则()()13f g -+=______.【答案】223【分析】先用列方程组法求出()f x 和()g x 的解析式,代入即可求解.【详解】因为()()224359x f x g x x x +=-++……① 所以()()224359x f x g x x x -+-=+++ 因为()f x 为偶函数,()g x 为奇函数,所以()()224359x f x g x x x -=+++……② ①②联立解得:()235f x x =+,()249x g x x =-+, 所以()()()22431331532392f g ⨯-+=-+-=+. 故答案为:223.。
题型专题(四) 不等式(1)一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.(2)解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.[题组练透]1.(2019·河北五校联考)如图,已知R 是实数集,集合A ={x |log 12(x -1)>0},B =⎩⎨⎧⎭⎬⎫x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:选D 由题意可知A ={x |1<x <2},B =⎩⎨⎧⎭⎬⎫x |0<x <32,且图中阴影部分表示的是B ∩(∁R A )={x |0<x ≤1},故选D.2.已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-32,12C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-12,32 解析:选A 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3), ∴a <0,且⎩⎨⎧1-aba =2,-ba =-3,解得a =-1或13(舍去),∴a =-1,b =-3, ∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32,故选A.3.(2019·泉州质检)设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎨⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎨⎧x <0,-x 3≤1得-1≤x <0,故f (x )≤1的解集为[-1,9].答案:[-1,9] [技法融会]1.求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.2.(易错提醒)解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.[题组练透]1.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52解析:选B 2x +2x -a =2(x -a )+2x -a+2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32,故选B.2.(2019·湖北七市联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( )A .9 B.92 C .4 D.52解析:选B 将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,∴a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a =2b=3时等号成立,即ab 的最大值是92,故选B.3.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎫2x +2×4x=80+20⎝⎛⎭⎫x +4x ≥80+20×2 x ·4x=160⎝⎛⎭⎫当且仅当x =4x ,即x =2时取等号. 所以该容器的最低总造价为160元.4.(2019·江西两市联考)已知x ,y ∈R +,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92解析:选C 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x+y +4x +y,∴(x +y )2-5(x +y )+4≤0,解得1≤x +y ≤4,∴x +y 的最大值是4.[技法融会]1.利用不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.2.(易错提醒)利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.解决线性规划问题的一般步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线l .(2)平移——将l 平行移动,以确定最优解所对应的点的位置.有时需要对目标函数l 和可行域边界的斜率的大小进行比较.(3)求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. [题组练透]1.(2019·河南六市联考)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =( )A .6B .5C .4D .3解析:选B 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l可知,当直线l 经过A 时,z =x -y 取得最小值-1,联立⎩⎨⎧y =2x -1,x -y =-1,得⎩⎨⎧x =2,y =3,即A (2,3),又A (2,3)在直线x +y =m 上,∴m =5,故选B.2.(2019·福建质检)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1 B.92C .5D .9解析:选B 不等式组表示的可行域为如图所示的阴影部分,由题意可知点P (-2, -3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝⎛⎭⎫322=92,故选B.3.(2019·全国甲卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:不等式组⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图中阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-54.(2019·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是________.解析:画出不等式组所表示的可行域,如图所示,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率,∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-125.(2019·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产产品A x 件,产品B y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N . 目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2 100x +900y =0,即7x +3y =0,当直线经过点B 时,z 取得最大值,联立⎩⎨⎧10x +3y =900,5x +3y =600,解得B (60,100). 则z max =2 100×60+900×100=216 000(元). 答案:216 000 [技法融会]1.线性目标函数z =ax +by 最值的确定方法线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b ,可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.(易错提醒)解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.1.不等式的可乘性(1)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (2)a >b >0,c >d >0⇒ac >bd .2.不等式的性质在近几年高考中未单独考查,但在一些题的某一点可能考查,在今后复习中应引起关注.[题组练透]1.(2019·河南六市联考)若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D 由题可知b <a <0,所以A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D.2.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:选C 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,C 正确;当a <0且b <0时,可知D 不正确.[技法融会]1.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.2.利用不等式性质解决问题的注意事项(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等.一、选择题1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12 D.12解析:选B 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 2.(2019·北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1B .3C .7D .8解析:选C 作出线段AB ,如图所示.作直线2x -y =0并将其向下平移至直线过点B(4,1)时,2x -y 取最大值为2×4-1=7. 3.(2019·福建四地六校联考)已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a的值是( )A.12B.32C .1D .2 解析:选C 由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax+2≤-2a +2,当且仅当x =-a 时取等号.所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C. 4.已知函数f (x )=(x -2)(ax +b)为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{ x | x >2或x <-2}B .{ x |-2< x <2}C .{ x | x <0或x >4}D .{ x |0< x <4}解析:选C 由题意可知f (-x )=f (x ),即(-x -2)·(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)( x +2).又函数在(0,+∞)单调递增,所以a >0.f (2-x )>0即ax (x -4)>0,解得x <0或x >4.故选C. 5.(2019·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,且c ≠0,则a >b ; ②若a > b ,c>d ,则a +c >b +d ; ③若a > b ,c> d ,则ac >bd ; ④若a > b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B ①ac 2>bc 2,且c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确;③需满足a ,b ,c ,d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B.6.(2019·安徽江南十校联考)若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎡⎦⎤-12,2 C .[-1,2] D.⎣⎡⎦⎤-12,1 解析:选B 作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2 x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.7.(2019·河北五校联考)若对任意正实数x ,不等式1x 2+1≤ax 恒成立,则实数a 的最小值为( )A .1 B. 2 C.12 D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x ≤12(当且仅当x =1时取等号),所以a ≥12.故选C.8.(2019·河南八市联考)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =3x +2y 的最小值为1,则a =( )A.14B.12C.34D .1 解析:选B 根据约束条件作出可行域(如图中阴影部分所示),把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线,当直线z =3x +2y 经过点B 时,截距z2最小,即z 最小,又B 点坐标为(1,-2a ),代入3x +2y =1,得3-4a =1,得a =12,故选B.9.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B .C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.故选D.10.(2019·湖北七市联考)设向量a =(1,k ),b =(x ,y ),记a 与b 的夹角为θ.若对所有满足不等式|x -2|≤y ≤1的x ,y ,都有θ∈⎝⎛⎭⎫0,π2,则实数k 的取值范围是( )A .(-1,+∞)B .(-1,0)∪(0,+∞)C .(1,+∞)D .(-1,0)∪(1,+∞)解析:选D 首先画出不等式|x -2|≤y ≤1所表示的区域,如图中阴影部分所示,令z =a ·b =x +ky ,∴问题等价于当可行域为△ABC 时,z >0恒成立,且a 与b 方向不相同,将△ABC 的三个端点值代入,即⎩⎨⎧k +1>0,k +3>0,2+0·k >0,解得k >-1,当a 与b 方向相同时,1·y =x ·k ,则k =y x∈[0,1],∴实数k 的取值范围是(-1,0)∪(1,+∞),故选D. 11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B 由题可知,1=1x +4y ≥24xy =4xy,即xy ≥4,于是有m 2-3m >x +y 4≥xy ≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( ) A.6+2 B.6-2C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝⎛⎭⎫c a -12⎝⎛⎭⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0,故b 2a 2+2c 2的最大值为6-2,故选B.二、填空题13.(2019·湖北华师一附中联考)若2x +4y =4,则x +2y 的最大值是________.解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y ,所以2x +2y ≤4=22,即x +2y ≤2,当且仅当2x =22y =2,即x =2y =1时,x +2y 取得最大值2.答案:214.(2019·河北三市联考)如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =y x +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z取最小值12,即11+a =12,所以a =1.答案:115.(2019·江西两市联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是________.解析:设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图中阴影部分所示,则易得z ′∈[k DA ,k DB ],易得z ′∈[1,5],∴z =1+2·z ′∈[3,11].答案:[3,11]16.(2019·湖南东部六校联考)对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式k x +a +x +b x +c<0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kxax+1+bx+1cx+1<0,可化为ka+1x+b+1xc+1x<0,故得-1<1x<-13或12<1x<1,解得-3<x<-1或1<x<2,故kxax+1+bx+1cx+1<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)。
新高考数学一轮复习考点知识专题讲解与练习考点知识总结4基本不等式高考概览高考在本考点的常考题型为选择题、填空题,分值为5分,中等难度考纲研读1.了解基本不等式的证明过程2.会用基本不等式解决简单的最大(小)值问题一、基础小题1.若0<a<12,则a(1-2a)的最大值是()A.18B.14C.12D.1答案 A解析由0<a<12,得1-2a>0,则a(1-2a)=12·2a(1-2a)≤12⎣⎢⎡⎦⎥⎤2a+(1-2a)22=18,当且仅当a=14时取等号.故选A.2.已知m>0,n>0,2m+n=1,则14m+2n的最小值为()A.4 B.22C.92D.16答案 C解析 由于m >0,n >0,2m +n =1,则14m +2n =(2m +n )⎝ ⎛⎭⎪⎫14m +2n =52+n 4m +4m n ≥52+2n 4m ·4m n =92,当且仅当n =23,m =16时取等号.故选C. 3.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B .12 C .1 D .32 答案 A解析 由于x >0,则y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数y 的最小值为0.故选A.4.已知a >0,b >0,若不等式2a +1b ≥n2a +b 恒成立,则n 的最大值为( )A .9B .12C .16D .20 答案 A解析 因为a >0,b >0,所以2a +b >0,2a +1b ≥n 2a +b⇒(2a +b )⎝ ⎛⎭⎪⎫2a +1b ≥n ,(2a +b )⎝ ⎛⎭⎪⎫2a +1b =5+2a b +2b a ≥5+22a b ·2b a =9(当且仅当a =b 时,取等号),要想不等式2a +1b≥n2a +b恒成立,只需n ≤9,即n 的最大值为9.故选A. 5.若3x +2y =2,则8x +4y 的最小值为( ) A .4 B .42 C .2 D .2 2解析∵3x+2y=2,∴8x+4y=23x+22y≥223x·22y=223x+2y=4,当且仅当3x=2y,即x=13,y=12时等号成立,∴8x+4y的最小值为4.故选A.6.已知向量a=(1,x-1),b=(y,2),其中x>0,y>0.若a⊥b,则xy的最大值为()A.14B.12C.1 D.2答案 B解析因为a=(1,x-1),b=(y,2),a⊥b,所以a·b=y+2(x-1)=0,即2x+y=2.又因为x>0,y>0,所以2x+y≥22xy,当且仅当x=12,y=1时等号成立,即22xy≤2,所以xy≤12,所以当且仅当x=12,y=1时,xy取到最大值,最大值为12.故选B.7.若a>0,b>0,且1a+1b=ab,则a2+b2的最小值为()A.2 B.22C.4 D.4 2 答案 C解析∵a>0,b>0,∴1a +1b=ab≥21ab,∴ab≥2,当且仅当a=b=2时等号成立,∴a2+b2≥2ab≥4,当且仅当a=b=2时等号成立.综上,a2+b2的最小值为4.故选C.8.已知函数f(x)=cosπx(0<x<2),若a≠b,且f(a)=f(b),则1a+4b的最小值为()A.92B.9 C.18 D.36解析函数f(x)=cosπx(0<x<2)的图象的对称轴为直线x=1.因为a≠b,且f(a)=f(b),所以a+b=2,所以1a +4b=⎝⎛⎭⎪⎫1a+4b(a+b)×12=12⎝⎛⎭⎪⎫5+ba+4ab≥12×⎝⎛⎭⎪⎫5+2ba·4ab=92,当且仅当a=23,b=43时取等号,故1a+4b的最小值为92.故选A.9.(多选)设x∈(0,+∞),y∈(0,+∞),S=x+y,P=xy,以下四个命题中正确的是()A.若P=1,则S有最小值2 B.若S+P=3,则P有最大值1C.若S=2P,则S有最小值4 D.若S+P=3,则S有最大值2答案AB解析对于A,若xy=1,则S=x+y≥2xy=2(当且仅当x=y=1时取等号),故A 正确;对于B,若x+y+xy=3,则3=x+y+xy≥2xy+xy,解得0<xy≤1(当且仅当x=y=1时取等号),故B正确;对于C,若x+y=2xy,则x+y=2xy≤(x+y)22,可得x+y≥2(当且仅当x=y=1时取等号),故C错误;对于D,若x+y+xy=3,则3=x+y+xy≤x+y+(x+y)24,解得x+y≥2(当且仅当x=y=1时取等号),故D错误.10.(多选)下列说法正确的是()A.x+1x(x>0)的最小值是2 B.x2+2x2+2的最小值是 2C.x2+5x2+4的最小值是2 D.2-3x-4x的最大值是2-4 3解析 当x >0时,x +1x ≥2x ·1x =2⎝ ⎛⎭⎪⎫当且仅当x =1x ,即x =1时取等号,A 正确;∵x 2≥0,∴x 2+2x 2+2=x 2+2≥2,B 正确;x 2+5x 2+4=x 2+4+1x 2+4=x 2+4+1x 2+4,令t =x 2+4,则t ∈[2,+∞),∵y =t +1t 在[2,+∞)上单调递增,∴t +1t ≥2+12=52,即x 2+5x 2+4≥52,C 错误;当x <0时,2-3x -4x 无最大值,D 错误.故选AB.11.若正实数x ,y 满足x +2y +2xy -8=0,则x +2y 的最小值为________. 答案 4解析 ∵正实数x ,y 满足x +2y +2xy -8=0,∴x +2y +⎝⎛⎭⎪⎫x +2y 22-8≥0.设x +2y =t >0,∴t +14t 2-8≥0,∴t 2+4t -32≥0,即(t +8)(t -4)≥0,∴t ≥4,即x +2y ≥4,当且仅当x =2,y =1时取等号,故x +2y 的最小值为4.12.正项等比数列{a n }中,存在两项a m ,a n ,使得a m a n =2a 1,且a 6=a 5+2a 4,则m +n =________,1m +9n 的最小值是________.答案 4 4解析 由于数列{a n }是正项等比数列,由a 6=a 5+2a 4得q 2=q +2,解得q =2(负根舍去).由a m a n =2a 1,得2m +n -2=22,m +n =4.故1m +9n =14⎝ ⎛⎭⎪⎫1m +9n (m +n )=14⎝ ⎛⎭⎪⎫1+9+n m +9m n ≥14⎝⎛⎭⎪⎫10+2n m ·9m n =14×(10+6)=4,当且仅当m =1,n =3时,1m +9n取得最小值4.二、高考小题13.(2022·全国乙卷)下列函数中最小值为4的是()A.y=x2+2x+4 B.y=|sin x|+4 |sin x|C.y=2x+22-x D.y=ln x+4 ln x答案 C解析对于A,因为y=x2+2x+4=(x+1)2+3,所以当x=-1时,y取得最小值,且y min=3,所以A不符合题意;对于B,因为y=|sin x|+4|sin x|≥2|sin x|·4|sin x|=4,所以y≥4,当且仅当|sin x|=4|sin x|,即|sin x|=2时取等号,但是根据正弦函数的性质可知|sin x|=2不可能成立,因此可知y>4,所以B不符合题意;对于C,因为y=2x+22-x ≥22x·22-x=4,当且仅当2x=22-x,即x=2-x,x=1时取等号,所以y min=4,所以C符合题意;对于D,当0<x<1时,ln x<0,y=ln x+4ln x<0,所以D不符合题意.14.(2022·浙江高考)已知α,β,γ是互不相同的锐角,则在sin αcos β,sin βcos γ,sin γcos α三个值中,大于12的个数的最大值是()A.0 B.1 C.2 D.3答案 C解析因为α,β,γ是互不相同的锐角,所以sinα,cos β,sin β,cos γ,sin γ,cosα均为正数.由基本不等式可知sin αcos β≤sin2α+cos2β2,sinβcos γ≤sin2β+cos2γ2,sinγcosα≤sin 2γ+cos 2α2.三式相加可得sin αcos β+sin βcos γ+sin γcos α≤32,当且仅当sin α=cos β,sin β=cos γ,sin γ=cos α,即α=β=γ=π4时取等号,因为α,β,γ是互不相同的锐角,所以sin αcos β+sin βcos γ+sin γcos α<32,所以这三个值不会都大于12.若取α=π6,β=π3,γ=π4,则sin π6cos π3=12×12=14<12,sin π3cos π4=32×22=64>24=12,sin π4cos π6=22×32=64>12,所以这三个值中大于12的个数的最大值为2.故选C.15.(2022·上海高考)下列不等式恒成立的是( ) A .a 2+b 2≤2ab B .a 2+b 2≥-2ab C .a +b ≥2|ab | D .a 2+b 2≤-2ab 答案 B解析 显然当a <0,b >0时,不等式a 2+b 2≤2ab 不成立,故A 错误;∵(a +b )2≥0,∴a 2+b 2+2ab ≥0,∴a 2+b 2≥-2ab ,故B 正确;显然当a <0,b <0时,不等式a +b ≥2|ab |不成立,故C 错误;显然当a >0,b >0时,不等式a 2+b 2≤-2ab 不成立,故D 错误.故选B.16.(多选)(2022·新高考Ⅰ卷)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12 B .2a -b >12 C .log 2a +log 2b ≥-2 D .a +b ≤ 2 答案 ABD解析 对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=2⎝ ⎛⎭⎪⎫a -122+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2⎝⎛⎭⎪⎫a +b 22=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD.17.(2022·天津高考)若a >0,b >0,则1a +ab 2+b 的最小值为________. 答案 2 2解析 ∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b+b ≥22b ·b =22,当且仅当1a =a b 2且2b =b ,即a =b =2时等号成立,∴1a +ab2+b 的最小值为2 2. 三、模拟小题18.(2022·浙江杭州富阳中学高三上第一次二校联考)已知正实数a ,b 满足1a +9b =6,则(a +1)(b +9)的最小值是( )A .8B .16C .32D .36 答案 B解析 因为正实数a ,b 满足1a +9b =6,所以6=1a +9b ≥29ab ,即ab ≥1,当且仅当1a =9b 时,即a =13,b =3时取等号.因为1a +9b =6,所以b +9a =6ab ,所以(a +1)(b +9)=9a +b +ab +9=7ab +9≥7+9=16.故(a +1)(b +9)的最小值是16.故选B.19.(2022·湖北新高考联考协作体高三上新起点考试)已知a >0,b >0且a +b =1,若不等式1a +1b >m 恒成立,m ∈N *,则m 的最大值为( )A .3B .4C .5D .6 答案 A解析 ∵不等式1a +1b >m 恒成立,∴⎝ ⎛⎭⎪⎫1a +1b min >m ,又a +b =1,a >0,b >0∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=1+b a +a b +1≥2+2b a ·a b =4,当且仅当a =b =12时等号成立,∴⎝ ⎛⎭⎪⎫1a +1b min=4,∴m <4,又m ∈N *,∴m =3.故选A.20.(2022·河北省“五个一”名校联盟高三第一次联考)已知x >0,y >0,且x +4y -xy =0,若不等式a ≤x +y 恒成立,则a 的取值范围是( )A .(-∞,6]B .(-∞,7]C .(-∞,8]D .(-∞,9] 答案 D解析 ∵x >0,y >0,x +4y -xy =0,∴4x +1y =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫4x +1y =5+x y +4y x .∵x y+4yx≥2x y ·4y x =4(当且仅当x y =4yx,即x =2y =6时取等号),∴x +y ≥5+4=9.又不等式a ≤x +y 恒成立,∴a ≤9.21.(2022·辽宁六校高三上学期期初联考)已知定义在R 上的偶函数f (x )=|x -m +1|-2,若正实数a ,b 满足f (a )+f (2b )=m ,则2a +3b 的最小值为( )A .85B .8+435 C .835D .2105 答案 B解析 ∵f (x )为R 上的偶函数,∴f (-x )=f (x ),即|-x -m +1|-2=|x -m +1|-2,即(-x -m +1)2=(x -m +1)2,整理得2(m -1)x =-2(m -1)x ,∴m =1,∴f (x )=|x |-2.∴f (a )+f (2b )=a -2+2b -2=1,即a +2b =5.∴2a +3b =15⎝ ⎛⎭⎪⎫2a +3b (a +2b )=15⎝ ⎛⎭⎪⎫8+4b a +3a b ≥15⎝ ⎛⎭⎪⎫8+24b a ·3a b =8+435(当且仅当4b a =3a b ,即2b =3a 时取等号),∴2a +3b 的最小值为8+435.故选B.22.(多选)(2022·湖南省长沙市长郡中学上学期适应性调查考试)小王从甲地到乙地往返的速度分别为a 和b (a <b ),其全程的平均速度为v ,则( )A .a <v < abB .v =abC .ab <v <a +b 2D .v =2ab a +b答案 AD解析 设甲、乙两地之间的距离为s ,则全程所需的时间为s a +s b ,∴v =2ss a +s b =2ab a +b .∵b >a >0,∴v =2ab a +b <2ab 2ab =ab ;另一方面,v =2ab a +b <2⎝⎛⎭⎪⎫a +b 22a +b=a +b 2,v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a ,则a <v <ab .故选AD. 23.(多选)(2022·河北石家庄第一中学高三上教学质量检测(一))以下结论正确的是( )A .x 2+1x 2≥2B .x 2+3+1x 2+3的最小值为2 C .若a 2+2b 2=1,则1a 2+1b 2≥3+2 2 D .若a +b =1,则1a +1b≥4 答案 AC解析 对于A ,x 2+1x 2≥2x 2·1x 2=2,当且仅当x 2=1时等号成立,故A 正确;对于B ,x 2+3+1x 2+3≥2x 2+3·1x 2+3=2,当且仅当x 2+3=1时等号成立,但x 2+3≥3≠1,故B 错误;对于C ,1a 2+1b 2=⎝ ⎛⎭⎪⎫1a 2+1b 2·(a 2+2b 2)=3+2b 2a 2+a 2b 2≥3+22,当且仅当a 2=2-1,b 2=2-22时等号成立,故C 正确;对于D ,当a >0,b >0,a +b =1时,1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+a b +b a ≥4,但当a +b =1时,不一定有a >0,b >0,故D 错误.故选AC.24.(多选)(2022·辽宁葫芦岛协作校高三上第一次考试)下列函数中,最小值为9的是( )A .y =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫x +4x B .y =1sin 2x +4cos 2xC .y =lg x +4lg x -5D .y =(2x 2+1)(4x 2+8)(x 2+1)2答案 AB解析 y =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫x +4x =5+x 2+4x 2≥5+24=9,当且仅当x 2=2时,等号成立.y =1sin 2x +4cos 2x =⎝ ⎛⎭⎪⎫1sin 2x +4cos 2x (sin 2x +cos 2x )=5+cos 2x sin 2x +4sin 2x cos 2x ≥5+24=9,当且仅当tan 2x =12时,等号成立.当lg x -5小于0时,y =lg x +4lg x -5无最小值.y =(2x 2+1)(4x 2+8)(x 2+1)2=4(2x 2+1)(x 2+2)(x 2+1)2≤4×⎣⎢⎡⎦⎥⎤(2x 2+1)+(x 2+2)22(x 2+1)2=9,当且仅当x 2=1时,等号成立,则y =(2x 2+1)(4x 2+8)(x 2+1)2的最大值为9.故选AB. 25.(2022·福建晋江磁灶中学高三上阶段测试(一))若lg x +lg y =0,则4x +9y 的最小值为________.答案 12解析 因为lg x +lg y =0,所以xy =1(x >0,y >0),所以4x +9y ≥24x ·9y =12.等号成立的条件为4x =9y ,即x =32,y =23时取得最小值.26.(2022·河北正定中学高三开学考试)已知x ,y >0,且1x +3+1y =12,则x +y 的最小值为________.答案 5解析x +y =2[(x +3)+y ]⎝ ⎛⎭⎪⎫1x +3+1y -3=2⎝ ⎛⎭⎪⎫2+y x +3+x +3y -3≥2⎝ ⎛⎭⎪⎫2+2y x +3·x +3y -3=5,当且仅当y x +3=x +3y ,即x =1,y =4时,等号成立,所以x +y 的最小值为5.一、高考大题1.(2022·全国Ⅲ卷)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34.证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +bc +ca =-12(a 2+b 2+c 2). 由abc =1得a ,b ,c 均不为0,则a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0.∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc≥2bc +2bc bc =4. 当且仅当b =c 时,取等号,∴a≥34,即max{a,b,c}≥34.2.(2022·全国Ⅰ卷)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,又abc=1,故有a2+b2+c2≥ab+bc+ca=ab+bc+caabc =1a+1b+1c.当且仅当a=b=c=1时,等号成立.所以1a +1b+1c≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥33(a+b)3(b+c)3(c+a)3=3(a+b)(b+c)(c+a)≥3×(2ab)×(2bc)×(2ca)=24.当且仅当a=b=c=1时,等号成立.所以(a+b)3+(b+c)3+(c+a)3≥24.二、模拟大题3.(2022·福建龙岩高三检测)已知x,y∈(0,+∞),x2+y2=x+y.(1)求1x +1y 的最小值;(2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解 (1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy =2,当且仅当x =y =1时,等号成立,所以1x+1y 的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ).又x ,y ∈(0,+∞),所以0<x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤(x +1)+(y +1)22≤4,当且仅当x =y =1时,等号成立. 因此不存在x ,y 满足(x +1)(y +1)=5.4.(2022·广东省珠海市高三模拟)某商场预计全年分批购入电视机3600台,其中每台价值2000元,每批购入的台数相同,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入的电视机的总价值(不含运费)成正比,比例系数为k ,若每批购入400台,则全年需要支付运费和保管费共43600元.(1)求k 的值;(2)请问如何安排每批进货的数量,使支付运费与保管费的和最少?并求出相应的最少费用.解 (1)由题意,当每批购入400台时,全年的运费为400×3600400=3600(元),每批购入的电视机的总价值为400×2000=800000(元),所以保管费为k·800000(元).因为全年需要支付运费和保管费共43600元,所以3600+k·800000=43600,解得k=0.05.(2)设每批进货x台,则运费为400×3600x =1440000x,保管费为0.05×2000x=100x.所以支付运费与保管费的和为1440000x+100x,因为1440000x +100x≥21440000x×100x=24000,当且仅当1440000x=100x,即x=120时取到等号,所以每批进货120台,支付运费与保管费的和最少,最少费用为24000元.5.(2022·江苏镇江模拟)某校为丰富师生课余活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S(平方米)的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且点P在斜边BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].设矩形AMPN健身场地每平方米的造价为37kS元,再把矩形AMPN以外(阴影部分)铺上草坪,每平方米的造价为12kS元(k为正常数).(1)试用x 表示S ,并求S 的取值范围;(2)写出总造价T 与面积S 的函数关系式;(3)如何选取|AM |,才能使总造价T 最低(不要求求出最低造价)?解 (1)在Rt △PMC 中,显然|MC |=30-x ,∠PCM =60°,|PM |=|MC |tan ∠PCM =3(30-x ),∴矩形AMPN 的面积S =|PM |·|AM |=3x (30-x ),x ∈[10,20],由x (30-x )≤⎝ ⎛⎭⎪⎫x +30-x 22=225, 可知当x =15时,S 取得最大值,为2253,当x =10或20时,S 取得最小值,为2003,∴2003≤S ≤2253,即S 的取值范围为[2003,2253].(2)矩形AMPN 健身场地造价T 1=37k S ,又△ABC 的面积为12×30×303=4503,∴草坪造价T 2=12k S(4503-S ). ∴总造价T =T 1+T 2=25k ⎝⎛⎭⎪⎫S +2163S , 2003≤S ≤225 3.(3)∵S +2163S≥1263,当且仅当S=2163,S即S=2163时等号成立,此时3x(30-x)=2163,解得x=12或x=18.∴选取|AM|为12米或18米时,能使总造价T最低.。
第4讲 权方和不等式知识与方法柯西不等式:对于任意的,,,a b c d ∈R 恒有不等式()()22222()ac bd ab c d +++.对柯西不等式变形,易得()222()a b x y a b x y ⎛⎫+++ ⎪⎝⎭.在,,,0a b x y >时,我们就有了:222()a b a b x yx y +++,当a bx y=时,等号成立.这就是我们今天要讲的权方和不等式.当然,柯西不等式有多维形式,同理权方和也可以拓展成多维形式:若0,0i i a b >>,则()()222212121212n nnn a a a a a ab b b b b b +++++++成立,当i i a b λ=时,等号成立.权方和不等式还可以推广为如下形式:若0,0,0i i a b m >>>,则()()111112121212m m m m n n mm m mnn a a a a a a b b b b b b +++++++++++成立,当i ia b λ=的时,等号成立.观察特征,m 成为该不等式的权,它的特点是分子的幂指数比分母的幂指数高1次. 利用权方和不等式可以巧妙的解决一些多元最值问题.下面就从一些我们常见的模拟题中举例说明权方和在求最值中的应用.典型例题【例1】已知,x y 为正实数,若1x y +=,则12x y+的最小值为 .【例2】设1a >,0b >,若2a b +=,则121a b+-的最小值为( )A.3+B.6C.D.【例3】已知实数,x y 满足0x y >>且1x y +=,则213x y x y ++-的最小值是 .【例4】已知 a >0,b >0, 且 2a+2+1a+2b =1, 则 a +b 的最小值是 .【例5】 设 x,y 是正实数, 且 x +y =1, 则 x 2x+2+y 2y+1的最小值是【例6】已知a>1,b>1, 则a 2b−1+b2a−1的最小值是强化训练1.对任意实数x>1,y>12, 不等式x2a2(2y−1)+4y2a2(x−1)⩾1恒成立, 则实数a的最大值为( ).A. 2B. 4C. √142D. 2√22.设a,b∈R+,a≠b,x,y∈(0,+∞), 则a2x +b2y⩾(a+b)2x+y, 当且仅当ax=by时, 上式取等号,利用以上结论, 可以得到函数f(x)=2x +91−2x(x∈(0,12))的最小值为( ).A. 169B. 121C. 25D. 163.已知x>1,y>1,xy2=1000, 则1lgx +3lgy的最小值为( ).A. 4B. 43√6C. 7+2√63D. 7−2√634.若正实数x,y满足x+y=1,12x +xy+1最小值是 .5. 已知正数x,y,z满足x+y+z=1, 则x 2y+2z +y2z+2x+z2x+2y的最小值为6.已知正数x,y,z满足xyz⩾1, 则x 2y+2z +y2z+2x+z2x+2y的最小值为7.设x,y是正实数且满足x+y=1, 求1x2+8y2得最小值 .8.已知x,y>0,1x +2√2y=1, 求√x2+y2的最小值9.已知a,b,c∈R+且1a2+8b2+1c2=1, 求a+b+c得最小值.第4讲 权方和不等式知识与方法柯西不等式:对于任意的,,,a b c d ∈R 恒有不等式()()22222()ac bd ab c d +++.对柯西不等式变形,易得()222()a b x y a b x y ⎛⎫+++ ⎪⎝⎭.在,,,0a b x y >时,我们就有了:222()a b a b x yx y +++,当a bx y=时,等号成立.这就是我们今天要讲的权方和不等式.当然,柯西不等式有多维形式,同理权方和也可以拓展成多维形式:若0,0i i a b >>,则()()222212121212n n nn a a a a a a b b b b b b +++++++成立,当i i a b λ=时,等号成立.权方和不等式还可以推广为如下形式:若0,0,0i i a b m >>>,则()()111112121212m m m m n n mm m mnn a a a a a a b b b b b b +++++++++++成立,当i ia b λ=的时,等号成立.观察特征,m 成为该不等式的权,它的特点是分子的幂指数比分母的幂指数高1次. 利用权方和不等式可以巧妙的解决一些多元最值问题.下面就从一些我们常见的模拟题中举例说明权方和在求最值中的应用.典型例题【例1】已知,x y 为正实数,若1x y +=,则12x y+的最小值为 .【解析】212(12)3x yx y++=++当1x y=时,即1,2x y==12x y+的最小值3+. 【答案】3+.【例2】设1a >,0b >,若2a b +=,则121a b+-的最小值为( )A.3+ B.6C. D.【解析】212(12)311a ba b ++=+-+-当11a =-,2a b ==. 【例3】已知实数,x y 满足0x y >>且1x y +=,则213x y x y ++-的最小值是 .【解析】 2x+3y +1x−y ⩾(√2+1)22x+2y=3+2√22.当 2x+3y =1x−y 时, x =√2−12,y =32−√2 取等号.【例4】已知 a >0,b >0, 且 2a+2+1a+2b =1, 则 a +b 的最小值是 【解析】 1=2a+2+1a+2b ⩾(√2+1)22a+2b+2.当√2a+2=1a+2b时, 即 a =√2,b =12,有 (a +b)min =12+√2.【例5】 设 x,y 是正实数, 且 x +y =1, 则x 2x+2+y 2y+1的最小值是【解析】 x 2x+2+y 2y+1⩾(x+y)2x+y+3=14. 当 xx+2=yy+1 时, 即 x =23,y =13, 等号成立. 【例6】已知 a >1,b >1, 则 a 2b−1+b 2a−1 的最小值是 【解析】 a +b −2=t >0,a 2b−1+b 2a−1⩾(a+b)2a+b−2=(t+2)2t=t +4t+4⩾8.当 {a +b −2=2a b−1=b a−1时, 即 a =2,b =2, 两个等号同时成立. 强化训练1.对任意实数 x >1,y >12, 不等式x 2a 2(2y−1)+4y 2a 2(x−1)⩾1 恒成立, 则实数 a 的最大值为( ).A. 2B. 4C.√142D. 2√2【解析】 a 2≦(x 2(2y?1)+4y 2(x?1))min, 设 x +2y −2=t >0,则有 x 22y −1+4y 2x −1⩾(x +2y)2x +2y −2=(t +2)2t =t +4t+4⩾8, 当 {x +2y −2=2x 2y−1=2y x−1 时, 即 x =2,y =1, 两个等号同时成立. 【答案】a ⩽2√2.2.设 a,b ∈R +,a ≠b,x,y ∈(0,+∞), 则a 2x+b 2y⩾(a+b)2x+y, 当且仅当 a x =by 时, 上式取等号,利用以 上结论, 可以得到函数 f(x)=2x +91−2x (x ∈(0,12)) 的最小值为 ( ) ).A. 169B. 121C. 25D. 16 【解析】2x +91−2x=42x+91−2x⩾(2+3)22x+(1−2x)=25, 当且仅当22x=31−2x时, x =15, 取得 f(x)的最小值. 【答案】C3.已知 x >1,y >1,xy 2=1000, 则 1lgx +3lgy 的最小值为 ( ). A. 4 B. 43√6 C.7+2√63D.7−2√63【解析】1lgx +3lgy =1lgx +62lgy ⩾(1+√6)2lgx+lgy 2=7+2√6lgxy 2=7+2√63, 当 1lgx =√62lgy 时, lgx =√6+1时,选 C. 【答案】C4.若正实数 x,y 满足 x +y =1,12x +xy+1 最小值是 【解析】12x +xy+1=12x +1−yy+1=12x +−(y+1)+2y+1=12x +42y+2−1⩾(1+2)22x+2y+2−1=54.当 12x =22y+2 时, 即 x =23,y =13, 有所求的最小值 54 【答案】545. 已知正数 x,y,z 满足 x +y +z =1, 则 x 2y+2z +y 2z+2x +z 2x+2y 的最小值为 。
专题限时训练(四) 不等式及线性规划(时间:45分钟 分数:80分) 一、选择题(每小题5分,共25分)1.(2021·河南洛阳统考)设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( )A.6+2B.6-2 C .22+2 D .22-2答案:B解析:由题意,得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝ ⎛⎭⎪⎫c a -12⎝ ⎛⎭⎪⎫c a 2+1, 令t =ca -1,可知t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2⎝ ⎛⎭⎪⎫当且仅当t =62时等号成立,当t =0时,b 2a 2+2c 2=0,故b 2a 2+2c 2的最大值为6-2,故选B. 2.(2021·山东卷)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3答案:B解析:画出不等式组表示的平面区域如图阴影部分所示,若z =ax +y 的最大值为4,则最优解为x =1,y =1或x =2,y =0,经检验知x =2,y =0符合题意,∴ 2a +0=4,此时a =2,故选B.3.已知点A (2,-2),点P (x ,y )在⎩⎪⎨⎪⎧x -y +1≥0,x +y +1≥0,2x -y -1≥0所表示的平面区域内,则OP→在OA →方向上投影的取值范围是( ) A.⎣⎢⎡⎭⎪⎫-22,22B.⎝ ⎛⎭⎪⎫-22,22C.⎝⎛⎦⎥⎤-22,22D.⎣⎢⎡⎦⎥⎤-22,22答案:D解析:不等式组表示的平面区域如图阴影部分所示.由向量投影的几何意义知,当点P 与点D 重合时投影最大,当点P 与点B 或点C 重合时投影最小.又C (-1,0),D (0,-1),所以OC→=(-1,0),OD →=(0,-1), 所以OD →在OA →方向上的投影为OD →·OA →|OA →|=22,OC →在OA →方向上的投影为OC →·OA →|OA→|=-22, 故OP →在OA →方向上投影的取值范围是⎣⎢⎡⎦⎥⎤-22,22.4.若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案:A解析:0<ab <1可分为两种状况:当a >0,b >0时,由0<ab <1两边同除b 可得a <1b ; 当a <0,b <0时,两边同除以a 可得b >1a . 所以“0<ab <1”是“a <1b 或b >1a ”的充分条件,反之,当a <1b 或b >1a 时,可能有ab <0,所以“0<ab <1”是“a <1b 或b >1a ”的不必要条件,故应为充分不必要条件.5.已知三点A (2,1),B (1,-2),C ⎝⎛⎭⎪⎫35,-15,动点P (a ,b )满足0≤OP →·OA→≤2,且0≤OP →·OB →≤2,则动点P 到点C 的距离小于15的概率为( )A.π20 B .1-π20 C.19π20 D .1-19π20答案:A解析:动点P (a ,b )满足的不等式组为⎩⎨⎧0≤2a +b ≤2,0≤a -2b ≤2,画出可行域可知点P在以C ⎝⎛⎭⎪⎫35,-15为中心且边长为255的正方形及内部运动,而点P 到点C 的距离小于15的区域是以C ⎝ ⎛⎭⎪⎫35,-15为圆心且半径为15的圆的内部,所以概率P =π⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫2552=π20.故选A.二、填空题(每小题5分,共15分)6.(2021·河北唐山一模)已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围是________.答案:[4,12]解析:∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22, ∴6-(x 2+4y 2)≤x 2+4y 22,∴x 2+4y 2≥4(当且仅当x =2y 时,等号成立). 又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时,等号成立). 综上可知,4≤x 2+4y 2≤12.7.(2022·浙江卷)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.答案:(-∞,2]解析:结合图形(图略),由f (f (a ))≤2可得f (a )≥-2,可得a ≤ 2. 8.设实数x ,y 满足⎩⎪⎨⎪⎧x +y -6≤0,x -y -1≤0,x ≥2,则μ=yx 的取值范围是________.答案:⎣⎢⎡⎦⎥⎤12,2解析:由约束条件⎩⎨⎧x +y -6≤0,x -y -1≤0,x ≥2作出可行域如图阴影部分所示.μ=yx 的几何意义是原点与可行域内动点连线的斜率,联立⎩⎨⎧ x =2,x -y -1=0,解得A (2,1).联立⎩⎨⎧x =2,x +y -6=0,解得C (2,4).由图可知,当动点为点A 时,k OA 最小,等于12; 当动点为点C 时,k OC 最大,等于42=2.所以μ=yx 的取值范围是⎣⎢⎡⎦⎥⎤12,2.三、解答题(9题12分,10题、11题每题14分,共40分)9.已知函数f (x )=13ax 3-14x 2+cx +d (a ,c ,d ∈R )满足f (0)=0,f ′(1)=0,且f ′(x )≥0在R 上恒成立.(1)求a ,c ,d 的值;(2)若h (x )=34x 2-bx +b 2-14,解不等式f ′(x )+h (x )<0. 解:(1)∵f (0)=0,∴d =0.∵f ′(x )=ax 2-12x +c .又f ′(1)=0,∴a +c =12. ∵f ′(x )≥0在R 上恒成立, 即ax 2-12x +12-a ≥0恒成立,明显当a =0时,上式不恒成立,∴a ≠0,∴⎩⎨⎧a >0,⎝ ⎛⎭⎪⎫-122-4a ⎝ ⎛⎭⎪⎫12-a ≤0,即⎩⎨⎧a >0,a 2-12a +116≤0,解得a =14,c =14.(2)由(1)知,f ′(x )=14x 2-12x +14. 由f ′(x )+h (x )<0,得14x 2-12x +14+34x 2-bx +b 2-14<0, 即x 2-⎝ ⎛⎭⎪⎫b +12x +b 2<0, 即(x -b )⎝ ⎛⎭⎪⎫x -12<0. 当b >12时,解集为⎝ ⎛⎭⎪⎫12,b . 当b <12时,解集为⎝ ⎛⎭⎪⎫b ,12. 当b =12,解集为∅.10.(2021·银川模拟)运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解:(1)设所用时间t =130x (h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是 y =130×18x +2×130360x ,x ∈[50,100] ⎝ ⎛⎭⎪⎫或y =2 340x +1318x ,x ∈[50,100]. (2)由(1)知,y =130×18x+2×130360x ≥2610, 当且仅当130×18x=2×130360x ,即x =1810时,等号成立. 故当x =1810千米/小时时,这次行车的总费用最低,最低费用的值为2610元.11.已知函数f (x )=13x 3+12ax 2+bx .(1)若a =2b ,试问函数f (x )能否在x =-1处取到极值?若有可能,求出实数a ,b 的值;否则说明理由;(2)若函数f (x )在区间(-1,2),(2,3)内各有一个极值点,试求w =a -4b 的取值范围.解:(1)由题意f ′(x )=x 2+ax +b , ∵a =2b ,∴f ′(x )=x 2+2bx +b . 若f (x )在x =-1处取极值,则f ′(-1)=1-2b +b =0,即b =1, 此时f ′(x )=x 2+2x +1=(x +1)2≥0,函数f (x )为单调递增函数,这与该函数能在x =-1处取极值冲突, ∴该函数不能在x =-1处取得极值.(2)∵函数f (x )=13x 3+12ax 2+bx 在区间(-1,2),(2,3)内分别有一个极值点, ∴f ′(x )=x 2+ax +b =0在(-1,2),(2,3)内分别有一个实根, ∴⎩⎪⎨⎪⎧f ′(-1)>0,f ′(2)<0,f ′(3)>0⇒⎩⎪⎨⎪⎧1-a +b >0,4+2a +b <0,9+3a +b >0.画出不等式表示的平面区域如图所示,当目标函数w =a -4b 过N (-5,6)时,对应的w =-29; 当目标函数w =a -4b 过M (-2,-3)时,对应的w =10. 故w =a -4b 的取值范围为(-29,10).。
新高考数学复习考点知识与题型专题练习4 充分条件和必要条件一、单选题1.若a ∈R ,则“1a =”是“||1a =”的( )A .充分条件B .必要条件C .充要条件D .无法判断【答案】A【解析】当1a =时,||1a =成立,因此“1a =”是“||1a =”的充分条件;但当||1a =时,1a =±,所以1a =不一定成立,因此“1a =”不是“||1a =”的必要条件.∴.“1a =”是“||1a =”的充分条件,故选:A .2.“x ,y 均为奇数”是“x y +为偶数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】当x ,y 均为奇数时,一定可以得到x y +为偶数;但当x y +为偶数时,x ,y 不一定均为奇数,也可能均为偶数.故选:A.3.已知,a b 为实数,则“0a >且0b >”是“0a b +>且0ab >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由题意得,因为,a b 是实数,所以“0a >且0b >”可推出“0a b +>且0ab >”,“0a b +>且0ab >”推出“0a >且0b >”,所以“0a >且0b >”是“0a b +>且0ab >”的充要条件,故选C .4.设x ,y 是两个实数,命题:“x ,y 中至少有一个数大于1”成立的充分不必要条件是A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >1【答案】B【解析】当2x y +>时,显然有“中至少有一个数大于1”,反之,“中至少有一个数大于1”时,不一定有2x y +>,因为“中至少有一个数大于1”包括了,只有一个数大于1和两个数均大于1两种可能情况,.故选B .5.设全集U ,在下列条件中,是B A ⊆的充要条件的有①A B A ⋃=; ②U C A B =∅∩ ③U U C A C B ⊆; ④U A C B U =∪A .1个B .2个C .3个D .4个【答案】D【解析】解:如下图借助Venn 图,可以判断出A B A B A =⇔⊆,U C A B B A φ=⇔⊆∩,U U C A C B B A ⊆⇔⊆,U A C B U B A =⇔⊆∪,故①②③④均正确.故选D .6.设p :函数234y x x m =++的图象与x 轴无交点,2:2q m x ≥-对任意x ∈R 恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】∵234y x x m =++的图象与x 轴无交点,∴16120m ∆=-<,解得43m >. ∵22m x ≥-对任意x ∈R 恒成立,∴22m x ≥-的最大值,∴2m ≥.∵{|2}m m ≥ 4|3m m ⎧⎫>⎨⎬⎩⎭, ∴p 是q 的必要不充分条件.故选:B.7.在下列结论中,正确的有( )A .29x =是327x =-的必要不充分条件B .在ABC ∆中,“222AB AC BC +=”是“ABC ∆为直角三角形”的充要条件C .若,a b ∈R ,则“220a b +≠”是“a ,b 全不为0”的充要条件D .若,a b ∈R ,则“220a b +≠”是“a ,b 不全为0”的充要条件【答案】AD【解析】对于选项A ,由327x =-得293x x =-⇒=,但是3x =适合29x =,推出32727x =≠-,故A 正确;对于选项B ,在ABC ∆中,222AB AC BC ABC +=⇒∆为直角三角形,但ABC ∆为直角三角形222AB AC BC ⇒+=或222AB BC AC +=或2221BC AC AB +=,故B 错误;对于选项C ,由220,a b a b +≠⇒全不为0,由a ,b 全不为2200a b ⇒+≠,故C 错误;对于选项D ,由220,a b a b +≠⇒不全为0,反之,由a ,b 不全为2200a b ⇒+≠,故D 正确;故选:AD .二、填空题8.若M 是N 的充分不必要条件,N 是P 的充要条件,Q 是P 的必要不充分条件,则M 是Q 的________条件.【答案】充分不必要【解析】命题的充分必要性具有传递性.根据题意得M N P Q ⇒⇔⇒,但Q P ⇒,N P ⇔,且N M ⇒,因此M Q ⇒,但Q M ⇒,故M 是Q 的充分不必要条件.故答案为:充分不必要9.已知:13p x ,若1(0)a x a a -<-<>是p 的一个必要条件,则使a b >恒成立的实数b 的取值范围是________.【答案】{|2}b b【解析】∵111a x a a x a -<-<⇔-<<+,∴{|13}{|11}x x x a x a -<<⊆-<<+,所以11,13,a a -≤-⎧⎨+≥⎩解得2a ≥ 又使a b >恒成立,因此2b <,故实数b 的取值范围是{|2}b b. 故答案为:{|2}b b .10.若实数a ,b 满足0a ≥,0b ≥,且0ab =,则称a 与b 互补记(,)a b a b ϕ-,那么“(,)0a b ϕ=”是“a 与b 互补”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)【答案】充要【解析】解析若(,)0a b ϕ=,a b =+,平方得0ab =,当0a =b =,所以0b ≥;当0b =a =,所以0a ≥,故a 与b 互补;若a 与b 互补,易得(,)0a b ϕ=.故“(,)0a b ϕ=”是“a 与b 互补”的充要条件故答案为:充要条件11.已知:4p x a -<,:23q x ,且q 是p 的充分不必要条件,则a 的取值范围为________. 【答案】[]1,6- 【解析】解不等式4x a -<,得44a x a -<<+,由于q 是p 的充分不必要条件,()()2,34,4a a -+,4342a a +≥⎧∴⎨-≤⎩,解得16a -≤≤. 当1a =-时,则有()()2,35,3-;当6a =时,则有()()2,32,6.因此,实数a 的取值范围是[]1,6-.故答案为:[]1,6-.三、解答题12.指出下列哪些命题中p 是q 的充分条件.(1)在ABC ∆中,:p A B ∠>∠,:q BC AC >;(2)对于实数x ,y ,:0p xy >,:0q x >,且0y >;(3)已知,x y ∈R ,:1p x =,:(1)(2)0q x x --=.【答案】(1)p 是q 的充分条件(2)p 不是q 的充分条件(3)p 是q 的充分条件【解析】(1)在ABC ∆中,由大角对大边知,A B BC AC ∠>∠⇒>,所以p 是q 的充分条件. (2)对于实数x ,y ,因为0xy >,所以0x >,且0y >或0x <,且0y <,推不出0x >,且0y >,故p 不是q 的充分条件.(3)由1(1)(2)0x x x =⇒--=,故p 是q 的充分条件.故(1)、(3)命题中p 是q 的充分条件.13.判断下列命题中p 是q 的什么条件.(充分不必要条件必要不充分条件,充要条件,既不充分也不必要条件)(1)p :数a 能被6整除,q :数a 能被3整除;(2):1p x >,2:1q x >;(3):p ABC ∆有两个角相等,:q ABC ∆是正三角形;(4)若,a b ∈R ,22:0p a b +=,:0q a b ==;(5):p a b <,:1a q b<. 【答案】(1)p 是q 的充分不必要条件(2)P 是q 的充分不必要条件(3)p 是q 的必要不充分条件(4)p 是q 的充要条件(5)p 是q 的既不充分也不必要条件【解析】解析(1)因为“数a 能被6整除”能推出“数a 能被3整除”,所以p q ⇒,但“数a 能被3整除”推不出“数a 能被6整除”,如9a =,所以q p ⇒/,所以p 是q 的充分不必要条件.(2)因为1x >能推出21x >,即p q ⇒;但当21x >时,如2x =-,推不出1x >,即q p ⇒/,所以P 是q 的充分不必要条件.(3)因为“ABC ∆有两个角相等”推不出“ABC ∆是正三角形”,因此q p ⇒/,但“ABC ∆是正三角形”能推出“ABC ∆有两个角相等”,即q p ⇒,所以p 是q 的必要不充分条件.(4)若220a b +=,则0a b ,即p q ⇒;若0a b ,则220a b +=,即q p ⇒,故p q ⇔,所以p 是q 的充要条件.(5)当2a =-,1b =-时,21-<-推不出211-<-,知1a a b b <<,又当1a =,2b =-时,112<-推不出12<-,知1a a b b <<,所以p 是q 的既不充分也不必要条件.14.已知关于x 的一元二次方程:①2440mx x -+=,②2244450x mx m m -+--=,m ∈Z .求证:方程①和②都有整数解的充要条件是1m =.【答案】证明见解析【解析】证明:方程①有实根的充要条件是0m ≠且16440m ∆=-⨯⨯≥,所以1m 且0m ≠, 方程②有实根的充要条件是()221644450m m m ∆=---≥,解得54m ≥-, 所以方程①②都有实根的充要条件是:514m -≤≤且0m ≠, 又m ∈Z ,故1m =-或1m =,当1m =-时,方程①的解为1,22x =-±当1m =时,方程①的解为2x =,方程②的解为1x =-或5x =,满足题意,从而方程①和②都有整数解1m ⇒=,反之,1m =⇒方程①和②都有整数解,所以方程①和②都有整数解的充要条件是:1m =.15.已知{}210P x x =-<<,{}11S x m x m =-<<+.是否存在实数m ,使得x P ∈是x S ∈的充要条件?若存在,求实数m 的取值范围.【答案】不存在实数m ,使得x P ∈是x S ∈的充要条件【解析】解:因为x P ∈是x S ∈的充要条件,则P S =, 由{}210P x x =-<<,{}11S x m x m =-<<+, 知要使P S =,则12110m m -=-⎧⎨+=⎩,无解, 故不存在实数m ,使得x P ∈是x S ∈的充要条件.。
考向04 基本不等式及应用(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【点睛】椭圆上的点与椭圆的两焦点的距离问题,常常从椭圆的定义入手,注意基本不等式得灵活运用,或者记住定理:两正数,和一定相等时及最大,积一定,相等时和最小,也可快速求解.1.利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量. (3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围.注意:形如(0)ay x a x=+>的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.2.通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形; (2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提.3.利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.1.重要不等式当a 、b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a=b 时,等号成立. 2.基本不等式 当a >0,b >0时有ab ba ≥+2,当且仅当a=b 时,等号成立. 3.基本不等式与最值 已知x 、y 都是正数.(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值. (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值. 【知识拓展】 常用推论:(1)22ab 2a b +≤(,R a b ∈)(2)2ab ()2a b +≤(0a >,0b >);222()22a b a b ++≥ (3)222(0,0)1122a b a b ab a b a b++≤≤≤>>+1.(2021·江苏南通市·高三其他模拟)已知0x >,0y >,且1x y +=,则下列结论中正确的是( )A .11x y+有最小值4B .xy 有最小值14C .22x y +2D x y 有最大值22.(2021·山东烟台市·高三其他模拟)(多选题)下列命题正确的是( ) A .若0a b >>,0c <,则c ca b> B .若0a >,0b >,0c >,则a a cb b c+≤+ C .若0a b >>2a ba b++<D .若1a >-,0b >,22a b +=,则121a b++的最小值为3 3.(2020·石家庄市藁城区第一中学高三其他模拟(文))若直线220ax by -+=(0a >,0b >)被圆222410x y x y ++-+=截得弦长为4,则41a b+的最小值是( ) A .9B .4C .12 D .144.(2020·安徽高三其他模拟(文))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(4b -c )cos A =a cos C ,且3a =ABC 的周长的取值范围___________.1.(2021·北京高三二模)某公司购买一批机器投入生产,若每台机器生产的产品可获得的总利润s (万元)与机器运转时间t (年数,*t ∈N )的关系为22364s t t =-+-,要使年平均利润最大,则每台机器运转的年数t 为( ) A .5B .6C .7D .82.(2021·重庆高三三模)(多选题)已知a ,b 为正实数,且26ab a b ++=,则( ) A .ab 的最大值为2 B .2a b +的最小值为4 C .a b +的最小值为3D .1112+++a b 的最小值为223.(2021·普宁市第二中学高三其他模拟)(多选题)已知2,0,1a b a b >+=,则下列选项一定正确的是( ) A .133a b-≤ B .b a 12C 2a b <D .11165a b +≥ 4.(2021·全国高三其他模拟)(多选题)已知0a >,0b >,则下列说法正确的是( ) A .214a a+最小值为a B .若2a b +=,则()()33a b ab ++的最小值为4C .若41a b +=,则1b a +的最小值为9 D .若115a b a b+++=,则a b +的最小值为45.(2021·江苏扬州市·扬州中学高三其他模拟)已知正实数x ,y 满足()()419x y ++=,则xy 的最大值等于______.6.(2021·河北衡水市·高三其他模拟)如图,在平行四边形ABCD 中,点E 是CD 的中点,点F 为线段BD上的一动点,若AF =(0,0)x AE yDC x y +>>,则22341x y -+的最大值为___________.7.(2021·天津市武清区杨村第一中学高三其他模拟)已知,x y 都为正实数,则()241xy x x y++的最小值为___________.8.(2021·黑龙江大庆市·铁人中学高三三模(理))《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股中记载:“今有邑,东西七里,南北九里,各中开门.出东门一十五里有木.问出南门几何步而见木?”其算法为:东门南到城角的步数,乘南门东到城角的步数,乘积作被除数,以树距离东门的步数作除数,被除数除以除数得结果,即出南门x 里见到树,则11972215x ⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭=.若一小城,如图所示,出东门1200步有树,出南门750步能见到此树,则该小城的周长的最小值为(注:1里300=步)________ 里.9.(2021·浙江高三其他模拟)已知正实数,a b 满足21a b +=,则12a b+的最小值为_______;222a b +的最小值为__.10.(2021·海南高三其他模拟)若0x >,0y >,且211x y+=,则2x y +的最小值是___________,当且仅当___________时,取得最值.11.(2021·河北唐山市·唐山一中高三其他模拟)某小区要建一座八边形的休闲公园,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为2200m 的十字型地域,计划在正方形MNPQ 上建一座花坛,造价为4200元2/m ,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元2/m ,再在四个空角(图中四个三角形)上铺草坪,造价为80元2/m .设总造价为S (单位:元),AD 长为x (单位:m ).S 的最小值是___________,此时x 的值是___________.1.(2021·浙江高考真题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( ) A .0B .1C .2D .33.(2021·全国高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++B .4sin sin y x x=+C .222x xy -=+D .4ln ln y x x=+3.(2020·全国高考真题(理))设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .324.(2020·天津高考真题)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 5.(2020·江苏高考真题)已知22451(,)x y y x y R +=∈,则22xy +的最小值是_______.6.(2019·上海高考真题)如图,已知正方形OABC ,其中()1OA a a =>,函数23y x =交BC 于点P ,函数12y x-=交AB 于点Q ,当AQ CP +最小时,则a 的值为_______7.(2019·天津高考真题(理))设0,0,25x y x y >>+=,则(1)(21)x y xy++的最小值为______.8.(2020·全国高考真题(文))设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34.1.【答案】A 【分析】根据已知,结合基本不等式分别判断选项即可,但需注意取最值时的条件. 【详解】 对于选项A ,1111()114y xx y x y x y x y ⎛⎫+=++=+++ ⎪⎝⎭, 当且仅当12x y ==时取等号,故A 正确; 对于选项B ,2124x y xy +⎛⎫= ⎪⎝⎭,当且仅当12x y ==时取等号,故B 错误;对于选项C ,222222222x y x y x y ++⋅==, 当且仅当12x y ==时取等号,故C 错误; 对于选项D ,2(22()2x y x y xy x y =+++=2x y,当且仅当12x y ==时取等号,故D 错误. 故选:A. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”, 若忽略了某个条件,就会出现错误. 2.【答案】ACD 【分析】对选项A ,利用不等式性质即可判断A 正确;对选项B ,利用特值法即可判断B 错误;对选项C ,利用基本不等式性质求解即可;对选项D ,首先根据题意得到123a b ++=,从而得到()1122112131a b a a b b ⎡⎤⎛⎫+=+ ⎪⎢⎥++⎝⎭⎣+⎦+,再展开利用基本不等式求解即可. 【详解】对选项A ,因为0a b >>,所以11a b <,又因为0c <,所以c c a b>,故A 正确; 对选项B ,因为0a >,0b >,0c >,设2a =,1b =,1c =, 则2ab =,32ac b c +=+,a a c b b c+>+,故B 错误; 对选项C ,因为0a b >>,所以()22a b a b <+⇒<+2422a b +⇒<⇒<C 正确;对选项D ,因为22a b +=,所以123a b ++=,所以()()(211211212155311313231a b a b a b a b a b +⎡⎤⎡⎤⎛⎫+=+=++≥+=⎢⎥ ⎪⎢⎥+++⎝⎭⎣⎦+⎦+⎣, 当且仅当()2121a ba b+=+,即0a =,1b =时,取等号.故D 正确. 故选:ACD 3.【答案】A 【分析】根据直线被圆截得的弦长为4,以及圆的半径为2,可知直线过圆心,即2220a b --+=,41414=()()41b aa b a b a b a b+++=+++,根据此特点,可选择基本不等式求出最小值. 【详解】直线被圆截得的弦长为4,圆的半径为2r === ,圆心为(1,2)-直线过圆心,故2220a b --+= ,即1a b += ,41414=()()415549b a a b a b a b a b +++=+++≥+=+=, 当且仅当4b aa b= ,即2a b = 时等号成立,最小值为9. 故选:A 【点睛】理解题意,直线与圆相交后弦心距、半弦长、半径构成直角三角形,以及由1a b +=,求41a b+的最小值联想用基本不等式求最值.4.【答案】 【分析】先根据正弦定理将已知条件边化角,求出cos A ,然后利用余弦定理及均值不等式即可求解. 【详解】 解:(4)cos cos b c A a C -=,∴由正弦定理得(4sin sin )cos sin cos B C A A C -=,即4sin cos sin()sin B A A C B =+=,又sin 0B >,1cos 4A ∴=, 所以,由余弦定理得22132b c bc =+-,即25()32b c bc +-=,又22b c bc +⎛⎫≤ ⎪⎝⎭(b =c 时等号成立),所以b +c ≤b c +>a b c ∴<++≤,所以ABC 的周长的取值范围为,故答案为:(23,3]22+. 【点睛】关键点点睛:利用余弦定理得边,b c 后,结合均值不等式建立不等关系,从而求出b +c 22≤,最后根据三角形任意两边之和大于第三边求解.1.【答案】D 【分析】根据题意求出年平均利润函数。
专题3.4幂函数练基础1.(2021·全国高一课时练习)下列命题中,不正确的是()A .幂函数y =x -1是奇函数B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =12x 既不是奇函数,又不是偶函数【答案】C 【解析】根据奇偶函数的定义依次判断即可.【详解】因为11xx -=,11=--xx ,所以A 正确;因为22()x x -=,所以B 正确;因为x x -=不恒成立,所以C 不正确;因为12y x =定义域为[0,+∞),不关于原点对称,所以D 正确.故选:C.2.(2020·上海高一课时练习)下列函数中,既是偶函数,又在(,0)-∞上单调递增的函数是()A .2y x -=-B .23y x=-C .13y x=-D .3y x-=【答案】B 【解析】A:2y x-=-为偶函数,且在()0,∞+上递增,即2y x -=-在(,0)-∞上单调递减,排除;B:23y x =-为偶函数,在(,0)-∞上单调递增;C:13y x=-为奇函数,故排除;D:3y x -=为奇函数,故排除.故选:B.3.(2020·石嘴山市第三中学高二月考(文))幂函数()221()21m f x m m x -=-+在()0,∞上为增函数,则实数m 的值为()A .0B .1C .1或2D .2【答案】D 【解析】由题意()f x 为幂函数,所以2211m m -+=,解得0m =或2m =.因为()f x 在()0,∞上为增函数,所以210m ->,即12m >,所以2m =.故选D.4.(2020·上海高一课时练习)下面是有关幂函数3()-=f x x 的四种说法,其中错误的叙述是()A .()f x 的定义域和值域相等B .()f x 的图象关于原点中心对称C .()f x 在定义域上是减函数D .()f x 是奇函数【答案】C 【解析】3()-=f x x ,函数的定义域和值域均为()(),00,-∞⋃+∞,A 正确;3()-=f x x ,()()33()f x x x f x ---=-=-=-,函数为奇函数,故BD 正确;()f x 在(),0-∞和()0,∞+是减函数,但在()(),00,-∞⋃+∞不是减函数,C 错误.故选:C.5.(2020·上海高一课时练习)若幕函数()f x 的图像经过点1,42⎛⎫⎪⎝⎭,则该函数的图像()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】B 【解析】设()f x x α=,依题意可得1()42α=,解得2α=-,所以2()f x x -=,因为22()()()f x x x f x ---=-==,所以()f x 为偶函数,其图象关于y 轴对称.故选:B.6.(2019·延安市第一中学高三月考(文))已知幂函数()f x x α=的图像过点1(,22,则方程()2f x =的解是()A .4B .22C .2D .12【答案】A 【解析】依题意得12(22α=,解得12α=,所以12()f x x =,由()2f x =得122x =,解得4x =.故选:A.7.(2021·浙江高一期末)幂函数()()22222m f x m m x -=--在()0,∞+为增函数,则m 的值是()A .1-B .3C .1-或3D .1或3-【答案】B 【解析】由幂函数解析式的形式可构造方程求得1m =-或3m =,分别验证两种情况下()f x 在()0,∞+上的单调性即可得到结果.【详解】()f x 为幂函数,2221m m ∴--=,解得:1m =-或3m =;当1m =-时,()1f x x -=,则()f x 在()0,∞+上为减函数,不合题意;当3m =时,()7=f x x ,则()f x 在()0,∞+上为增函数,符合题意;综上所述:3m =.故选:B.8.(2021·全国高一课时练习)下列结论正确的是()A .幂函数图象一定过原点B .当0α<时,幂函数y x α=是减函数C .当1α>时,幂函数y x α=是增函数D .函数2y x =既是二次函数,也是幂函数【答案】D 【解析】由函数1y x -=的性质,可判定A 、B 不正确;根据函数2y x =可判定C 不正确;根据二次函数和幂函数的定义,可判定D 正确.【详解】由题意,函数1y x -=的图象不过原点,故A 不正确;函数1y x -=在(,0)-∞及(0,)+∞上是减函数,故B 不正确;函数2y x =在(,0)-∞上是减函数,在(0,)+∞上是增函数,故C 不正确;根据幂函数的定义,可得函数2y x =是二次函数,也是幂函数,所以D 正确.故选:D.9.(2021·全国高一课时练习)幂函数的图象过点(3,),则它的单调递增区间是()A .[-1,+∞)B .[0,+∞)C .(-∞,+∞)D .(-∞,0)【答案】B 【解析】根据利用待定系数法求出幂函数的解析式,再根据幂函数求出单调增区间即可.【详解】设幂函数为f (x )=x α,因为幂函数的图象过点(3,,所以f (3)=3α123,解得α=12,所以f (x )=12x ,所以幂函数的单调递增区间为[0,+∞).故选:B10.(2021·全国高三专题练习)下列关于幂函数图象和性质的描述中,正确的是()A .幂函数的图象都过(1,1)点B .幂函数的图象都不经过第四象限C .幂函数必定是奇函数或偶函数中的一种D .幂函数必定是增函数或减函数中的一种【答案】AB 【解析】举反例结合幂函数的性质判断即可.【详解】因为11α=,所以的幂函数都经过(1,1),故A 正确;当0x >时,0x α>,幂函数的图象都不经过第四象限,故B 正确;12y x =的定义域为[)0,+∞,为非奇非偶函数,故C 错误;1y x=在(),0-∞和()0,∞+上为减函数,但在定义域内不是减函数,故D 错误.故选:AB练提升1.(2020·内蒙古自治区集宁一中高二月考(文))若a =12⎛⎫ ⎪⎝⎭23,b =15⎛⎫ ⎪⎝⎭23,c =12⎛⎫ ⎪⎝⎭13,则a ,b ,c 的大小关系是()A .a <b <cB .c <a <bC .b <c <aD .b <a <c【答案】D 【解析】∵y =x23(x >0)是增函数,∴a =12⎛⎫ ⎪⎝⎭23>b =15⎛⎫ ⎪⎝⎭23.∵y =12⎛⎫⎪⎝⎭x 是减函数,∴a =12⎛⎫ ⎪⎝⎭23<c =12⎛⎫ ⎪⎝⎭13,∴b <a <c .故本题答案为D.2.(2019·湖北高三高考模拟(理))幂函数op =的图象过点(2,4),且=12,=(13),=−log 3,则、、的大小关系是()A.>>B.>>C.>>D.>>【答案】C【解析】幂函数op =的图象过点(2,4),∴2=4,m =2;∴=12=2>1,=(13)=19∈0,1,=−log 3=﹣log 23<0,∴2>19>−log 23,∴>>.故选:C .3.(2021·全国高三专题练习)已知幂函数()f x x α=满足()()2216f f =,若()4log 2a f =,()ln 2b f =,()125c f -=,则a ,b ,c 的大小关系是()A .a c b >>B .a b c >>C .b a c >>D .b c a>>【答案】C 【解析】由()()2216f f =可求得13α=,得出()f x 单调递增,根据单调性即可得出大小.【详解】由()()2216f f =可得4222αα⋅=,∴14αα+=,∴13α=,即()13f x x =.由此可知函数()f x 在R 上单调递增.而由换底公式可得242log 21log 2log 42==,22log 2ln 2log e =,125-=,∵21log 2e <<,∴2222log 2log 2log 4log e<,于是4log 2ln 2<,12<,∴1245log 2-<,故a ,b ,c 的大小关系是b a c >>.故选:C.4.(2021·安徽高三二模(理))函数()nxf x x a =,其中1a >,1n >,n 为奇数,其图象大致为()A .B .C .D .【答案】B 【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n nx x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.5.(2021·新疆高三其他模拟(理))若实数m ,n 满足m n >,且0mn ≠,则下列选项正确的是()A .330m n ->B .1122m n⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .()lg 0m n ->D .11m n<【答案】A 【解析】利用幂函数、指数函数单调性和对数的运算可求解.【详解】解:∵函数3y x =,在R x ∈时单调递增,且m n >,∴330m n ->,故A 正确;∵函数1(2x y =,在R x ∈时单调递减,且m n >,∴11()()22mn<,故B 错误;当11,2m n ==时,()1lg lg 02m n -=<,故C 错误;当,11m n ==-时,1111m n=>=-,故D 错误;故选:A.6.【多选题】(2020·新泰市第二中学高二月考)已知函数()f x x α=图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若1x >,则()1f x >D .若120x x <<,则()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭.【答案】ACD 【解析】将点(4,2)代入函数()f x x α=得:2=4α,则1=2α.所以12()f x x =,显然()f x 在定义域[0,)+∞上为增函数,所以A 正确.()f x 的定义域为[0,)+∞,所以()f x 不具有奇偶性,所以B 不正确.当1x >1>,即()1f x >,所以C 正确.当若120x x <<时,()()122212()()22f x f x x x f ++-=22-.122x x +-.=0<.即()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭成立,所以D 正确.故选:ACD.7.【多选题】(2021·湖南高三月考)已知函数1,0(),0x x e x f x xe x -⎧>⎪=⎨≤⎪⎩,若关于x 的方程()f x a =有且仅有一个实数解,且幂函数()a g x x =在()0,∞+上单调递增,则实数a 的取值可能是()A .1B .1eC .2D .e【答案】AD 【解析】作出()f x 的图象,根据方程根的个数判断参数a 的取值,再结合函数()a g x x =在()0,∞+上单调递增,即可求解出结果.【详解】当0x ≤时,()x f x xe =,()()1xf x e x '=+,当1x <-时()0f x '<,当10x -<<时()0f x '>所以()x f x xe =在(),1-∞-上单调递减,在()1,0-上单调递增,最小值为1(1)f e --=-;所以()f x 的图象如图所示,因为()f x a =有且仅有一个实数解,即()y f x =的图象与y a =有且只有一个交点,所以[)1,1,0,a e e ⎧⎫∈+∞-⎨⎬⎩⎭,又因为()a g x x =在()0,∞+上单调递增,所以0a >,所以[){},1a e ∈+∞ .故选:AD8.(2019·上海高考模拟)设∈12,−1,−2,3,若=为偶函数,则=______.【答案】−2【解析】由题可知,=−2时,=−2,满足f(-x)=f(x),所以是偶函数;=13,12,−1,3时,不满足f(-x)=f(x),∴=−2.故答案为:−2.9.(2021·全国高三专题练习(理))已知幂函数()39*N m y x m -=∈的图像关于y 轴对称,且在()0,∞+上函数值随着x 的增大而减小.(1)求m 值.(2)若满足()()22132mma a +<-,求a 的取值范围.【答案】(1)1m =;(2)()2,4,3⎛⎫-∞⋃+∞ ⎪⎝⎭.【解析】(1)由题意可知39m -为负偶数,且*N m ∈,即可求得m 值;(2)将所求不等式化为()()22132a a +<-,求解,即可得出结果.【详解】(1)因为函数39*()m y x m N -=∈在()0,∞+上单调递减,所以390m -<,解得3m <.又因为*m N ∈,所以1m =,2;因为函数的图象关于y 轴对称,所以39m -为偶数,故1m =.(2)由(1)可知,1m =,所以得()()22132a a +<-,解得4a >或23<a ,即a 的取值范围为()2,4,3⎛⎫-∞⋃+∞ ⎪⎝⎭.10.(2021·浙江高一期末)已知幂函数2242()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2g x x k =-.(1)求m 的值;(2)当[1,2)x ∈时,记(),()f x g x 的值域分别为集合A ,B ,设:,:p x A q x B ∈∈,若p 是q 成立的必要条件,求实数k 的取值范围.(3)设2()()1F x f x kx k =-+-,且|()|F x 在[0,1]上单调递增,求实数k 的取值范围.【答案】(1)0m =;(2)01k ≤≤;(3)[][)1,02,-+∞ 【解析】(1)由幂函数的定义2(1)1m -=,再结合单调性即得解.(2)求解()f x ,()g x 的值域,得到集合A ,B ,转化命题p 是q 成立的必要条件为B A ⊆,列出不等关系,即得解.(3)由(1)可得22()1F x x kx k =-+-,根据二次函数的性质,分类讨论02k ≤和12k ≥两种情况,取并集即可得解.【详解】(1)由幂函数的定义得:2(1)1m -=,0m ⇒=或2m =,当2m =时,2()f x x -=在(0,)+∞上单调递减,与题设矛盾,舍去;当0m =时,2()f x x =在(0,)+∞上单调递增,符合题意;综上可知:0m =.(2)由(1)得:2()f x x =,当[1,2)x ∈时,[)()1,4f x ∈,即[)1,4A =,当[1,2)x ∈时,[)()2,4g x k k ∈--,即[)2,4B k k =--,由命题p 是q 成立的必要条件,则B A ⊆,显然B ≠∅,则2144k k -≥⎧⎨-≤⎩,即10k k ≤⎧⎨≥⎩,所以实数k 的取值范围为:01k ≤≤.(3)由(1)可得22()1F x x kx k =-+-,二次函数的开口向上,对称轴为2k x =,要使|()|F x 在[0,1]上单调递增,如图所示:或即02(0)0k F ⎧≤⎪⎨⎪≥⎩或12(0)0k F ⎧≥⎪⎨⎪≤⎩,解得:10k -≤≤或2k ≥.所以实数k 的取值范围为:[][)1,02,-+∞ 练真题1.(2019·全国高考真题(理))若a >b ,则()A.ln(a −b )>0B.3a <3b C.a 3−b 3>0D.│a │>│b │【答案】C 【解析】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A;因为9333a b =>=,知B 错,排除B;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C.2.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩ 若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是()A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭ B .1,(0,2)2⎛⎫-∞- ⎪⎝⎭C .(,0)2)-∞ D .(,0)(22,)-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0))-∞+∞ .故选:D.3.(2020·江苏高考真题)已知y =f (x )是奇函数,当x ≥0时,()23 f x x=,则f (-8)的值是____.【答案】4-【解析】先求(8)f ,再根据奇函数求(8)f -【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-4.(2018·上海卷)已知α-2,-1,-12,12,1,2,3f (x )=x α为奇函数,且在(0,+∞)上递减,则α=.【答案】-1【解析】∵幂函数f (x )=x α为奇函数,∴α可取-1,1,3,又f (x )=x α在(0,+∞)上递减,∴α<0,故α=-1.5.(浙江省高考真题(文))已知函数()2,1{ 66,1x x f x x x x ≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.6.(江苏省高考真题)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x (x >0)图象上一动点.若点P ,A 之间的最短距离为,则满足条件的实数a 的所有值为________.【答案】-1【解析】试题分析:设点1,P x x ⎛⎫ ⎪⎝⎭()0x >,则PA ===令1,0,2t x x t x=+>∴≥ 令()()22222222g t t at a t a a =-+-=-+-(1)当2a ≥时,t a =时()g t 取得最小值()22g a a =-,=,解得a =(2)当2a <时,()g t 在区间[)2,+∞上单调递增,所以当2t =时,()g t 取得最小值()22242g a a =-+=1a =-综上可知:1a =-或a =所以答案应填:-1.。
高考数学一轮复习考点知识专题讲解函数的概念及其表示考点要求1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作y=f(x),x∈A.2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集. 3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.(×) (2)函数y =f (x )的图象可以是一条封闭曲线.(×) (3)y =x 0与y =1是同一个函数.(×) (4)函数f (x )=⎩⎨⎧x -1,x ≥0,x 2,x <0的定义域为R .(√)教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是()答案C2.下列各组函数相等的是()A .f (x )=x 2-2x -1(x ∈R ),g (s )=s 2-2s -1(s ∈Z )B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎨⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案C3.(2022·长沙质检)已知函数f (x )=⎩⎨⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12等于() A .-1B .2C.3D.12答案D解析∵f ⎝ ⎛⎭⎪⎫12=log 312<0,∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域 例1(1)函数f (x )=lg(x -1)+1x -2的定义域为() A .(1,+∞) B .(1,2)∪(2,+∞) C .[1,2)∪(2,+∞) D .[1,+∞) 答案B解析要使函数有意义,则⎩⎨⎧x -1>0,x -2≠0,解得x >1且x ≠2,所以f (x )的定义域为(1,2)∪(2,+∞).(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案[1,3]解析∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是() A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案B解析由题意,得⎩⎨⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞). 2.已知函数f (x )=x 1-2x,则函数f (x -1)x +1的定义域为() A .(-∞,1) B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案D解析令1-2x >0, 即2x <1,即x <0.∴f (x )的定义域为(-∞,0). ∴函数f (x -1)x +1中,有⎩⎨⎧x -1<0,x +1≠0,解得x <1且x ≠-1. 故函数f (x -1)x +1的定义域为(-∞,-1)∪(-1,1). 思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1(1)函数f (x )=11-4x2+ln(3x -1)的定义域为() A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12 C.⎣⎢⎡⎭⎪⎫-12,14D.⎣⎢⎡⎦⎥⎤-12,12 答案B解析要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎨⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12.(2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x 的定义域为__________. 答案[-1,0]解析由条件可知,函数的定义域需满足⎩⎨⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2(1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为______.答案f (x )=lg 2x -1(x >1)解析令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________.答案x 2+2x +1解析设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b , ∴2ax +b =2x +2, 则a =1,b =2. ∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1. 教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案-2x 3-43x解析∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x ,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x. 思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2(1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案-x 2+2x ,x ∈[0,2] 解析令t =1-sin x , ∴t ∈[0,2],sin x =1-t , ∴f (t )=1-sin 2x =1-(1-t )2 =-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝ ⎛⎭⎪⎫x 2+1x 2=x 4+1x 4,则f (x )=__________.答案x 2-2,x ∈[2,+∞) 解析∵f ⎝ ⎛⎭⎪⎫x 2+1x 2=⎝ ⎛⎭⎪⎫x 2+1x 22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3(1)已知f (x )=⎩⎨⎧cosπx ,x ≤1,f (x -1)+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值为()A.12B .-12C .-1D .1 答案D解析f ⎝ ⎛⎭⎪⎫43=f ⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3 =cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知函数f (x )=⎩⎨⎧log 2x ,x ≥1,-x +1,x <1.若f (a )=2,则a 的值为________; 若f (a )<2,则a 的取值范围是________. 答案4或-1(-1,4) 解析若f (a )=2,则⎩⎨⎧a ≥1,log 2a =2或⎩⎨⎧a <1,-a +1=2,解得a =4或a =-1, 若f (a )<2,则⎩⎨⎧a ≥1,log 2a <2或⎩⎨⎧a <1,-a +1<2,解得1≤a <4或-1<a <1,即-1<a <4. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于()A .-32B.22C.32D. 2 答案B解析f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22.2.(2022·百校联盟联考)已知函数f (x )=⎩⎨⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案0解析当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3(1)(2022·河北冀州一中模拟)设f (x )=⎩⎨⎧x +2x -3,x ≥1,x 2+1,x <1.则f (f (-1))=_______,f (x )的最小值是_______. 答案022-3 解析∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3. (2)(2022·重庆质检)已知函数f (x )=⎩⎨⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________. 答案⎝ ⎛⎭⎪⎫-12,+∞ 解析当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立. 综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是() A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3] 答案D解析∵f (x )=3-xlg x,∴⎩⎨⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()答案B解析A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2].3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎨⎧4x -12,x <1,a x,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于() A.12B.34C .1D .2 答案D解析f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫78=f (3)=a 3, 得a 3=8,解得a =2.4.下列函数中,与y =x 是相等函数的是() A .y =(x )2B .y =x 2 C .y =lg10x D .y =10lg x 答案C解析y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =(x )2=x 的定义域为[0,+∞),故不是相等函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是相等函数; 对于C 选项,函数y =lg10x =x ,且定义域为R ,故是相等函数;对于D 选项,y =10lg x =x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是相等函数.5.设函数f (x -2)=x 2+2x -2,则f (x )的表达式为() A .x 2-2x -2B .x 2-6x +6 C .x 2+6x -2D .x 2+6x +6 答案D解析令t =x -2,∴x =t +2,∴f (t )=(t +2)2+2(t +2)-2=t 2+6t +6, ∴f (x )=x 2+6x +6.6.函数f (x )=⎩⎨⎧2x-5,x ≤2,3sin x ,x >2,则f (x )的值域为()A .[-3,-1]B .(-∞,3]C .(-5,3]D .(-5,1] 答案C解析当x ≤2时,f (x )=2x -5, ∴0<2x ≤4,∴f (x )∈(-5,-1], 当x >2时,f (x )=3sin x , ∴f (x )∈[-3,3], ∴f (x )的值域为(-5,3].7.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是()答案A解析由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.8.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是() ①f (x )=x -1x ;②f (x )=ln 1-x1+x;③f (x )=1ex x-;④f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.A .②③B.①②④ C .②③④D.①④ 答案D解析对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意; 对于②,f (x )=ln1-x1+x, 则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =111exx-=e x -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于④,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x>1,即f⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足“倒负”变换.9.已知f (x 5)=lg x ,则f (100)=________. 答案25解析令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案(1,4]解析依题意⎩⎨⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.已知函数f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是________. 答案⎣⎢⎡⎭⎪⎫-1,12解析∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0). 故⎩⎨⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎨⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案[-2,0)∪(0,1] 解析当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.(2018·全国Ⅰ)设函数f (x )=⎩⎨⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是()A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) 答案D解析当x ≤0时,函数f (x )=2-x 是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎨⎧x +1<0,2x <0,2x <x +1或⎩⎨⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0. 14.设函数f (x )=⎩⎨⎧-x +λ,x <1(λ∈R ),2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案[2,+∞) 解析当a ≥1时,2a ≥2.∴f (f (a ))=f (2a )=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a , ∴λ-a ≥1,即λ≥a +1恒成立,由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.已知函数f (x +1)的定义域为(-2,0),则f (2x -1)的定义域为() A .(-1,0) B .(-2,0) C .(0,1) D.⎝ ⎛⎭⎪⎫-12,0答案C解析由题意,知-1<x +1<1,则f (x )的定义域为(-1,1).令-1<2x -1<1,得0<x <1.∴f (2x -1)的定义域为(0,1).16.若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中不具有H 性质的是() A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0)D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2答案B解析若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝ ⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝ ⎛⎭⎪⎫其中a =f ⎝ ⎛⎭⎪⎫x 1+x 22,b =f (x 1)+f (x 2)2.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.。
强化训练4 三角函数的图象与性质——小题备考一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知角α的顶点与原点θ重合,始边与x 轴的非负半轴重合,终边过点P (m ,4)(m ≠0),且cos α=m5,则tan α=( )A .±43B .43C .±34D .342.[2022·湖南宁乡模拟]将函数f (x )=sin ⎝⎛⎭⎫x -π4 图象上的所有点向左平移π4个单位长度,则所得图象的函数解析式是( )A .y =sin xB .y =cos xC .y =-sin xD .y =-cos x3.[2022·河北张家口三模]已知tan α2 =5 -2,则cos αcos 2αsin α-cos α=( )A .-65B .-35C .35D .654.[2022·湖南师大附中三模]某智能主动降噪耳机工作的原理是利用芯片生成与噪音的相位相反的声波,通过两者叠加完全抵消掉噪音(如图),已知噪音的声波曲线y =A sin (ωx+φ)(其中A >0,ω>0,0≤φ<2π)的振幅为1,周期为2,初相位为π2,则用来降噪的声波曲线的解析式是( )A .y =sin πxB .y =cos πxC .y =-sin πxD .y =-cos πx5.[2022·全国甲卷]将函数f (x )=sin (ωx +π3 )(ω>0)的图象向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( )A .16B .14C .13D .126.[2022·湖北襄阳二模]函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则函数f (x )的图象可以由y =2 sin ωx 的图象( )A .向左平移π3 个单位长度得到B .向左平移5π6 个单位长度得到C .向右平移5π3 个单位长度得到D .向右平移5π6个单位长度得到7.[2022·山东潍坊三模]设函数f (x )=|sin x |,若a =f (ln 2),b =f (log 132),c =f (312),则( )A .a <b <cB .b <c <aC .c <a <bD .b <a <c8.[2022·山东泰安二模]已知函数f ()x =sin ()ωx +φ ⎝⎛⎭⎫ω>0,||φ<π2 的图象,如图所示,则( )A .函数f (x )的最小正周期是2πB .函数f (x )在(π2 ,π)上单调递减C .曲线y =f (x +π12 )关于直线x =-π2 对称D .函数f (x )在⎣⎡⎦⎤3π4,4π3 上的最小值是-1二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.下列四个函数中,以π为周期且在(0,π2)上单调递增的偶函数有( )A .y =cos |2x |B .y =sin 2xC .y =|tan x |D .y =lg |sin x |10.[2022·河北秦皇岛二模]已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<π2)图象的一条对称轴方程为x =π6 ,与其相邻对称中心的距离为π4,则( )A .f (x )的最小正周期为πB .f (x )的最小正周期为2πC .φ=π6D .φ=π311.要得到函数y =sin x 的图象,只需将y =sin (2x +π4)的图象( )A .先将图象向右平移π8 ,再将图象上各点的纵坐标不变,横坐标变为原来的2倍B .先将图象向右平移π2,再将图象上各点的纵坐标不变,横坐标变为原来的2倍C .先将图象上各点的纵坐标不变,横坐标变为原来的2倍,再将图象向右平移π4D .先将图象上各点的纵坐标不变,横坐标变为原来的2倍,再将图象向右平移π812.[2022·山东济南三模]将函数f (x )=cos (2x -π3 )图象上所有的点向右平移π6个单位长度,得到函数g (x )的图象,则下列说法正确的是( )A .g (x )的最小正周期为πB .g (x )图象的一个对称中心为(7π12 ,0)C .g (x )的单调递减区间为⎣⎡⎦⎤π3+k π,5π6+k π (k ∈Z ) D .g (x )的图象与函数y =-sin (2x -π6)的图象重合三、填空题(本题共4小题,每小题5分,共20分)13.[2022·山东枣庄三模]已知α为锐角,且sin α=34,则cos (π-α)的值为________.14.[2022·山东日照三模]已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,则φ=________.15.[2022·辽宁沈阳一模]函数f (x )=2cos x -cos 2x 的最大值为________.16.[2022·北京海淀二模]已知f (x )=sin x +cos x 的图象向右平移a (a >0)个单位后得到g (x )的图象,则函数g (x )的最大值为________;若f (x )+g (x )的值域为{0},则a 的最小值为________.强化训练4 三角函数的图象与性质 1.解析:cos α=m m2+42=m 5 ,解得:m =±3,故tan α=4m =±43 .答案:A2.解析:将函数f (x )=sin (x -π4 )图象上的所有点向左平移π4 个单位长度,则所得图象的函数解析式是f (x )=sin (x -π4 +π4 )=sin x. 答案:A3.解析:tan α=2(5-2)1-(5-2)2 =12 ,所以cos αcos 2αsin α-cos α =cos α(cos2α-sin2α)sinα-cos α=cos α(cos α-sin α)(cos α+sin α)sin α-cos α =-cos α(cos α+sin α)=-cos2α+sinαcos αsin2α+cos2α =-1+tanα1+tan2α =-65 .答案:A4.解析:由题意,A =1,φ=π2 且T =2πω =2,则ω=π, 所以y =sin (πx +π2 )=cos πx ,则降噪的声波曲线为y =-cos πx. 答案:D5.解析:通解 将函数f (x )=sin (ωx +π3 )的图象向左平移π2 个单位长度得到y =sin (ωx +π2 ω+π3 )的图象.由所得图象关于y 轴对称,得π2 ω+π3 =kπ+π2 (k ∈Z ),所以ω=2k +13 (k ∈Z ).因为ω>0,所以令k =0,得ω的最小值为13.故选C.快解 由曲线C 关于y 轴对称,可得函数f (x )=sin (ωx +π3 )的图象关于直线x =π2 对称,所以f (π2 )=sin (πω2 +π3 )=±1,然后依次代入各选项验证,确定选C. 答案:C6.解析:由图可知A = 2 ,T =π,则ω=2,所以f (x )= 2 sin (2x +φ).由2×7π12 +φ=3π2 +2kπ(k ∈Z ),|φ|<π2 ,得φ=π3 ,所以f (x )= 2 sin (2x +π3 ).函数y = 2 sin 2x 的图象向右平移5π6 个单位长度,所得图象对应的函数解析式为y = 2 sin ⎣⎢⎡⎦⎥⎤2(x -5π6) = 2 sin (2x -5π3 )= 2 sin (2x +π3 )=f (x ),所以D 正确. 答案:D7.解析:函数f (x )=|sin x|为偶函数且x =π2 为其一条对称轴,故b =f (log 132)=f (log32),显然0<log32=ln 2ln 3 <ln 2<1,故b<a.因为1.7<312 <1.8,1.5<π2 <1.6,ln 2<1<π2 ,所以a<c ,所以b<a<c. 答案:D8.解析:由图可知,14 T =5π12 -π6 =π4 ,∴T =π ,ω=2πT =2 , sin (2×π6 +φ)=0 ,φ=-π3 , ∴f (x )=sin (2x -π3 ) ,对于A ,T =π ,故错误;对于B ,当x ∈(π2 ,π) 时,2x -π3 ∈(2π3 ,5π3 ) ,由函数y =sin x 的性质可知当x ∈(π2 ,3π2 ) 时,单调递减,当x ∈⎣⎢⎡⎦⎥⎤3π2,2π 时单调递增,2π3 ∈(π2 ,3π2 ),5π3 ∈⎣⎢⎡⎦⎥⎤3π2,2π ,故B 错误;对于C ,f (x +π12 )=sin (2x +π6 -π3 )=sin (2x -π6 ) ,将x =-π2 带入上式得f (-π2 +π12 )=sin (-π-π6 )=sin π6≠±1,故C 错误;对于D ,当x ∈⎣⎢⎡⎦⎥⎤3π4,4π3 时,2x -π3 ∈⎣⎢⎡⎦⎥⎤7π6,7π3 ,∴当2x -π3 =3π2 ,即x =11π12 时,f (x ) 取最小值-1,故D 正确. 答案:D9.解析:y =cos |2x|在(0,π2 )上不单调,故A 错误;y =sin 2x 为奇函数,故B 错误; y =|tan x|图象如图:故最小正周期为π,在(0,π2 )上单调递增,且为偶函数,故C 正确; y =|sin x|最小正周期为π,在(0,π2 )上单调递增,且为偶函数,则y =lg |sin x|也是以π为周期且在(0,π2 )上单调递增的偶函数,故D 正确. 答案:CD10.解析:因为f (x )图象相邻的对称中心与对称轴的距离为π4 ,所以最小正周期T =π,故A 正确,B 不正确;因为ω=2πT =2,且2×π6 +φ=π2 +kπ(k ∈Z ),|φ|<π2 ,所以φ=π6 ,故C 正确,D 不正确. 答案:AC11.解析:y =sin (2x +π4 )=sin [2(x +π8 )]向右平移π8 个单位长度,得y =sin 2x ,再将横坐标扩大2倍得到y =sin x ,故A 正确,B 错误;y =sin (2x +π4 )横坐标扩大2倍,得到sin (x +π4 )再向右平移π4 个单位长度得到y =sin x ,故C 正确,D 错误. 答案:AC12.解析:根据题意,g (x )=cos ⎣⎢⎡⎦⎥⎤2(x -π6)-π3 =cos (2x -2π3 ),则周期T =2π2 =π,A 正确;对B ,令2x -2π3 =π2 +kπ(k ∈Z )⇒x =7π12 +kπ2(k ∈Z ),B 正确;对C ,令2kπ≤2x -2π3 ≤π+2kπ(k ∈Z )⇒π3 +kπ≤x≤5π6 +kπ(k ∈Z ),即函数的减区间为⎣⎢⎡⎦⎥⎤π3+kπ,5π6+kπ (k ∈Z ),C 正确;对D ,因为y =-sin (2x -π6 )=-sin (2x -2π3 +π2 )=-cos (2x -2π3 ),D 错误. 答案:ABC13.解析:因为α为锐角,且sin α=34 ,则cos α=1-sin2α =74 ,因此,cos (π-α)=-cos α=-74 .答案:-7414.解析:由T 2 =5π12 -(-π12 )=π2 知,T =π,ω=2ππ =2,由五点法可知,2(-π12 )+φ=0+2kπ(k ∈Z ),即φ=π6 +2kπ(k ∈Z ),又|φ|<π,所以φ=π6 .答案:π615.解析:因为f (x )=2cos x -cos 2x ,所以f (x )=-2cos2x +2cosx +1,令t =cos x ,t ∈[-1,1],所以函数f (x )=2cos x -cos 2x 等价于y =-2t2+2t +1,t ∈[-1,1],又y =-2t2+2t +1=-2(t -12 )2+32 ,t ∈[-1,1],当t =12 时,ymax =32 ,即函数f (x )=2cos x -cos 2x 的最大值为32 .答案:3216.解析:第一空:由f (x )=sin x +cos x = 2 sin (x +π4 )可得g (x )=2 sin (x -a +π4 ),易得g (x )的最大值为 2 ;第二空:若f (x )+g (x )的值域为{0},则f (x )+g (x )= 2 sin (x +π4 )+ 2 sin (x -a +π4 )=0恒成立,即sin (x +π4 )=-sin (x -a +π4 ),又sin (x +π4 )=-sin (x +π4 +π+2kπ),k ∈Z ,故x -a +π4 =x +π4 +π+2kπ,解得a =-π-2kπ,又a>0,故当k =-1时,a 的最小值为π. 答案: 2 π。
2009届高考数学复习基础知识专题训练(4)
一、选择题:
1. 设全集{}U 1,2,3,4,5=,集合{}1,2,5A a =-,{}U 2,4A =ð,则a 的值为( ).
A .3
B .4
C .5
D .6 2.若1sin cos 2
z i θθ=-+是纯虚数,则θtan 的值为( ). A
B
. C
. D
.3.已知平面向量(21,3),(2,)a m b m =+=,且a ∥b ,则实数m 的值等于( ).
A .2或32-
B .
32 C .2-或32 D .27
- 4.等差数列{}n a 中,10120S = ,那么29a a +的值是( ). A . 12 B . 24 C .16 D . 48
5、如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为 ( )
A .3π2
B .2π
C .3π
D .4π
6. 设α表示平面,b a ,表示直线,给定下列四个命题:
①αα⊥⇒⊥b b a a ,//;②αα⊥⇒⊥b a b a ,//
③αα//,b b a a ⇒⊥⊥;④b a b a //,⇒⊥⊥αα.
其中正确命题的个数有( )
A.1个
B.2个
C.3个7当]2,2[π
π-∈x 时,函数x x x f cos 3sin )(+=的值域是( )
A 、[-1, 1]
B 、2
1[-,1] C 、[-2, 2] D 、[-1, 2] 8.一个圆台的的两底面的面积分别为π、16π,侧面积是25π,则这个圆台的高为( )
A . 3
B . 4
C .5
D . 43
9.已知21[1,0)()1[0,1]
x x f x x x +∈-⎧=⎨+∈⎩,,,则下列函数的图象错误..的是( )
10、各个面都是正三角形的四面体的四个顶点都在一个表面积为36π的球面上,那么这个四面体的体积为( )
A .83
B .163
C .243
D .243二、填空题
11、正四棱锥S-ABCD 的侧棱长为2,底面的边长为3,E 是SA 的中点,则异面直线BE 与SC 所成的角为 。
12、在曲线32y x x =+上一点(1,3)的切线方程是_____ _
13、已知PA 、PB 、PC 两两垂直且PA=2,PB=3,PC=2,则过P 、A 、B 、C 四点的球的体积为
14、设a ,b ,c 是空间的三条直线,下面给出四个命题:
①若b a ⊥,c ⊥b ,则c a //;
②若a 、b 是异面直线,b 、c 是异面直线,则a 、c 也是异面直线;
③若a 和b 相交,b 和c 相交,则a 和c 也相交;
④若a 和b 共面,b 和c 共面,则a 和c 也共面.
其中真命题的个数是_______个
三、解答题
15、在ABC ∆中,2AB =,1BC =,3cos 4
C =
. (Ⅰ)求sin A 的值;
(Ⅱ)求BC CA ⋅的值.
答案:
1-5:CDCBA 6-10:BDBDA 113
π 12、y=5x-2 13、29π 14、0
15、解:(1)在ABC ∆中,由3cos 4C =,得sin 4C = 又由正弦定理sin sin AB BC C A
=
得:sin 8
A = (2)由余弦定理:2222cos A
B A
C BC AC BC C =+-⋅⋅得:232124
b b =+-⨯ 即23102b b --=,解得2b =或12
b =-(舍去),所以2AC = 所以,BC CA ⋅cos ,cos()BC CA BC CA BC CA C π=⋅⋅<>=⋅⋅-分
3312()42
=⨯⨯-=-,即32BC CA ⋅=-。