高考数学复习点拨 双曲线的简单几何性质概要
- 格式:pdf
- 大小:257.84 KB
- 文档页数:14
高二双曲线知识点大全一、双曲线的定义和基本性质双曲线是一种平面曲线,它与一个对称轴相交于两个单独的点,被称为焦点。
双曲线的定义可表示为:离两个焦点的距离之差等于给定常数的点的轨迹。
1. 双曲线的方程双曲线的标准方程为:(x²/a²) - (y²/b²) = 1,其中a表示实轴半轴的长度,b表示虚轴半轴的长度。
2. 双曲线的焦点和准线双曲线的焦点是曲线上离两个焦点距离之差恒定的点,而准线是曲线上离两个焦点距离之和恒定的直线。
3. 双曲线的对称性双曲线关于x轴和y轴对称,中心对称于原点。
二、双曲线的图像特征1. 双曲线的离心率双曲线的离心率(e)定义为:e = c/a,其中c表示焦点到原点的距离,a表示实轴半轴的长度。
离心率决定了双曲线的形状。
2. 双曲线的渐近线双曲线具有两条渐近线,即离两个焦点越远的点趋近于渐近线。
渐近线的方程为: y = ±(b/a)x。
其中b表示虚轴半轴的长度。
3. 双曲线的顶点和直径双曲线没有顶点,但有两条对称的虚轴。
通常,我们会称双曲线中心处的点为顶点。
直径是由两个对称的点与中心点所确定的线段。
三、双曲线的基本图像和方程变换1. 双曲线的基本图像(插入关于双曲线的示意图,可手绘或导入图片)2. 改变双曲线的形状和位置双曲线的形状和位置可以通过改变方程中的常数来实现。
例如,改变a和b的值可以调整双曲线的大小和比例,而改变c的值可以使双曲线在平面上移动。
3. 双曲线的旋转双曲线可以通过旋转来改变其方向。
通过适当调整方程中的x和y的系数,可以使双曲线绕着原点旋转一定角度。
四、双曲线的相关公式与应用1. 双曲线的离心率与焦距的关系根据焦距f和离心率e之间的关系可得:e² = 1 + (f/a)²。
2. 双曲线的弦长公式双曲线上两焦点之间的弦长可以通过以下公式计算:2a(e² - 1)。
3. 双曲线的面积计算双曲线的面积可以通过积分计算得出,公式为:S = ∫(y√(1 + (dy/dx)²))dx。
高二双曲线知识点笔记双曲线是经典的数学曲线之一,它在几何学、物理学和工程学等领域中有着广泛的应用。
在高二阶段的学习中,双曲线是一个重要的内容。
下面是对高二双曲线知识点的详细笔记。
一、双曲线的定义和基本性质双曲线是指平面上满足特定条件的点的集合。
它的定义是到两个给定点的距离之差的绝对值等于常数的点的集合。
双曲线有两条分支,分别由这两个给定点为焦点,且两个焦点到双曲线上任意一点的距离之差等于常数。
双曲线的基本性质包括:1. 双曲线与直线的交点:双曲线与直线可能有0个、1个或2个交点。
2. 双曲线的渐近线:双曲线有两条渐近线,一条与双曲线趋于无穷远的两个分支平行,另一条与双曲线趋于无穷远的两个分支相交。
3. 双曲线的离心率:离心率是双曲线的一个重要参数,离心率大于1时,双曲线的形状较扁平;离心率等于1时,双曲线为抛物线。
二、双曲线的方程和图形表示双曲线的方程有多种形式,分别对应不同的双曲线类型。
常见的双曲线方程包括标准方程、一般方程、极坐标方程等。
以标准方程为例,双曲线的方程可以表示为:(x^2 / a^2) - (y^2 / b^2) = 1 (a > 0, b > 0)其中,a和b分别为双曲线的半轴长度,决定了双曲线的形状和大小。
双曲线的图形表示可以通过计算和绘图软件来实现。
为了绘制一个双曲线图像,需要确定双曲线的方程或者已知其它特定条件。
利用数学软件,可以轻松地绘制出双曲线的图像,并对其进行分析和研究。
三、双曲线的参数方程双曲线也可以用参数方程来表示,参数方程能够更直观地描述双曲线的形状和运动规律。
对于标准方程 (x^2 / a^2) - (y^2 / b^2) = 1,可以使用参数方程来表示为:x = a * secθy = b * tanθ其中,θ是参数,决定了双曲线上的各个点的位置。
通过调整参数θ的取值范围和步长,可以绘制出双曲线的完整图像。
四、双曲线的应用双曲线在很多科学和工程领域中有重要应用。
高考双曲线知识点大全高考是每位学生所面临的一次重要考试,而数学是其中一道十分重要的科目。
在数学中,高考考察的范围很广,其中一个重要的知识点就是双曲线。
掌握双曲线的相关知识,不仅能够帮助学生更好地解题,还能提高数学思维和分析问题的能力。
本文将为大家整理双曲线的相关知识点,提供一个全面的学习参考。
一、双曲线的定义和基本性质双曲线是平面上与两个给定直线有关的曲线。
它的定义是两个焦点到该曲线上的每一点的距离之差等于一个常数。
双曲线的基本性质包括:对称轴、顶点、焦点、准线等概念。
掌握这些基本概念是理解双曲线的首要步骤。
二、双曲线的标准方程双曲线的标准方程有两种形式,分别是椭圆的极坐标方程和参数方程。
前者是由焦点到曲线上任一点的半焦距和半准距之比等于常数,而后者是由双曲线上任一点的坐标值与参数关系式的方程。
掌握这两种标准方程形式,能够帮助学生更好地解题。
三、双曲线的基本图形和特点根据双曲线的标准方程,可以绘制出双曲线的图形。
双曲线可以分成三种类型:椭圆型、双曲线型和抛物线型。
每一种类型都有着自己独特的图形特点。
通过观察双曲线的图形,可以了解其形状和性质。
四、双曲线的性质与应用双曲线在实际应用中有着广泛的应用。
比如在物理学、工程学等领域,常常需要利用双曲线的性质来解决实际问题。
例如,双曲线的离心率可以用于描述椭圆轨道和抛物线轨道的偏心程度。
掌握这些性质和应用,对于解答相关试题具有重要的指导作用。
五、双曲线与其他数学知识的关联双曲线与其他数学知识有着密切的关联。
比如,双曲线与函数、微积分、极限等内容有着紧密的联系。
掌握双曲线与其他数学知识的关联,可以帮助学生更深入地理解数学的整体结构和知识体系。
六、双曲线解题技巧与策略在高考中,双曲线的问题通常是考察学生对知识点运用的掌握程度。
因此,提高解题的技巧和策略是非常重要的。
比如,可以通过简化方程、利用对称性、借助性质等方法解决比较复杂的双曲线问题。
综上所述,双曲线作为高中数学的一个重要知识点,掌握了双曲线的相关知识可以帮助学生更好地解题,提高数学思维能力。
用心 爱心 专心 双曲线几何性质精析
在学习椭圆的基础上,同学们可以类似地研究双曲线的性质,这里主要剖析一下焦点在x 轴上的双曲线的几何性质.
1. 范围:在不等式x a -≤与x a ≥所表示的区域内.
2. 对称性:双曲线C 与椭圆一样,既是关于两坐标轴对称的轴对称图形,又是以坐标原点 为对称中心的中心对称图形,双曲线的对称中心叫做双曲线的中心.
3. 顶点:①双曲线C 与它的对称轴共有两个交点12A A ,,它们叫做曲线的顶点,这两个顶
点是双曲线两支中相距最近的点,线段12A A 叫做双曲线的实轴,它的长等于2a .在y 轴上
作点12(0)(0)B b B b -,,,,线段12B B 叫做双曲线的虚轴,它的长等于2b . ②双曲线的两个焦点总在它的实轴上.
4. 渐近线:①直线0x y a b ±=叫做双曲线的渐近线; ②渐近线方程在形式上和双曲线方程类似;
22221x y a b -=的渐近线方程有着如下的等价形式:22220x y x y b y x a b a b a
-=⇔±⇔=±. 反之,以b y x a
=±为渐近线的双曲线的方程不一定是焦点在x 轴上,也可能是焦点在y 轴上的双曲线22
221y x b a
-=.这在解题时是很容易出错的. 特别地,实轴和虚轴等长的双曲线叫做等轴双曲线.
5.离心率:双曲线的焦距与实轴长的比c a
,叫做双曲线的离心率,通常用e 表示.它是刻画双曲线的开口程度的一个量.由0c a >>可知1e >.
e 越大,双曲线开口越开阔;e 越小,且越接近1时,双曲线开口越扁狭.。
高三数学知识点总结双曲线双曲线是高中数学中的重要内容之一,在数学中应用广泛,所以熟练掌握双曲线的性质和运用方法对于高三学生来说非常重要。
本文将对高三数学知识点中的双曲线进行总结和归纳,以便帮助同学们更好地理解和掌握这一部分内容。
1. 双曲线的定义和性质双曲线是指平面上满足一定关系式的点的集合。
具体而言,设F1和F2是平面上两个固定点,且F1F2的距离是2a(a>0)。
对于平面上的任意点P,其到F1和F2的距离之差的绝对值等于常数c(c>0),即|PF1 - PF2| = 2a。
双曲线的主轴是连接两个焦点的直线段F1F2,在主轴上的点P到两个焦点的距离之差为0。
双曲线的离心率定义为e = c/a,离心率是表征双曲线形状的重要参数。
2. 双曲线的方程和图像双曲线的一般方程为(x^2/a^2) - (y^2/b^2) = 1,其中a和b都是正实数。
由于a和b的取值不同,双曲线可以表现出不同的形状。
当a > b时,双曲线的中心在原点O,焦点在x轴上,x轴称为双曲线的对称轴,y轴称为双曲线的渐近线。
这种双曲线的形状是开口向左右两侧的。
当b > a时,双曲线的中心在原点O,焦点在y轴上,y轴成为双曲线的对称轴,x轴称为双曲线的渐近线。
这种双曲线的形状是开口向上下两侧的。
3. 双曲线的性质和运用双曲线有许多重要的性质和应用,下面列举其中几个重要的:(1)双曲线的渐近线:对于双曲线 y^2/a^2 - x^2/b^2 = 1,当x 取绝对值较大的正值或负值时,方程右边的项趋近于0。
因此,当x趋近于正无穷或负无穷时,方程左边的项也趋近于0,即y趋近于±a/bx。
因此,双曲线的渐近线方程为y = ±a/bx。
(2)焦点和准线的坐标:对于双曲线 y^2/a^2 - x^2/b^2 = 1,焦点的坐标为(F1, 0)和(-F1, 0),其中F1 = √(a^2 + b^2);准线的方程为x = a/e,其中e为离心率。
高中数学双曲线知识点总结一、双曲线的定义双曲线是由平面上距离不变的所有点的轨迹组成的曲线。
具体地说,双曲线是平面上的一条曲线,其上的每一点到两个给定的不同点F1和F2的距离之差是一个常数。
在平面直角坐标系中,双曲线的定义可以表示为:一个点到两个不同点F1和F2的距离之差是一个常数e,即PF1-PF2=e。
二、双曲线的性质1. 双曲线包括两条分支,它们分别靠近两个焦点。
对于双曲线的每个分支来说,离焦点越远,离另一个分支越近。
2. 双曲线的两个焦点之间的距离称为焦距,是双曲线的重要参量,通常用2c表示。
3. 双曲线的渐近线是双曲线的一条特殊的直线,与双曲线有两个不同的交点。
双曲线的两条分支在渐近线上无限趋近。
4. 双曲线具有对称性,关于两个坐标轴都具有对称性,即当双曲线与一个坐标轴相交时,在另一个坐标轴上也有交点。
5. 双曲线有一个中心,它是两个焦点的中点,也是双曲线的对称中心。
6. 双曲线的方程通常可以表示为x^2/a^2-y^2/b^2=1或者y^2/b^2-x^2/a^2=1,其中a 和b分别是椭圆的轴长。
三、双曲线的方程在平面直角坐标系中,双曲线的一般方程可以表示为:1. 若横轴为实轴,纵轴为虚轴,则双曲线的方程为x^2/a^2-y^2/b^2=1;2. 若横轴为虚轴,纵轴为实轴,则双曲线的方程为y^2/b^2-x^2/a^2=1。
在双曲线的方程中,a和b分别代表横轴和纵轴方向的轴长,e为离心率。
四、双曲线的图像1. 当a>b时,双曲线的中心在x轴上,两分支朝向y轴;2. 当a<b时,双曲线的中心在y轴上,两分支朝向x轴。
双曲线的图像可以通过手工绘图或者计算机绘图软件来绘制,使学生更好地理解双曲线的性质和特点。
双曲线的图像在实际生活中也有许多应用,比如在光学中的抛物面镜和双曲面镜、在通信中的双曲线天线和成像原理等。
五、双曲线的相关定理和定律1. 双曲线的面积定理:双曲线的面积等于焦距的一半与两个辅助椭圆的面积之和。
双曲线知识点归纳总结高中双曲线是高中数学中一个重要的概念,是二次曲线的一种。
它的形状与椭圆和抛物线有所不同,具有独特的特点和性质。
在学习双曲线的过程中,我们需要了解它的定义、方程、性质以及与其他数学概念的关系。
一、双曲线的定义双曲线是平面上所有到两个固定点F1和F2的距离之差等于常数2a的点的轨迹。
这两个固定点被称为焦点,常数2a则是该双曲线的主轴长度。
二、双曲线的方程对于一个位于坐标原点的双曲线,它的方程可以表示为x^2/a^2 - y^2/b^2 = 1。
其中,a和b分别表示主轴长度的一半,且a > 0,b > 0。
方程中的符号正负取决于焦点的位置与坐标轴的关系。
三、双曲线的性质1. 双曲线是对称的,关于x轴和y轴都有对称轴。
2. 双曲线是无界的,无论在x轴还是y轴方向都没有范围限制。
3. 双曲线有两个分支,分别向外延伸。
4. 双曲线的离心率是大于1的实数,可以用来描述其扁平程度。
四、双曲线的焦点和准线1. 焦点:双曲线的焦点是定义中提到的那两个固定点,它们位于双曲线的主轴上。
2. 准线:双曲线的准线是与轨迹上每个点的切线平行的直线。
五、双曲线与其他数学概念的关系1. 长轴和短轴:双曲线的主轴长度由长轴和短轴定义,长轴是两个焦点之间的距离,短轴是主轴上的中线段。
2. 离心率:双曲线的离心率是一个重要的概念,可以用来描述焦点和准线之间的距离比例。
3. 常见双曲线:双曲线有很多变种,常见的有右开口和左开口的双曲线。
六、应用领域双曲线在很多科学和工程领域有广泛的应用。
在物理学中,双曲线可以描述牛顿引力定律中的两个天体之间的运动轨迹。
在电磁学中,双曲线可以表示电荷在电场中的运动轨迹。
在工程学中,双曲线可以用来设计反射器和天线。
双曲线作为一个重要的数学概念,不仅在高中数学中常出现,而且在更高级的数学研究和应用中也有着重要的地位。
通过深入学习双曲线的定义、方程、性质以及与其他数学概念的关系,我们可以更好地理解和应用数学知识。
双曲线的简单几何性质概要1、双曲线22a x -22b y =1的简单几何性质(1)X 围:|x |≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称.(3)顶点:两个顶点A 1(-a,0),A 2(a,0),两顶点间的线段为实轴,长为2a ,虚轴长为2b ,且c 2=a 2+b 2.与椭圆不同. (4)渐近线:双曲线特有的性质,方程y =±a bx ,或令双曲线标准方程22a x -22b y =1中的1为零即得渐近线方程.(5)离心率e =a c>1,随着e 的增大,双曲线X 口逐渐变得开阔.(6)等轴双曲线(等边双曲线):x 2-y 2=a 2(a≠0),它的渐近线方程为y =±x,离心率e =2.(7)共轭双曲线:方程22a x -22b y =1与22a x -22b y =-1表示的双曲线共轭,有共同的渐近线和相等的焦距,但需注意方程的表达形式.注意:(1)与双曲线22a x -22b y =1共渐近线的双曲线系方程可表示为22a x -22b y =λ(λ≠0且λ为待定常数)(2)与椭圆22a x +22b y =1(a >b >0)共焦点的曲线系方程可表示为λ-22a x -λ-22b y =1(λ<a 2,其中b 2-λ>0时为椭圆, b 2<λ<a 2时为双曲线)2.双曲线的第二定义 平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =a c(c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =c b 2,与椭圆相同.焦半径(22a x -22b y =1,F 1(-c,0)、F 2(c,0)),点p(x 0,y 0)在双曲线22a x -22b y =1的右支上时,|pF 1|=ex 0+a,|pF 2|=ex 0-a;P 在左支上时,则|PF 1|-(ex 1+a),|PF 2|=-(ex 1-a).3、重难点本节重点是双曲线的几何性质,双曲线的第二定义及其应用,难点是双曲线的渐近线方程,第二定义,几何性质的应用.4、学习要求:学习双曲线的几何性质,可以用类比思想,即象讨论椭圆的几何性质一样去研究双曲线的标准方程,从而得出双曲线的几何性质,将双曲线的两种标准方程、图形、几何性质列表对比,便于掌握.双曲线的几何性质与代数中的方程、平面几何的知识联系密切;直线与双曲线的交点问题、弦长间问题都离不开一元二次方程的判别式,韦达定理等;渐近线的夹角问题与直线的夹角公式.三角函数中的相关知识,是高考的主要内容.通过本节内容的学习,培养同学们良好的个性品质和科学态度,培养同学们的良好的学习习惯和创新精神,进行辩证唯物主义世界观教育.5、典型热点考题】例1已知双曲线22a x -22b y =1(a >0,b >0)左、右焦点分别为F 1和F 2,P 是它左支上点,P 到左准线距离为d.问:是否存在这样的点P ,使d,|PF 1|,|PF 2|成等比数列,说明理由.分析:对于存在性问题,先假设存在满足题意的对象,然后结合题设条件进行判断. 设存在P(x 0,y 0)且x 0≤-a ,使d ,|PF 1|,|PF 2|成等比数列,则|PF 1|2=d |PF 2|, 设d′为P 点到右准线的距离,由双曲线第二定义得: d PF 1='2d PF =e ∴|PF 1|=ed, ∴(ed)2=d·ed′,∴ed=d′,∴e(-c a 2-x 0)=-x 0+c a 2,∴x 0=e ea -+1)11(,∵x 0≤-a, ∴e ea -+1)11(≤-a,∴e 2-2e-1≤0,∴1-2≤e≤2+1,又e >1,∴1<e≤2+1.故当双曲线的离心率e∈(1, 2+1)时,存在满足条件的P ,而当e∈(2+1,+∞)时,不存在满足条件的点P.注:利用双曲线的第二定义解题是非常有效的方法.本例还可以利用双曲线的两种定义再结合不等式|PF 1|+|PF 2|≥|F 1F 2|求解,请同学们自己完成.例2如图,已知梯形ABCD 中,|AB |=2|CD |,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点.当(32≤λ≤43)时,求双曲线离心率e 的取值X 围.分析:如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系,则CD⊥y 轴. 因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称.依题意,记A(-C ,0),C(2c ,h),E(x 0,y 0,)其中c=21|AB |为双曲线的半焦距,h 是梯形的高. 由定比分点坐标公式得 x 0=λλ++-12c c =)1(2)2(+-λλc ,y 0=λλ+1h 42e -22b h=1, ① 42e (12+-λλ)2-(1+λλ)222b h =1②由①式得22b h =42e -1③把③式代入②式,整理得42e (4-4λ)=1+2λ,故λ=1-232+e 。
双曲线经典知识点总结双曲线是解析几何中的一种重要曲线,是一对非重叠又对称的曲线组成,它有着丰富的性质和应用。
在数学、物理和工程等领域都有广泛的应用。
本文将通过对双曲线的定义、性质、参数方程、极坐标方程以及相关的应用等方面进行详细的总结和解释。
一、双曲线的定义和基本性质1. 双曲线的定义双曲线定义是平面直角坐标系中满足以下方程的点的轨迹:\[\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\]其中a和b是正实数且a≠b。
当a>b时,曲线称为右双曲线;当a<b时,曲线称为左双曲线。
2. 双曲线的基本性质(1)对称性:关于x轴、y轴和原点对称。
(2)渐近线:右双曲线的渐近线为y=±\frac{b}{a}x,左双曲线的渐近线为y=±\frac{a}{b}x。
(3)焦点和准线:右双曲线的焦点为F_{1}、F_{2}(c,0),准线方程为x=c;左双曲线的焦点为F_{1}、F_{2}(0,c),准线方程为y=c。
(4)离心率:离心率ε定义为,ε=\frac{\sqrt{a^2+b^2}}{a}。
二、双曲线的参数方程和极坐标方程1. 双曲线的参数方程(1)右双曲线的参数方程:\[\begin{cases}x=a\text{sec}t \\y=b\tan t\end{cases}\]其中t为参数。
(2)左双曲线的参数方程:\[\begin{cases}x=a\text{csc}t \\y=b\cot t\end{cases}\]其中t为参数。
2. 双曲线的极坐标方程(1)右双曲线的极坐标方程:\[r=\frac{b}{\sin\theta}\](2)左双曲线的极坐标方程:\[r=\frac{a}{\cos\theta}\]三、双曲线的相关应用1. 数学方面双曲线广泛应用于解析几何、微积分、微分方程等数学领域。
在微积分中,双曲线的导数和积分形式复杂,常作为综合练习的一部分。
双曲线高考知识点双曲线是高中数学中的一个重要内容,涉及到曲线的方程、性质以及应用等方面。
下面,我们将详细介绍双曲线的相关知识点。
一、双曲线的定义与基本性质双曲线是一种独特的曲线,它和椭圆、抛物线以及直线构成了二次曲线的四个基本类型。
双曲线的方程可以表示为x^2/a^2 - y^2/b^2 = 1或者x^2/a^2 - y^2/b^2 = -1(以中心为原点的情况)。
1. 双曲线的焦点与准线双曲线与焦点和准线密切相关。
焦点是双曲线上的一点,可以用来确定双曲线的形状和位置。
准线是双曲线的一条渐近线,具有特殊的性质。
双曲线两个焦点之间的距离为2c,准线与中心的距离为ae。
2. 双曲线的对称性双曲线具有与坐标轴相关的对称性。
双曲线关于x轴和y轴分别对称,也关于原点对称。
二、双曲线的图像与分类通过选择不同的参数,双曲线可以呈现出不同的形状。
根据双曲线的方程,我们可以将其分为以下几种类型:1. 水平方向的双曲线当双曲线的方程为x^2/a^2 - y^2/b^2 = 1时,a^2 > b^2,双曲线的长轴与x轴平行。
2. 垂直方向的双曲线当双曲线的方程为x^2/a^2 - y^2/b^2 = -1时,a^2 < b^2,双曲线的长轴与y轴平行。
三、双曲线的应用双曲线广泛应用于数学和物理学等领域,特别是在电磁学和光学中有重要的应用。
1. 超越双曲函数双曲函数是双曲线的重要应用之一。
它包括双曲正弦函数sinh(x)、双曲余弦函数cosh(x)以及双曲正切函数tanh(x)等。
这些函数在数学和物理中都有着广泛的应用。
2. 焦点和准线的应用双曲线的焦点和准线在物理光学中有着重要的应用。
例如,双曲线反射镜就是基于双曲线的焦点和准线性质来设计的,可以用来改变光线的方向和聚焦光线。
四、双曲线的解析几何在解析几何中,双曲线与直线、圆等几何图形之间存在着密切的关系,可以通过解析几何的方法来研究双曲线的性质。
1. 双曲线的判别式确定一个二次曲线是否是双曲线可以使用双曲线的判别式D=b^2-a^2,其中a和b分别是双曲线的参数。
双曲线与方程【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义.3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a bλλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中ce a=. 5、通径过双曲线()22221,0x y a b a b-=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->; l 与Γ相切22222a A b B C ⇔-=; l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS =定值2ab .【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若b a +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值; (2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x 轴上,其渐近线方程是3y x =±,双曲线过点()6,6P . (1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值; (3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.仰望天空时,什么都比你高,你会自卑; 俯视大地时,什么都比你低,你会自负; 只有放宽视野,把天空和大地尽收眼底, 才能在苍穹泛土之间找准你真正的位置。
双曲线相关知识点总结一、双曲线的定义双曲线是平面上一组点的集合,满足到两个定点的距离之差等于一个常数的性质。
具体来说,设F1(-c,0)和F2(c,0)是平面上的两个定点,c是正实数,点P(x,y)在双曲线上当且仅当PF1-PF2=2a(a>0)。
双曲线分为左右两支,由F1和F2确定的两支双曲线分别称为向左开口和向右开口的双曲线,分别称为左双曲线和右双曲线。
二、双曲线的基本性质1. 定义域和值域:双曲线的定义域是实数集R,值域是实数集R。
2. 对称性:关于坐标轴和原点对称。
3. 渐近线:y=±a/x(斜渐近线)。
4. 渐近线性质:双曲线与其渐近线的交点趋于无穷,且渐近线是双曲线的渐近线。
5. 单调性:双曲线在x轴的两侧都是单调递增或单调递减。
6. 拐点:双曲线的两支在原点都有拐点,拐点的坐标为(0,±a)。
7. 渐近线与曲线的位置关系:当a为正数时,双曲线的两支位于渐近线的两侧;当a为负数时,双曲线的两支位于渐近线的同一侧。
三、双曲线的方程1. 标准方程:双曲线的标准方程分别为x^2/a^2-y^2/b^2=1(右双曲线)和y^2/b^2-x^2/a^2=1(左双曲线),其中a和b分别为双曲线两支离心率的绝对值。
2. 中心点、顶点和焦点:双曲线的中心点为坐标原点,顶点为(±a,0),焦点为(±c,0)。
3. 离心率:双曲线的离心率为e=c/a。
4. 参数方程:双曲线的参数方程分别为x=acosh(t),y=bsinh(t)(右双曲线)和x=asinh(t),y=bcosh(t)(左双曲线),其中t为参数。
四、双曲线的图像1. 双曲线的图像具有对称性,关于x轴和y轴对称,同时关于原点对称。
2. 双曲线与其渐近线之间的位置关系决定了双曲线的图像形状。
3. 当a和b的取值变化时,双曲线的形状也随之变化。
五、双曲线的应用1. 物理学中,双曲线常用于描述波的传播和衰减,尤其是在光学和声学中有着广泛的应用。
四、双曲线一、双曲线及其简单几何性质(一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨迹叫做双曲线。
定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。
● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支);当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支);② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。
双曲线12222=-b y a x 与12222=-bx a y (a>0,b>0)的区别和联系(二)双曲线的简单性质1.范围: 由标准方程12222=-by a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大。
x 的取值范围________ ,y 的取值范围______2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________特殊点:____________实轴:21A A 长为2a, a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做半虚轴长双曲线只有两个顶点,而椭圆则有四个顶点4.离心率:双曲线的焦距与实轴长的比a ca c e ==22,叫做双曲线的离心率 范围:___________________双曲线形状与e 的关系:1122222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔5.双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=a c a ce 的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程:对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 21:-=, 相对于右焦点)0,(2c F 对应着右准线c a x l 22:=; 6.渐近线过双曲线12222=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是____________或(0=±b ya x ),这两条直线就是双曲线的渐近线双曲线无限接近渐近线,但永不相交。
高中数学双曲线知识点归纳双曲线是我们高中数学学习中的重要内容之一,它在几何和代数中都有广泛的应用。
本文将对高中数学双曲线的知识点进行归纳和总结,以帮助同学们更好地理解和掌握这一部分内容。
1. 双曲线的定义双曲线是平面上一组点,其到两个定点的距离之差的绝对值等于常数的轨迹。
其中,定点称为焦点,常数称为离心率。
双曲线具有两支,分别对称于坐标轴。
2. 双曲线的标准方程双曲线的标准方程可以表示为 x^2/a^2 - y^2/b^2 = 1 或y^2/b^2 - x^2/a^2 = 1,其中 a 和 b 分别为椭圆的长轴和短轴的长度,决定了双曲线的形状和大小。
3. 双曲线的性质- 双曲线的对称轴是 x 轴或 y 轴,取决于标准方程的形式。
- 双曲线存在两个渐近线,与双曲线趋于无穷远处的曲线趋势相似。
- 双曲线具有镜像对称性,即曲线关于 x 轴和 y 轴对称。
- 双曲线的离心率决定了离焦点的距离和双曲线的形状,离心率越大,曲线越尖。
4. 双曲线的焦点和直径对于双曲线,有两个焦点,分别位于离心率所决定的距离之内,与中心轴相距相等。
直径则是双焦点之间的距离。
5. 双曲线与其他数学概念的联系双曲线在数学中与许多其他概念有密切的联系,例如:- 双曲线与椭圆是一对共轴的曲线,它们在几何性质上有一定的相似性。
- 双曲线与指数函数和对数函数有关,其图像表现出指数增长或指数衰减的特点。
6. 双曲线的应用双曲线在数学中被广泛应用于各个领域,包括物理学、工程学和计算机科学等。
在物理学中,双曲线可以描述粒子的运动轨迹;在工程学中,双曲线可以用于描述电路的性质;在计算机科学中,双曲线可以用于图像处理和数据压缩等领域。
本文对高中数学双曲线的定义、标准方程、性质、焦点和直径以及与其他数学概念的联系和应用进行了归纳和总结。
希望通过对这些知识点的了解,同学们能够更好地理解和应用双曲线,为日后的学习和研究打下坚实的基础。
高二数学双曲线知识点双曲线是高中数学中重要的曲线类型之一,它具有许多独特的性质和应用。
本文将介绍高二数学中关于双曲线的知识点。
一、定义与基本概念1. 双曲线的定义:双曲线是平面上一个动点与两个给定点(称为焦点)之间的距离差的绝对值等于一个定值(称为离心率)的轨迹。
2. 双曲线的几何特征:双曲线是非闭合曲线,两支曲线相似但不相交。
3. 双曲线的标准方程:一般形式为x²/a² - y²/b² = 1或y²/a² - x²/b²= 1。
4. 双曲线的焦点与离心率关系:离心率e的值决定了焦点与曲线形状的关系,e大于1时,焦点位于x轴;e小于1时,焦点位于y轴。
二、双曲线的性质1. 集中性质:双曲线的焦点位于x轴或y轴上,并且距离原点越远,离心率越大。
2. 对称性质:双曲线关于x轴、y轴和原点分别对称。
3. 渐进线性质:双曲线的渐进线是x轴和y轴,即曲线无限延伸但不与x轴和y轴相交。
4. 双曲线的渐成线性质:双曲线的渐成线是曲线两支的连接线段。
三、曲线的参数方程1. 参数方程的定义:对于双曲线,可以使用参数方程来描述曲线上的点的位置。
常用的参数方程有x = asect,y = btant和x = acost,y = bsint。
2. 参数方程的图像特征:通过改变参数t的取值范围,可以观察到双曲线在平面上的不同部分以及曲线的形状。
四、双曲线的应用1. 物理中的应用:双曲线常用于描述天体运行轨迹、电磁波等物理现象。
2. 经济学中的应用:双曲线可以用于描述供需曲线、价格水平等经济学概念。
3. 工程中的应用:双曲线可用于工程设计和建模,如道路、桥梁等工程结构的设计。
总结:双曲线是高二数学中重要的曲线类型,它具有许多独特的性质和应用。
了解双曲线的定义、基本概念、性质以及参数方程的描述方法,可以帮助我们更好地理解和应用这一曲线类型。
高二双曲线数学知识点归纳双曲线是高中数学中比较重要的一个知识点,它与函数的图像、性质以及在实际问题中的应用有着密切的联系。
本文将对高二双曲线的相关知识点进行归纳和总结,从而帮助读者更好地理解和应用这一概念。
1. 双曲线的定义双曲线是一类二次曲线,其定义为所有到两个定点的距离差等于常数的点的集合。
这两个定点称为焦点,常数称为离心率。
双曲线可以有两个分支,分别是左(右)开口的双曲线。
2. 双曲线的标准方程双曲线的标准方程可以表示为:$\frac{x^2}{a^2} -\frac{y^2}{b^2} = 1$,其中a和b分别表示x轴和y轴方向上的半轴长度。
3. 双曲线的图像特点(1)双曲线的对称轴与x轴、y轴交于两个焦点的中垂线;(2)双曲线的渐近线为直线$y= \frac{b}{a}x$和$y= \frac{-b}{a}x$;(3)双曲线左(右)分支的渐近线与x轴、y轴的夹角分别为$\frac{\pi}{4}$和$\frac{3\pi}{4}$;(4)双曲线的顶点为原点。
4. 双曲线的性质(1)双曲线是一个非线性函数,其图像呈现出增长非常快或者非常陡峭的形状;(2)双曲线的点到焦点的距离差与点的横坐标之间存在特定的关系;(3)双曲线的离心率是一个大于1的实数,决定了曲线的形状;(4)双曲线的面积和弧长等相关计算问题。
5. 双曲线的标准方程变形(1)双曲线标准方程的变形形式有:$\frac{y^2}{b^2} -\frac{x^2}{a^2} = 1$,$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$,$\frac{y^2}{b^2} - \frac{x^2}{a^2} = -1$,$\frac{x^2}{a^2} -\frac{y^2}{b^2} = -k^2$等;(2)根据不同的变形形式,可以得到不同形状的双曲线。
6. 双曲线的应用(1)双曲线可以用于描述电磁波、流体力学和其他物理学现象;(2)双曲线在航天、天体物理学中有广泛的应用;(3)双曲线在经济学、金融学等社会科学领域也有相应的应用。
双曲线的简单几何性质概要
1、双曲线22a x -2
2b y =1的简单几何性质
(1)范围:|x |≥a,y∈R.
(2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称. (3)顶点:两个顶点A 1(-a,0),A 2(a,0),两顶点间的线段为实轴,长为2a ,虚轴长为2b ,且c 2=a 2+b 2.与椭圆不同.
(4)渐近线:双曲线特有的性质,方程y =±a b
x ,或令双曲线标准方程22a x -2
2b y =1中
的1为零即得渐近线方程.
(5)离心率e =a c
>1,随着e 的增大,双曲线张口逐渐变得开阔.
(6)等轴双曲线(等边双曲线):x 2-y 2=a 2(a≠0),它的渐近线方程为y =±x,离心率e =
2.
(7)共轭双曲线:方程22a x -22b y =1与22a x -2
2b y =-1表示的双曲线共轭,有共同的渐近
线和相等的焦距,但需注意方程的表达形式. 注意:
(1)与双曲线22a x -22b y =1共渐近线的双曲线系方程可表示为22a x -2
2b y =λ(λ≠0且
λ为待定常数)
(2)与椭圆22a x +2
2b y =1(a >b >0)共焦点的曲线系方程可表示为λ-22a x -λ-22b y =
1(λ<a 2,其中b 2-λ>0时为椭圆, b 2<λ<a 2时为双曲线) 2.双曲线的第二定义
平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =a c
(c >a >
0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p
=c b 2
,与椭圆相同.
焦半径(22a x -22b y =1,F 1(-c,0)、F 2(c,0)),点p(x 0,y 0)在双曲线22a x -2
2b y =1的右支上
时,|pF 1|=ex 0+a,|pF 2|=ex 0-a;
P 在左支上时,则|PF 1|-(ex 1+a),|PF 2|=-(ex 1-a).
3、重难点
本节重点是双曲线的几何性质,双曲线的第二定义及其应用,难点是双曲线的渐近线方程,第二定义,几何性质的应用. 4、学习要求:
学习双曲线的几何性质,可以用类比思想,即象讨论椭圆的几何性质一样去研究双曲线的标准方程,从而得出双曲线的几何性质,将双曲线的两种标准方程、图形、几何性质列表对比,便于掌握.
双曲线的几何性质与代数中的方程、平面几何的知识联系密切;直线与双曲线的交点问题、弦长间问题都离不开一元二次方程的判别式,韦达定理等;渐近线的夹角问题与直线的夹角公式.三角函数中的相关知识,是高考的主要内容.
通过本节内容的学习,培养同学们良好的个性品质和科学态度,培养同学们的良好的学习习惯和创新精神,进行辩证唯物主义世界观教育. 5、典型热点考题】
例1已知双曲线22a x -2
2b y =1(a >0,b >0)左、右焦点分别为F 1和F 2,P 是它左支上点,
P 到左准线距离为d.
问:是否存在这样的点P ,使d,|PF 1|,|PF 2|成等比数列,说明理由.
分析:对于存在性问题,先假设存在满足题意的对象,然后结合题设条件进行判断. 设存在P(x 0,y 0)且x 0≤-a ,使d ,|PF 1|,|PF 2|成等比数列,则|PF 1|2
=d |PF 2|, 设d′为P 点到右准线的距离,由双曲线第二定义得:
d PF 1
='2
d PF =
e ∴|PF 1|=ed,
∴(ed)2=d²ed′,∴ed=d′,
∴e(-c a 2-x 0)=-x 0+c a 2
,
∴x 0=e e
a -+1)11(,∵x 0≤-a, ∴e e
a -+1)11(≤-a,∴e 2-2e-1≤0,
∴1-2≤e≤2+1,又e >1, ∴1<e≤2+1.
故当双曲线的离心率e∈(1, 2+1)时,存在满足条件的P ,而当e∈(2+1,+∞)时,不存在满足条件的点P.
注:利用双曲线的第二定义解题是非常有效的方法.本例还可以利用双曲线的两种定义再结合不等式|PF 1|+|PF 2|≥|F 1F 2|求解,请同学们自己完成.
例2如图,已知梯形ABCD 中,|AB |=2|CD |,点E 分有向线段AC 所成的比为λ,
双曲线过C 、D 、E 三点,且以A 、B 为焦点.当(32≤λ≤43
)时,求双曲线离心率e 的取值
范围.
分析:如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系,则CD⊥y 轴.
因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称.
依题意,记A(-C ,0),C(2c ,h),E(x 0,y 0,)其中c=21
|AB |为双曲线的半焦距,h 是梯形的
高.
由定比分点坐标公式得
x 0=
λλ++
-12
c
c =)1(2)2(+-λλc
,y 0=λλ+1h
42e -2
2
b h
=1, ①
42e (12+-λλ)2-(1+λλ
)22
2b h =1 ② 由①式得2
2b h =42e -1 ③
把③式代入②式,整理得42
e (4-4λ)=1+2λ,
故λ=1-232
+e 。
由题设32≤λ≤43得32≤1-232
+e ≤43.
解得7≤e≤10.
所以双曲线的离心率的取值范围为[7,10].
注:本例先求出C 点纵坐标,用a 、b 、c 表示,然后将E 点坐标用λ表示,并代入双曲线方程,而得到含有e 与λ的等式,由λ范围求出e 的范围.
例3已知双曲线的两个焦点分别为M 、N ,点M 的坐标为(-2,-12),点S(-7,0)、T(7,0)在双曲线.
(1)利用双曲线定义,求点N 的轨迹方程;
(2)是否存在过P(1,m)的直线与点N 的轨迹有且只有两个公共点A 、B ,且点P(1,m)恰是线段AB 的中点?若存在,求出实数m 的取值范围;若不存在,说明理由. 分析:(1)设点N 的坐标为(x,y),它不同于点M(-2,-12).由双曲线定义知 ||SM |-|SN ||=||TM |-|TN ||≠0 ∵S(-7,0),T(7,0),∴|SM |=13,|TM |=15.
1°当|SM |-|SN |=|TM |-|TN |时,有|TN |-|SN |=2<14=|ST |,
∴点N 的轨迹是中心在ST 的中点(0,0),焦点为S 、T 的双曲线C 的左支,除去M(-2,-12)和D(-2,12)两点.
双曲线C 的方程:x 2-482
y =1(x <0).
∴点N 的轨迹方程为x 2
-482y =1(x <0,y≠±12).
2°当|SM |-|SN |=-(|TM |-|TN |)时,有|TN |+|SN |=28>14=|ST |, ∴点N 的轨迹是中心在ST 的中点(0,0),焦点为S 、T 的椭圆Q ,除去M(-2,-12)和D(-2,12)两点.
椭圆Q 方程:1962x +1472
y =1.
∴点N 的轨迹方程为1962x +1472
y =1(y≠±12).
综合1°、2°,点N 的轨迹方程为
x 2
-482y =1(x <0=和1962x +1472y =1,其中y≠±12.
(2)1°当过点P(1,m)的直线的斜率k 不存在时,直线l 的方程为x=1,可得m=1. 2°当k 存在时,设直线l :y=kx+m-k.若l 过点M 或点D.
∵两点M 、D 既在双曲线C 上,又在椭圆Q 上,但不在点N 的轨迹上 ∴l 与点N 的轨迹只有一个公共点,不合题意;若l 不过M 、D 两点.
当-43<k 2<43时(双曲线C 的渐近线方程为y±43=0),利用图像知,直线l 与点N 的轨迹有三个公共点,不合题意. 当-∞<k≤-43或43<k≤+∞时,
直线l 与点N 的轨迹有两个公共点A 、B ,且点P(1,m)是AB 的中点. 设A(x 1,y 1),B(x 2,y 2),则在
3x 21+4y 21=12³49, ① 3x 2
2+4y 2
2=12³49, ② ①-②,得3(x 1+x 2)(x 1-x 2)=-4(y 1+y 2)(y 1-y 2) ③
将x 1+x 2=2,y 1+y 2=2m,212
1x x y y --=k 代入③,得k=-m 43
.
当43≤k<+∞,即43≤-m 43<+∞时,有-163
≤m<0.
新财界财经/ 峞奣尛。