2012届高中物理第一轮总复习 第10章《法拉第电磁感应定律要点
- 格式:ppt
- 大小:1.03 MB
- 文档页数:23
高三物理第十章知识点归纳高三物理第十章主要讲解了电磁感应和电动机的相关知识。
在这一章中,我们将学习到电磁感应的原理、法拉第电磁感应定律以及电动机的工作原理等内容。
下面就让我们来归纳总结一下这些重要的知识点。
首先,我们来讨论电磁感应的原理。
电磁感应是指通过磁场和电场之间的相互作用产生电流的现象。
根据法拉第电磁感应定律,当磁场的磁通量发生变化时,导线中会产生感应电动势。
而磁通量的变化可以通过改变磁场的强度、导线的长度或速度来实现。
接着,我们来详细讨论一下法拉第电磁感应定律。
根据法拉第电磁感应定律,感应电动势的大小和磁通量的变化率成正比。
其中,感应电动势的方向由洛伦兹力决定,即当导线内的电流方向与磁场中的磁力方向相反时,电动势的方向为正,否则为负。
在实际应用中,我们经常使用电磁感应来实现无线电、发电、变压器等设备的运行。
例如,在发电厂中,通过旋转发电机的励磁线圈,产生的磁通量变化就能够激发出感应电动势,从而实现电能的转化。
此外,我们还要了解电动机的工作原理。
电动机是利用电磁感应产生的感应电动势来驱动电流,从而实现机械能的转化。
电动机的核心部分是由导体线圈组成的转子和磁场所构成的定子。
当通过定子施加电流时,电流会形成磁场,与转子的磁场相互作用产生力矩,使转子开始转动。
除了以上的知识点外,在高三物理第十章还有一些与电磁感应相关的实验和应用。
例如,我们可以通过安培环实验来观察和研究磁场的分布情况;利用电磁感应原理,我们可以制作简单的发电机和变压器。
总结起来,高三物理第十章主要涉及了电磁感应和电动机的知识点。
我们学习了电磁感应的原理和法拉第电磁感应定律,了解了电动机的工作原理,并且学习了一些实验和应用。
通过掌握这些知识点,我们可以更好地理解电磁感应的过程,深入了解电动机的原理,为我们今后的学习和应用奠定基础。
希望在高三物理学习中,我们能够牢固掌握这些知识点,并能够通过实践提升自己的物理实验能力。
高二物理第十章知识点总结高二物理第十章主要讲述了电磁感应与电磁场的相关知识。
本章的内容包括电磁感应现象、法拉第电磁感应定律、楞次定律、自感与互感、电磁场的概念及特性等。
以下是对这些知识点的详细总结。
1. 电磁感应现象电磁感应是指导体中的磁通量发生变化时,在导体两端产生感应电动势。
磁通量的变化可以通过改变磁场强度、磁场方向、导体面积或者改变磁场与导体之间的相对运动来实现。
2. 法拉第电磁感应定律法拉第电磁感应定律描述了感应电动势的大小与变化率之间的关系。
根据定律,感应电动势的大小等于磁通量的变化率。
即E = -dΦ/dt,其中E表示感应电动势,Φ表示磁通量,t表示时间。
3. 楞次定律楞次定律是电磁感应的基本规律之一,它描述了感应电流的方向。
根据楞次定律,当导体中的磁通量发生变化时,感应电流的方向会使得产生的磁场阻碍磁通量的变化。
这个定律也可以用右手规则来判断感应电流的方向。
4. 自感与互感自感是指电流通过一个线圈时,该线圈本身所产生的感应电动势。
互感是指两个或多个线圈之间的相互感应现象。
自感与互感是电磁感应中的重要概念,它们在电路中起到了重要的作用。
5. 电磁场的概念及特性电磁场是指由电荷和电流所产生的空间中的力场和磁场。
电磁场具有电场强度、磁感应强度和能量密度等特性。
电场强度描述了电场对电荷施加力的强度,磁感应强度描述了磁场对带电粒子施加力的强度。
本章的知识点涉及了电磁感应与电磁场的基础概念和原理,这些知识在物理学与工程学中有着广泛的应用。
理解并掌握这些知识点,不仅有助于我们对电和磁的相互作用有更深入的理解,还能帮助我们解决实际问题,如电磁感应发电原理和变压器的工作原理等。
总结起来,本章内容涉及了电磁感应现象、法拉第电磁感应定律、楞次定律、自感与互感以及电磁场的概念与特性。
这些知识点是理解电磁现象和解决相关问题的基础,通过深入学习与实践探索,我们能够更好地理解和应用这些知识,为今后的学习和工作打下坚实的基础。
物理高二知识点第十章总结第十章:电磁感应本章主要介绍了电磁感应的相关知识点,包括法拉第电磁感应定律、楞次定律、自感和互感等内容。
本文将对这些知识点进行总结和概括,以加深对物理高二电磁感应的理解。
一、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的基础定律,描述了导体中感应电动势的大小和方向。
根据法拉第电磁感应定律,当导体中磁通量发生变化时,会产生感应电动势。
其中,感应电动势的大小与磁通量的变化率成正比,方向由右手定则确定。
二、楞次定律楞次定律是法拉第电磁感应定律的补充,描述了电流在变化时的方向。
根据楞次定律,当电流发生变化时,会产生感应磁场。
感应磁场的方向与电流变化的方向相反,从而使得变化的电流受到阻力。
三、自感和互感自感是指导体中产生的感应电动势对自身的感应作用。
自感的大小与导体中电流的变化率成正比,方向由自感方向定则确定。
互感是指导体中产生的感应电动势对周围导体的感应作用。
互感的大小与磁通量的变化率和两个导体的相对位置有关,方向由互感方向定则确定。
四、电磁感应的应用电磁感应在实际应用中起着重要的作用。
其中,变压器是电磁感应的典型应用之一,通过互感实现电能的转换和传输。
发电机和电动机也是电磁感应的典型应用,分别将机械能转换为电能和将电能转换为机械能。
总结:电磁感应是电磁学的重要分支,通过法拉第电磁感应定律和楞次定律描述了电磁感应现象的基本规律。
自感和互感则进一步扩展了电磁感应的应用范围。
在实际应用中,电磁感应被广泛运用于变压器、发电机、电动机等设备中,对能源的转换和传输起着至关重要的作用。
通过本章的学习,我们对电磁感应有了更深入的了解。
掌握了法拉第电磁感应定律和楞次定律,能够解决与电磁感应相关的问题。
同时,理解了自感和互感的概念,能够更好地应用于实际问题的解决中。
希望本文的总结能够对大家对物理高二电磁感应的学习和理解有所帮助。
物理总复习:法拉第电磁感应定律【考点梳理】考点一、法拉第电磁感应定律一、感应电动势1、感应电动势在电磁感应现象中产生的电动势叫感应电动势。
产生感应电动势的那部分导体相当于电源。
只要穿过回路的磁通量发生改变,在回路中就产生感应电动势。
2、感应电动势与感应电流的关系感应电流的大小由感应电动势和闭合回路的总电阻共同决定,三者的大小关系遵守闭合电路欧姆定律,即E I R r=+。
二、法拉第电磁感应定律要点诠释:1、法拉第电磁感应定律感应电动势的大小跟穿过这一闭合电路的磁通量的变化率成正比。
E nt φ∆=∆,其中n 为线圈匝数。
2、法拉第电磁感应定律内容的理解(1)感应电动势的大小:E nt φ∆=∆。
公式适用于回路磁通量发生变化的情况,回路不一定要闭合。
(2)φ∆不能决定E 的大小,t φ∆∆才能决定E 的大小,而t φ∆∆与φ∆之间没有大小上的联系。
(3)当φ∆仅由B 的变化引起时,则B E nSt ∆=∆; 当φ∆仅由S 的变化引起时,则S E nBt ∆=∆。
(4)公式E n tφ∆=∆中,若t ∆取一段时间,则E 为t ∆这段时间内的平均值。
当磁通量不是均匀变化的,则平均电动势一般不等于初态与末态电动势的算术平均值。
三、导体切割磁感线时的感应电动势要点诠释:1、导体垂直切割磁感线时, 感应电动势可用E BLv =求出,式中L 为导体切割磁感线的有效长度。
若导线是曲折的,则L 应是导线的有效切割长度。
2、导体不垂直切割磁感线时,即v 与B 有一夹角θ,感应电动势可用sin E BLv θ=求出。
四、磁通量φ、磁通量变化量φ∆、磁通量变化率tφ∆∆的比较 要点诠释:1、φ是状态量,是某时刻穿过闭合回路的磁感线条数,当磁场与回路平面垂直时,BS φ=。
2、φ∆是过程量,它表示回路从某一时刻变化到另一时刻回路的磁通量的增量,即21φφφ∆=-。
3、 tφ∆∆表示磁通量变化的决慢,即单位时间内磁通量的变化,又称为磁通量的变化率。
物理总复习:法拉第电磁感应定律【考纲要求】1、知道法拉第电磁感应定律的内容2、知道公式E n tφ∆=∆与E BLv =的区别与联系 3、会正确选用不同公式进行相关计算4、知道自感现象、自感电动势、自感系数,知道自感现象的利弊及其利用与防止5、了解日光灯的组成与电路,知道镇流器的工作原理和作用6、知道涡流现象,了解其利用与防止技术。
【考点梳理】考点一、法拉第电磁感应定律一、感应电动势1、感应电动势在电磁感应现象中产生的电动势叫感应电动势。
产生感应电动势的那部分导体相当于电源。
只要穿过回路的磁通量发生改变,在回路中就产生感应电动势。
2、感应电动势与感应电流的关系感应电流的大小由感应电动势和闭合回路的总电阻共同决定,三者的大小关系遵守闭合电路欧姆定律,即E I R r=+。
二、法拉第电磁感应定律要点诠释:1、法拉第电磁感应定律感应电动势的大小跟穿过这一闭合电路的磁通量的变化率成正比。
E nt φ∆=∆,其中n 为线圈匝数。
2、法拉第电磁感应定律内容的理解(1)感应电动势的大小:E nt φ∆=∆。
公式适用于回路磁通量发生变化的情况,回路不一定要闭合。
(2)φ∆不能决定E 的大小,t φ∆∆才能决定E 的大小,而t φ∆∆与φ∆之间没有大小上的联系。
(3)当φ∆仅由B 的变化引起时,则B E nSt ∆=∆; 当φ∆仅由S 的变化引起时,则S E nBt ∆=∆。
(4)公式E n tφ∆=∆中,若t ∆取一段时间,则E 为t ∆这段时间内的平均值。
当磁通量不是均匀变化的,则平均电动势一般不等于初态与末态电动势的算术平均值。
三、导体切割磁感线时的感应电动势要点诠释:1、导体垂直切割磁感线时, 感应电动势可用E BLv =求出,式中L 为导体切割磁感线的有效长度。
若导线是曲折的,则L 应是导线的有效切割长度。
2、导体不垂直切割磁感线时,即v 与B 有一夹角θ,感应电动势可用sin E BLv θ=求出。
课题:电磁感应类型:复习课电磁感应现象愣次定律一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。
产生的电流叫做感应电流.2.产生感应电流的条件:只要闭合回路中磁通量发生变化即△Φ≠0,闭合电路中就有感应电流产生.3. 磁通量变化的常见情况(Φ改变的方式):①线圈所围面积发生变化,闭合电路中的局部导线做切割磁感线运动导致Φ变化;其实质也是 B 不变而 S增大或减小②线圈在磁场中转动导致Φ变化。
线圈面积与磁感应强度二者之间夹角发生变化。
如匀强磁场中转动的矩形线圈就是典型。
③B 随 t(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,假设线圈或线框是闭合的.那么在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那局部导体相当于电源.电磁感应现象的实质是产生感应电动势,如果回路闭合,那么有感应电流,如果回路不闭合,那么只能出现感应电动势,而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化二、感应电流方向的判定1.右手定那么:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即为感应电流方向(电源).用右手定那么时应注意:①主要用于闭合回路的一局部导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定,②右手定那么仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直.③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向.④假设形成闭合回路,四指指向感应电流方向;假设未形成闭合回路,四指指向高电势.⑤“因电而动〞用左手定那么.“因动而电〞用右手定那么.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。
考点二 法拉第电磁感应定律 自感和涡流基础点知识点1 法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E =n ΔΦΔt,其中n 为线圈匝数。
(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r。
3.导体切割磁感线时的感应电动势(1)垂直切割:E =Blv ,式中l 为导体切割磁感线的有效长度。
(2)不垂直切割:E =Blv sin θ,式中θ为v 与B 的夹角。
(3)匀速转动:导体棒在垂直匀强磁场方向以角速度ω绕一端转动切割磁感线时,E =12B ωl 2。
知识点2 自感 涡流1.自感现象:由于通过导体自身的电流发生变化而产生的电磁感应现象。
2.自感电动势(1)定义:在自感现象中产生的感应电动势。
(2)表达式:E =L ΔIΔt 。
(3)自感系数L①相关因素:与线圈的大小、形状、圈数以及是否有铁芯等因素有关。
②单位:亨利(H),常用单位还有毫亨(mH)、微亨(μH)。
1 mH =10-3H,1μH =10-6H 。
3.涡流:当线圈中的电流发生变化时,在它附近的导体中产生的像水的旋涡一样的感应电流。
(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的相对运动。
(2)电磁驱动:如果磁场相对于导体转动,在导体中产生的感应电流使导体受到安培力的作用而运动起来。
(3)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用。
重难点一、法拉第电磁感应定律的理解1.磁通量Φ、磁通量的变化量ΔΦ、磁通量的变化率ΔΦΔt 的比较(1)磁通量的变化是由面积变化引起时,ΔΦ=B ·ΔS ,则E =n ΔSΔt·B 。
高二物理第十章知识点归纳总结高二物理课程中的第十章主要讲述了电磁感应、电磁波、电磁振荡等内容。
本文将对这些知识点进行归纳总结,帮助学生更好地理解和掌握这些重要概念。
一、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律描述了磁场变化引起的感应电动势的大小和方向。
∮E·dl=-dΦB/dt其中E为感应电动势,ΦB为磁通量,t为时间。
2. 感应电动势的产生当磁场穿过一个导体回路时,导体内就会产生感应电流。
感应电动势的大小与磁场变化的速率、导体回路的形状和磁场的强度有关。
3. 洛伦兹力和感应电动势的关系感应电动势的产生是由洛伦兹力作用于电子上引起的,导致电子运动。
二、电磁波1. 电磁波的概念电磁波是由电场和磁场相互耦合形成的波动现象,可以在真空中传播。
2. 电磁波的特性电磁波有频率、波长、波速等特性。
波长和频率之间的关系为λv=c,其中λ为波长,v为频率,c为光速。
3. 光的电磁波性质光既具有粒子性又具有波动性,可以解释一些光的现象,如衍射和干涉。
三、电磁振荡1. 电磁振荡的概念电磁振荡是由振荡电场和振荡磁场相互耦合形成的周期性变化现象。
2. 振荡电路的特点振荡电路由电感、电容和电阻组成,能够产生稳定的振荡信号。
振荡电路中的电荷和电流随时间变化呈周期性。
3. LC振荡电路LC振荡电路由电感和电容组成,能够产生简谐振荡。
振荡频率与电感和电容的数值有关。
四、电磁感应与电磁波的应用1. 发电机的工作原理发电机利用电磁感应的原理将机械能转化为电能。
发电机产生的电压和电流可通过导线传输和利用。
2. 变压器的工作原理变压器利用电磁感应的原理将交流电能从一个电路传输到另一个电路。
变压器能够改变电压的大小而不改变电能的大小。
3. 无线电的原理无线电是利用电磁波传输信息和能量的技术。
无线电技术已广泛应用于通信、广播和雷达等领域。
综上所述,高二物理第十章的知识点包括电磁感应、电磁波和电磁振荡等内容。
学生通过学习这些知识点,可以更好地理解电磁现象的本质和应用。
高三物理第一轮复习:法拉第电磁感应定律及其应用【本讲主要内容】法拉第电磁感应定律及其应用感应电动势、法拉第电磁感应定律及其应用、导体切割磁感线产生的感应电动势E =BLv 。
【知识掌握】 【知识点精析】一. 感应电动势1. 感应电动势:穿过闭合电路的磁通量发生变化,电路中就有感应电流,有电流存在,则闭合电路就一定有电动势存在。
这个电动势叫感应电动势。
产生感应电动势的那部分导体相当于电源。
2. 磁通量的变化(量)和磁通量的变化率(1)磁通量的变化(量):∆φφφ=-21。
注:若φφ12、的穿入方向相反,则应规定两者为不同的正负号。
(2)磁通量的变化率:磁通量的变化量与所用时间的比值,即∆∆φt。
表示磁通量变化的快慢。
二. 法拉第电磁感应定律 1. 内容及公式:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
可表示为: E nt=∆∆φ公式中的n 为线圈匝数。
2. 注意:①磁通量的变化及变化率都是指一匝线圈的。
②n 匝线圈相当于n 个电动势为∆∆φt的电源串联。
③单位都取国际单位。
三. 导体切割磁感线产生的感应电动势1. E BLv =sin θ,导线切割磁感线时产生的感应电动势的大小,跟磁感应强度B 、导线长度L 、运动速度v 以及运动方向和磁感线方向的夹角θ的正弦sin θ成正比。
注:①不论导体的形状如何,切割磁感线的金属棒的有效长度为金属棒的两个端点在垂直速度方向上的投影长度。
②转动切割磁感线时,速度v 应取棒的初、末端线速度和的一半,即中点线速度。
③若求某时刻的感应电动势,v 应取这个时刻的瞬时速度;若求某段过程内的平均感应电动势,v 应取这段过程内的平均速度。
2. E BLv =sin θ是一条实验定律,但是也可以由法拉第电磁感应定律推导出来。
所以,E BLv =sin θ也可以看作法拉第电磁感应定律的一个特例。
3. 导体做切割磁感线运动产生感应电动势的原因,是导体内的自由电荷在随导体运动做定向运动时,受到洛仑兹力作用向导体的一端聚集。
法拉第电磁感应定律、自感知识要点:一、基础知识1、电磁感应、感应电动势ε、感应电流I电磁感应是指利用磁场产生电流的现象。
所产生的电动势叫做感应电动势。
所产生的电流叫做感应电流。
要注意理解: 1产生感应电动势的那部分导体相当于电源。
2产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。
3产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线运动与穿过闭合电路中的磁通量发生变化等效。
2、电磁感应规律感应电动势的大小: 由法拉第电磁感应定律确定。
ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。
如图所示。
设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN 以v匀速向右运动,所施外力F F BIL '==,当行进位移为S时,外力功W BI L S BILv t ==···。
t 为所用时间。
而在t 时间内,电流做功W I t '=··ε,据能量转化关系,W W '=,则I t BILv t ···ε=。
∴ε=BIv ,M 点电势高,N 点电势低。
此公式使用条件是B I v 、、方向相互垂直,如不垂直,则向垂直方向作投影。
εφ=n t·∆∆,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。
如上图中分析所用电路图,在∆t 回路中面积变化∆∆S Lv t =·,而回路跌磁通变化量∆∆∆φ==B S BLv t ··,又知ε=BLv 。
∴εφ=∆∆t 如果回路是n 匝串联,则εφ=nt ∆∆。
公式一: εφ=n t ∆∆/。
注意: 1该式普遍适用于求平均感应电动势。
2ε只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。