广东省普宁市第一中学2018届高三下学期摸底考试数学理试题 含答案
- 格式:doc
- 大小:735.40 KB
- 文档页数:10
2016--2017学年度普宁一中高三级理科数学 摸底考试试题卷注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卷上。
2.用2B 铅笔将选择题答案在答题卷对应位置涂黑;答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;不准使用铅笔或涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卷的整洁。
一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.设集合{}|(3)(1)0A x x x =-->,{}|lg(23)B x y x ==-,则A B = ( )A .3[,3)2 B .(3,)+∞ C .3(1,)2 D .3(,3)22、已知命题021x p x ∀≥≥:,;命题q :若x y >,则22x y >.则下列命题为真命题的是( )A . p q ∧B .p q ∧⌝C .p q ⌝∧⌝D .p q ⌝∨3、已知直线,a b ,平面,αβ,且a α⊥,b β⊂,则“a b ⊥”是“//αβ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4、设偶函数()f x 的定义域为R ,当[0,)x ∈+∞时,()f x 是增函数,则(2),(),(3)f f f π--的大小关系是( )A . (2)()(3)f f f π-<<-B .()(2)(3)f f f π<-<-C .(3)(2)()f f f π-<-<D .(2)(3)()f f f π-<-<5. 将函数sin 6y x π⎛⎫=+⎪⎝⎭的图象上各点的横坐标压缩为原来的12倍(纵坐标不变),所得函数在下面哪个区间单调递增( ) A .,36ππ⎛⎫-⎪⎝⎭B .,22ππ⎛⎫-⎪⎝⎭ C .,33ππ⎛⎫- ⎪⎝⎭ D .2,63ππ⎛⎫- ⎪⎝⎭6、已知函数2()(1)x f x e x =-+(e 为自然对数的底),则()f x 的大致图象是( )7.设0a >,0b >4a 和2b的等比中项,则21a b+的最小值为( ) A. B .8 C .9 D .108、 若某几何体的三视图如图所示,则此几何体的表面积是( )A .36πB .30πC .24πD .15π9、已知()f x 在R 上是可导函数,则()f x 的图象如图所示,则不等式()()2230xx f x '-->的解集为A .()(),21,-∞-+∞ 错误!未找到引用源。
全国省级联考⼴东省2018届⾼三第⼀次模拟考试数学(理)试题及答案解析2018年普通⾼等学校招⽣试卷全国统⼀考试⼴东省理科数学模拟考试(⼆)第Ⅰ卷(共60分)⼀、选择题:本⼤题共12个⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知,x y R ∈,集合{}32,log A x =,集合{},B x y =,若{}0A B ?=,则x y +=() A.13B. 0C. 1D. 3【答案】C 【解析】分析:⾸先应⽤{0}A B =I 确定出3log 0x =,从⽽求出x 的值,再进⼀步确定出y 的值,最后求得结果即可.详解:因为{0}A B =I ,所以3log 0x =,解得1x =,所以0y =,所以101x y +=+=,故选C.点睛:该题考查的是有关集合的知识点,涉及到集合的交集中元素的特征,从⽽找到等量关系式,最后求得结果.2.若复数11z i =+,21z i =-,则下列结论错误的是() A. 12z z ?是实数 B.12z z 是纯虚数 C. 24122z z =D. 22124z z i +=【答案】D 【解析】分析:根据题中所给的条件,将两个复数进⾏相应的运算,对选项中的结果⼀⼀对照,从⽽选出满⾜条件的项.详解:212(1)(1)12z z i i i ?=+-=-=,是实数,故A 正确,21211212z i i i i z i +++===-,是纯虚数,故B 正确, 442221(1)[(1)](2)4z i i i =+=+==,22222(1)224z i i =-=-=,故C 正确,222212(1)(1)220z z i i i i +=++-=-=,所以D 项不正确,故选D.点睛:该题考查的是复数的有关概念和运算,在做题的时候,需要对选项中的问题⼀⼀检验,从⽽找到正确的结果.3.已知()1,3a =-v ,(),4b m m =-v ,()2,3c m =v ,若a b v P v,则b c ?=v v ()A. -7B. -2C. 5D. 8【答案】A 【解析】分析:利⽤向量平⾏列⽅程求出m 的值,然后直接利⽤向量数量积的坐标表⽰求解即可. 详解:因()1,3a v =-,(),4b m m =-v ,()2,3c m =v,所以由//a b r r,可得()340m m +-=,则1,m =()()1,3,2,3b c ∴=-=v ,12337b c ?=?-?=-v v,故选A.点睛:利⽤向量的位置关系求参数是出题的热点,主要命题⽅式有两个:(1)两向量平⾏,利⽤12210x y x y -=解答;(2)两向量垂直,利⽤12120x x y y +=解答.4.如图,?AD 是以正⽅形的边AD 为直径的半圆,向正⽅形内随机投⼊⼀点,则该点落在阴影区域内的概率为()A.16πB.316C.4π D.14【答案】D 【解析】分析:先由圆的对称性得到图中阴影部分的⾯积,再⽤⼏何概型的概率公式进⾏求解. 详解:连接AE ,由圆的对称性得阴影部分的⾯积等于ABE ?的⾯积,易知1=4ABE ABCDS S ?正⽅形,由⼏何概型的概率公式,得该点落在阴影区域内的概率为14P =.故选D. .点睛:本题的难点是求阴影部分的⾯积,本解法利⽤了圆和正⽅形的对称性,将阴影部分的⾯积转化为求三⾓形的⾯积.5.已知等⽐数列{}n a 的⾸项为1,公⽐1q ≠-,且()54323a a a a +=+91239a a a a =L () A. 9- B. 9C. 81-D. 81【答案】B 【解析】分析:⾸先利⽤等⽐数列的项之间的关系,求得公⽐q 的值,之后判断根式的特征,化简求得是有关数列的第⼏项,再结合题中所给的数列的⾸项得出结果.详解:根据题意可知254323a a q a a +==+,942991239551139a a a a a a a q ?===?=?=,故选B.点睛:该题考查的是等⽐数列的有关问题,涉及到项与项之间的关系,还有就是数列的性质,两项的脚码和相等,则数列的两项的积相等,将式⼦化简,利⽤⾸项和公⽐求出结果.6.已知双曲线2222:1(0,0)x y C a b a b-=>>的⼀个焦点坐标为(4,0),且双曲线的两条渐近线互相垂直,则该双曲线的⽅程为( )A. 22188x y -=B. 2211616x y -=C. 22188y x -=D. 22188x y -=或22188y x -= 【答案】A 【解析】分析:先利⽤双曲线的渐近线相互垂直得出该双曲线为等轴双曲线,再利⽤焦点位置确定双曲线的类型,最后利⽤⼏何元素间的等量关系进⾏求解. 详解:因为该双曲线的两条渐近线互相垂直,所以该双曲线为等轴双曲线,即a b =,⼜双曲线2222:x y C a b-=的⼀个焦点坐标为()4,0,所以2216a =,即228a b ==,即该双曲线的⽅程为22188x y -=.故选D.点睛:本题考查了双曲线的⼏何性质,要注意以下等价关系的应⽤:等轴双曲线的离⼼率为2,其两条渐近线相互垂直. 7.已知某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A. 86π+B. 66π+C. 812π+D. 612π+【答案】B 【解析】由三视图可得该⼏何体是由圆柱的⼀半(沿轴截⾯截得,底⾯半径为1,母线长为3)和⼀个半径为1的半球组合⽽成(部分底⾯重合),则该⼏何体的表⾯积为12π+π2π3236π62S =+??+?=+. 【名师点睛】先利⽤三视图得到该组合体的结构特征,再分别利⽤球的表⾯积公式、圆柱的侧⾯积公式求出各部分⾯积,最后求和即可.处理⼏何体的三视图和表⾯积、体积问题时,往往先由三视图判定⼏何体的结构特征,再利⽤相关公式进⾏求解. 8.设x ,y 满⾜约束条件0,2,xy x y ≥??+≤?则2z x y =+的取值范围是()A. []22-,B. []4,4-C. []0,4D. []0,2【答案】B 【解析】分析:⾸先根据题中所给的约束条件画出相应的可⾏域,是两个三⾓形区域,结合⽬标函数的属性,可知其为截距型的,从⽽确定出在哪个点处取得最⼩值,哪个点处取得最⼤值,从⽽确定出⽬标函数的范围. 详解:直线2x y +=-与x 轴交于(2,0)A -点,与y 轴交于(0,2)B -点,直线2x y +=与x 轴交于(2,0)C 点,与y 交于(0,2)D 点,题中约束条件对应的可⾏域为,AOB COD ??两个三⾓形区域,移动直线2y x z =-+,可知直线过点A 时截距取得最⼩值,过点C 时截距取得最⼤值,从⽽得到min max 2(2)04,2204z z =?-+=-=?+=,从⽽确定出⽬标函数的取值范围是[4,4]-,故选B.点睛:该题属于线性规划的问题,需要⾸先根据题中所给的约束条件画出相应的可⾏域,判断⽬标函数的类型,属于截距型的,从⽽判断出动直线过哪个点时取得最⼩值,过哪个点时取得最⼤值,最后求得对应的范围,在求解的时候,判断最优解最关键.9.在印度有⼀个古⽼的传说:舍罕王打算奖赏国际象棋的发明⼈——宰相宰相西萨?班?达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个⼩格⾥,赏给我1粒麦⼦,在第2个⼩格⾥给2粒,第3⼩格给4粒,以后每⼀⼩格都⽐前⼀⼩格加⼀倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆⼈吧!”国王觉得这要求太容易满⾜了,就命令给他这些麦粒.当⼈们把⼀袋⼀袋的麦⼦搬来开始计数时,国王才发现:就是把全印度甚⾄全世界的麦粒全拿来,也满⾜不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下⾯是四位同学为了计算上⾯这个问题⽽设计的程序框图,其中正确的是()A. B. C. D.【答案】C 【解析】分析:先分析这个传说中涉及的等⽐数列的前64项的和,再对照每个选项对应的程序框图进⾏验证. 详解:由题意,得每个格⼦所放麦粒数⽬形成等⽐数列{}n a ,且⾸项11a =,公⽐2q =,所设计程序框图的功能应是计算2641222S =++++,经验证,得选项B 符合要求.故选B . 点睛:本题以数学⽂化为载体考查程序框图的功能,属于基础题.10.已知数列{}n a 的前n 项和为n S ,115a =,且满⾜()()21252341615n n n a n a n n +-=-+-+,已知*,n m N ∈,n m >,则n m S S -的最⼩值为()A. 494-B. 498-C. 14-D. 28-【答案】C 【解析】分析:⾸先对题中所给的数列的递推公式进⾏变形,整理得出数列25n a n ??-为等差数列,确定⾸项和公差,从⽽得到新数列的通项公式,接着得到{}n a 的通项公式,利⽤其通项公式,可以得出哪些项是正的,哪些项是负的,哪些项等于零,从⽽能够判断出n m S S -在什么情况下取得最⼩值,并求出最⼩值的结果. 详解:根据题意可知1(25)(23)(25)(23)n n n a n a n n +-=-+--,式⼦的每⼀项都除以(25)(23)n n --,可得112325n na a n n +=+--,即112(1)525n na a n n +-=+--,所以数列25n a n ??-??是以15525=--为⾸项,以1为公差的等差数列,所以5(1)1625na n n n =-+-?=--,即(6)(25)n a n n =--,由此可以判断出345,,a a a 这三项是负数,从⽽得到当5,2n m ==时,n m S S -取得最⼩值,且5234536514n m S S S a a S a -=-=++=---=-,故选C.点睛:该题考查的是数列的有关问题,需要对题中所给的递推公式变形,构造出新的等差数列,从⽽借助于等差数列求出{}n a 的通项公式,⽽题中要求的n m S S -的值表⽰的是连续若⼲项的和,根据通项公式判断出项的符号,从⽽确定出哪些项,最后求得结果.11.已知菱形ABCD 的边长为060BAD ∠=,沿对⾓线BD 将菱形ABCD 折起,使得⼆⾯⾓A BD C --的余弦值为13-,则该四⾯体ABCD 外接球的体积为( )A.B.C.D. 36π【答案】B 【解析】【分析】⾸先根据题中所给的菱形的特征,结合⼆⾯⾓的平⾯⾓的定义,先找出⼆⾯⾓的平⾯⾓,之后结合⼆⾯⾓的余弦值,利⽤余弦定理求出翻折后AC 的长,借助勾股定理,得到该⼏何体的两个侧⾯是共⽤斜边的两个直⾓三⾓形,从⽽得到该四⾯体的外接球的球⼼的位置,从⽽求得结果. 【详解】取BD 中点M ,连结,AM CM ,根据⼆⾯⾓平⾯⾓的概念,可知AMC ∠是⼆⾯⾓A BD C --的平⾯⾓,根据图形的特征,结合余弦定理,可以求得32AM CM ===,此时满⾜ 2199233()243AC =+--=,从⽽求得AC =,22222AB BC AD CD AC +=+=,所以,ABC ADC ??是共斜边的两个直⾓三⾓形,所以该四⾯体的外接球的球⼼落在AC 中点,半径2ACR ==所以其体积为34433V R ππ==?=,故选B. 【点睛】该题所考查的是有关⼏何体的外接球的问题,解决该题的关键是弄明⽩外接球的球⼼的位置,这就要求对特殊⼏何体的外接球的球⼼的位置以及对应的半径的⼤⼩都有所认识,并且归类记忆即可. 12.已知函数()()ln 3xf x e x =-+,则下⾯对函数()f x 的描述正确的是()A. ()3,x ?∈-+∞,()13f x ≥B. ()3,x ?∈-+∞,()12f x >- C. ()03,x ?∈-+∞,()01f x =- D. ()()min 0,1f x ∈【答案】B 【解析】分析:⾸先应⽤导数研究函数的单调性,借助于⼆阶导来完成,在求函数的极值点的时候,发现对应的⽅程,在中学阶段是解不出来的,所以⽤估算的办法求出来,之后进⾏⽐较,对题中各项的结果进⾏对⽐,排除不正确的,最后得到正确答案.详解:根据题意,可以求得函数的定义域为(3,)-+∞,1'()3x f x e x =-+,21''()(3)xf x e x =++,可以确定''()0f x >恒成⽴,所以'()f x 在(3,)-+∞上是增函数,⼜11'(1)02f e -=-<,11'()0522f -=->,所以01(1,)2x ?∈--,满⾜0'()0f x =,所以函数()f x 在0(3,)x -上是减函数,在0(+)x ∞,上是增函数,0()f x 是最⼩值,满⾜00103xe x -=+,000()ln(3)x f x e x =-+00x e x =+在1(1,)2--上是增函数,从⽽有01()()(1)1f x f x f e ≥>-=-,结合该值的⼤⼩,可知最⼩值是负数,可排除A,D ,且111e->-,从⽽排除C 项,从⽽求得结果,故选B.点睛:该题考查的是利⽤导数研究函数的性质,本题借着⼆阶导来得到⼀阶导函数是增函数,从⽽利⽤零点存在性定理对极值点进⾏估算,最后不是求出的确切值,⽽是利⽤估算值对选项进⾏排除,从⽽求得最后的结果.第Ⅱ卷(共90分)⼆、填空题(每题5分,满分20分,将答案填在答题纸上)13.将函数()()()2sin 20f x x ??=+<的图象向左平移π3个单位长度,得到偶函数()g x 的图象,则?的最⼤值是________________.【答案】6π- 【解析】分析:先利⽤三⾓函数的变换得到()g x 的解析式,再利⽤诱导公式和余弦函数为偶函数进⾏求解. 详解:函数()()()2sin 20f x x =+<的图象向左平移3π个单位长度,得到π2π2sin[2()]2sin(2)33y x x ??=++=++,即2π()2sin(2)3g x x ?=++,⼜()g x 为偶函数,所以2πππ,32k k Z ?+=+∈,即ππ,6k k Z ?=-+∈,⼜因为0?<,所以的最⼤值为π6-. 点睛:本题的易错点是:函数()()()2sin 20f x x ??=+<的图象向左平移3π个单位长度得到 ()g x 的解析式时出现错误,要注意平移的单位仅对于⾃变量""x ⽽⾔,不要得到错误答案“π()2sin(2)3g x x ?=++”. 14.已知0a >,0b >,6b ax x ??+ ??展开式的常数项为52,则2+a b 的最⼩值为__________.【答案】2 【解析】分析:由题意在⼆项展开式的通项公式中,令x 的幂指数等于零,求得r 的值,可得展开式的常数项,再根据展开式的常数项为52,确定出12ab =,再利⽤基本不等式求得2+a b 的最⼩值.详解:6()bax x+展开式的通项公式为666166()()rrr r r r r r r b T C ax a b C x x----+==,令620r -=,得3r =,从⽽求的333652C a b =,整理得12ab =,⽽22a b +≥==,故答案是2. 点睛:该题考查的是有关⼆项式定理以及基本不等式的问题,解题的关键是要清楚⼆项展开式的通项公式以及确定项的求法,之后是有关利⽤基本不等式求最值的问题,注意其条件是⼀正⼆定三相等.15.已知函数()()2log 41xf x mx =++,当0m =时,关于x 的不等式()3log 1f x <的解集为__________.【答案】()0,1 【解析】分析:⾸先应⽤条件将函数解析式化简,通过解析式形式确定函数的单调性,解出函数值1所对应的⾃变量,从⽽将不等式转化为3(log )(0)f x f <,进⼀步转化为3log 0x <,求解即可,要注意对数式中真数的条件即可得结果.详解:当0m =时,2()log (41)xf x =+是R 上的增函数,且2(0)log (11)1f =+=,所以()3log 1f x <可以转化为3(log )(0)f x f <,结合函数的单调性,可以将不等式转化为3log 0x <,解得01x <<,从⽽得答案为(0,1).点睛:解决该题的关键是将不等式转化,得到x 所满⾜的不等式,从⽽求得结果,挖掘题中的条件就显得尤为重要.16.设过抛物线()220y px p =>上任意⼀点P (异于原点O )的直线与抛物线()280y px p =>交于A ,B两点,直线OP 与抛物线()280y px p =>的另⼀个交点为Q ,则ABQ ABOS S ??=__________.【答案】3 【解析】分析:画出图形,将三⾓形的⾯积⽐转化为线段的长度⽐,之后转化为坐标⽐,设出点的坐标,写出直线的⽅程,联⽴⽅程组,求得交点的坐标,最后将坐标代⼊,求得⽐值,详解:画出对应的图就可以发现,1ABQ Q P Q ABOP PS x x y PQ S OP x y ??-===-设211(,)2y P y p ,则直线121:2y OP y x y p=,即12p y x y =,与28y px =联⽴,可求得14Q y y =,从⽽得到⾯积⽐为11413y y -=,故答案是3. 点睛:解决该题的关键不是求三⾓形的⾯积,⽽是应⽤⾯积公式将⾯积⽐转化为线段的长度⽐,之后将长度⽐转化为坐标⽐,从⽽将问题简化,求得结果.三、解答题(本⼤题共6⼩题,共70分.解答应写出⽂字说明、证明过程或演算步骤.)17.在ABC ?中,内⾓A ,B ,C 所对的边分别为a ,b ,c ,已知60B =o ,8c =. (1)若点M ,N 是线段BC 的两个三等分点,13BM BC =,ANBM =,求AM 的值;(2)若12b =,求ABC ?的⾯积.【答案】(1)213(2)24283+. 【解析】分析:第⼀问根据题意得出两个点的位置,从⽽设出对应的边长,在三⾓形中,应⽤余弦定理求得x所满⾜的等量关系式,求得对应的值,再放在三⾓形中应⽤余弦定理求得对应的边长,第⼆问根据正弦定理找出⾓所满⾜的条件,最后利⽤⾯积公式求得三⾓形的⾯积.详解:(1)由题意得M,N是线段BC的两个三等分点,设BM x=,则2BN x=,23AN x=,⼜60B=o,8AB=,在ABN中,由余弦定理得22 12644282cos60x x x=+-??o,解得2x=(负值舍去),则2 BM=.在ABN中,22182282522132AM=+-==.(2)在ABC中,由正弦定理sin sinb cB C=,得38sin32sin12c BCb===.⼜b c>,所以B C>,则C为锐⾓,所以6cos C=.则()3613323sin sin sin cos cos sin2A B C B C B C+=+=+=?+?=,所以ABC的⾯积1323sin48242832S bc A+==?=+.点睛:该题所考查的是有关利⽤正余弦定理解三⾓形的问题,在解题的过程中,需要时刻关注正余弦定理的内容,在求解的过程中,注意边长所满⾜的条件,对解出的结果进⾏相应的取舍,将⾯积公式要⽤活.18.如图,在五⾯体ABCDEF中,四边形EDCF是正⽅形,AD DE=,090ADE∠=,120ADC DCB∠=∠=.(1)证明:平⾯ABCD ⊥平⾯EDCF ; (2)求直线AF 与平⾯BDF 所成⾓的正弦值.【答案】(1)见解析(2【解析】分析:第⼀问证明⾯⾯垂直,在证明的过程中,利⽤常规⽅法,抓住⾯⾯垂直的判定定理,找出相应的垂直关系证得结果,第⼆问求的是线⾯⾓的正弦值,利⽤空间向量,将其转化为直线的⽅向向量与平⾯的法向量所成⾓的余弦值的绝对值,从⽽求得结果.详解:(1)证明:因为AD DE ⊥,DC DE ⊥,AD ,CD ?平⾯ABCD ,且AD CD D =I ,所以DE ⊥平⾯ABCD .⼜DE ?平⾯EDCF ,故平⾯ABCD ⊥平⾯EDCF . (2)解:由已知//DC EF ,所以//DC 平⾯ABFE . ⼜平⾯ABCD ?平⾯ABFE AB =,故//AB CD . 所以四边形ABCD 为等腰梯形.⼜AD DE =,所以AD CD =,易得AD BD ⊥,令1AD =,如图,以D 为原点,以DA u u u v的⽅向为x 轴正⽅向,建⽴空间直⾓坐标系D xyz -,则()0,0,0D ,()1,0,0A,12F ??- ? ???,()B ,所以3,12FA ??=- ? ???u u u v,()DB =u u u v,12DF ??=- ? ???u u u v . 设平⾯BDF的法向量为(),,n x y z =,由0,0,n DB n DF ??=??=?u u u v u u u v 所以0,10,22x y z ?=??-++=??取2x =,则0y =,1z =,得()2,0,1n =, cos ,FA n FA n FA n ?===u u u vu u u v u u u v .设直线与平⾯BDF 所成的⾓为θ,则sin θ=. 所以直线AF 与平⾯BDF点睛:该题在解题的过程中,第⼀问⽤的是常规法,第⼆问⽤的是空间向量法,既然第⼆问要⽤空间向量,则第⼀问也可以⽤空间向量的数量积等于零来达到证明垂直的条件,所以解题⽅法是不唯⼀的.19.经销商第⼀年购买某⼯⼚商品的单价为a (单位:元),在下⼀年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠⼒度越⼤,具体情况如下表:上⼀年度销售额/万元[)0,100[)100,200[)200,300[)300,400[)400,500[)500,+∞商品单价/元 a0.9a 0.85a 0.8a 0.75a 0.7a为了研究该商品购买单价的情况,为此调查并整理了50个经销商⼀年的销售额,得到下⾯的柱状图.已知某经销商下⼀年购买该商品的单价为X (单位:元),且以经销商在各段销售额的频率作为概率. (1)求X 的平均估计值.(2)该⼯⼚针对此次的调查制定了如下奖励⽅案:经销商购买单价不⾼于平均估计单价的获得两次抽奖活动,⾼于平均估计单价的获得⼀次抽奖活动.每次获奖的⾦额和对应的概率为记Y (单位:元)表⽰某经销商参加这次活动获得的资⾦,求Y 的分布及数学期望. 【答案】(1)0.873a (2)见解析【解析】分析:第⼀问根据题意,列出对应的变量的分布列,利⽤离散型随机变量的期望公式求得对应的平均值;第⼆问也是分析题的条件,将事件对应的情况找全,对应的概率值算对,最后列出分布列,利⽤公式求得其数学期望.详解:(1)由题可知:X 的平均估计值为:0.20.90.30.850.240.80.120.750.10.70.040.873a a a a a a a ?+?+?+?+?+?=.(2)购买单价不⾼于平均估计单价的概率为10.240.120.10.040.52+++==. Y 的取值为5000,10000,15000,20000. ()1335000248P Y ==?=,()1113313100002424432P Y ==?+??=,()2111331500024416P Y C ===,()11112000024432P Y ==??=.所以Y 的分布列为()31331500010000150002000093758321632E Y =?+?+?+?=(元).点睛:该题属于离散型随机变量的分布列及其期望值的运算,在解题的过程中,⼀定要对题的条件加以分析,正确理解,那些量有⽤,会提⽰我们得到什么样的结果,还有就是关于离散型随机变量的期望公式⼀定要熟记并能灵活应⽤.20.已知椭圆1C :2221(0)8x y b b+=>的左、右焦点分别为1F ,2F ,点2F 也为抛物线2C :28y x =的焦点.(1)若M ,N 为椭圆1C 上两点,且线段MN 的中点为(1,1),求直线MN 的斜率;(2)若过椭圆1C 的右焦点2F 作两条互相垂直的直线分别交椭圆于A ,B 和C ,D ,设线段AB ,CD 的长分别为m ,n ,证明11m n+是定值.【答案】(1)1 2-(2解:因为抛物线22:8C y x =的焦点为(2,0),所以284b -=,故2b =.所以椭圆222:184x y C +=.(1)设1122(,),(,)M x y N x y ,则221122221,84{1,84x y x y +=+= 两式相减得1212()()8x x x x +-+1212()()04y y y y +-=,⼜MN 的中点为(1,1),所以12122,2x x y y +=+=.所以21211 2y y x x -=--. 显然,点(1,1)在椭圆内部,所以直线MN 的斜率为12-. (2)椭圆右焦点2(2,0)?F .当直线AB 的斜率不存在或者为0时,11 m n +=+8=. 当直线AB 的斜率存在且不为0时,设直线AB 的⽅程为(2)y k x =-,设1122(,),(,)A x y B x y ,联⽴⽅程得22(2),{28,y k x x y =-+=消去y 并化简得222(12)8k x k x +-2880k +-=,因为222(8)4(12)k k ?=--+22(88)32(1)0k k -=+>,所以2122812k x x k +=+,21228(1)12k x x k -=+.所以m =22)12k k+=+同理可得22)2k n k +=+.所以11 m n +=2222122()118k k k k +++=++为定值. 【解析】分析:(1)先利⽤抛物线的焦点是椭圆的焦点求出284b -=,进⽽确定椭圆的标准⽅程,再利⽤点差法求直线的斜率;(2)设出直线的⽅程,联⽴直线和椭圆的⽅程,得到关于x 的⼀元⼆次⽅程,利⽤根与系数的关系进⾏求解.详解:因为抛物线22:8C y x =的焦点为()2,0,所以284b -=,故2b =.所以椭圆221:184x y C +=.(1)设()11,M x y ,()22,N x y ,则221122221,841,84x y x y ?+=+=?? 两式相减得()()()()12121212084x x x x y y y y +-+-+=,⼜MN 的中点为()1,1,所以122x x +=,122y y +=.所以212112y y x x -=--.显然,点()1,1在椭圆内部,所以直线MN 的斜率为12-.(2)椭圆右焦点()22,0F .当直线AB 的斜率不存在或者为0时,11m n +==当直线AB 的斜率存在且不为0时,设直线AB 的⽅程为()2y k x =-,设()11,A x y ,()22,B x y ,联⽴⽅程得()222,28,y k x x y ?=-?+=?消去y 并化简得()2222128880k xk x k +-+-=,因为()()()()222228412883210k k k k ?=--+-=+>,所以2122812k x x k +=+,()21228112k x x k-=+.所以)22112k m k +==+,同理可得)2212k n k +=+.所以222211122118k k m n k k ??+++=+=?++?为定值. 点睛:在处理直线与椭圆相交的中点弦问题,往往利⽤点差法进⾏求解,⽐联⽴⽅程的运算量⼩,另设直线⽅程时,要注意该直线的斜率不存在的特殊情况,以免漏解. 21.已知()'fx 为函数()f x 的导函数,()()()2'200x x f x e f e f x =+-.(1)求()f x 的单调区间;(2)当0x >时,()xaf x e x <-恒成⽴,求a 的取值范围.【答案】(1)见解析(2)[]1,0- 【解析】分析:第⼀问给⾃变量赋值求得解析式,利⽤导数研究函数的单调性即可,第⼆问关于恒成⽴问题可以转化为求函数最值问题来解决,最值也离不开函数图像的⾛向,所以离不开求导确定函数的单调区间. 详解:(1)由()()0120f f =+,得()01f =-. 因为() ()2220xx f x ee f =-'-',所以()()0220f f =-'-',解得()00f '=.所以()22xx f x ee =-,()()22221x x x xf x e e e e ='=--,当(),0x ∈-∞时,()0f x '<,则函数()f x 在(),0-∞上单调递减;当()0,x ∈+∞时,()0f x '>,则函数()f x 在()0,+∞上单调递增. (2)令()()()221xxx g x af x e x aea e x =-+=-++,根据题意,当()0,x ∈+∞时,()0g x <恒成⽴.()()()()222211211x x x x g x ae a e ae e '=-++=--.①当102a <<,()ln2,x a ∈-+∞时,()0g x '>恒成⽴,所以()g x 在()ln2,a -+∞上是增函数,且()()()ln2,g x g a ∈-+∞,所以不符合题意;②当12a ≥,()0,x ∈+∞时,()0g x '>恒成⽴,所以()g x 在()0,+∞上是增函数,且()()()0,g x g ∈+∞,所以不符合题意;③当0a ≤时,因为()0,x ∈+∞,所有恒有()0g x '<,故()g x 在()0,+∞上是减函数,于是“()0g x <对任意()0,x ∈+∞都成⽴”的充要条件是()00g ≤,即()210a a -+≤,解得1a ≥-,故10a -≤≤. 综上,a 的取值范围是[]1,0-.点睛:该题属于导数的综合应⽤问题,在解题的过程中,确定函数解析式就显得尤为重要,在这⼀步必须保持头脑清醒,第⼆问在证明不等式恒成⽴的时候,可以构造新函数,恒成⽴问题转化为最值来处理即可,需要注意对参数进⾏讨论.请考⽣在22、23两题中任选⼀题作答,如果多做,则按所做的第⼀题记分.22.选修4-4:坐标系与参数⽅程在直⾓坐标系xOy 中,直线l的参数⽅程为34x y a ?=?=?,(t 为参数),圆C 的标准⽅程为22(3)(3)4x y -+-=.以坐标原点为极点, x 轴正半轴为极轴建⽴极坐标系.(1)求直线l 和圆C 的极坐标⽅程; (2)若射线(0)3πθρ=>与直线l 的交点为M ,与圆C 的交点为,A B ,且点M 恰好为线段AB 的中点,求a 的值.【答案】(1)cos sin ρθρθ-304a -+=.26cos 6sin 140ρρθρθ--+=(2)94a = 【解析】分析:(1)将直线l 的参数⽅程利⽤代⼊法消去参数,可得直线l 的直⾓坐标⽅程,利⽤cos x ρθ=,sin y ρθ=可得直线l 的极坐标⽅程,圆的标准⽅程转化为⼀般⽅程,两边同乘以ρ利⽤利⽤互化公式可得圆C 的极坐标⽅程;(2)联⽴2,366140,cos sin πθρρρθ?=-∞-+=?可得(23140ρρ-++=,根据韦达定理,结合中点坐标公式可得3,23M π??+ ? ???,将323M π??+ ? ???代⼊3cos sin 04a ρθρθ--+=,解⽅程即可得结果.详解:(1)在直线l 的参数⽅程中消去t 可得,304x y a --+=,将cos x ρθ=,sin y ρθ=代⼊以上⽅程中,所以,直线l 的极坐标⽅程为3cos sin 04a ρθρθ--+=. 同理,圆C 的极坐标⽅程为26cos 6sin 140ρρθρθ--+=. (2)在极坐标系中,由已知可设1,3M πρ??,2,3A πρ??,3,3B πρ??. 联⽴2,366140,cos sin πθρρρθ?=-∞-+=?可得(23140ρρ-++=,所以233ρρ+=+因为点M 恰好为AB 的中点,所以1ρ=,即3M π.把3M π代⼊3cos sin 04a ρθρθ--+=,得(313024a ++=,所以94 a =.。
2016--2017学年度普宁一中高三级理科数学 摸底考试试题卷注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卷上。
2.用2B 铅笔将选择题答案在答题卷对应位置涂黑;答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;不准使用铅笔或涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卷的整洁。
一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.设集合{}|(3)(1)0A x x x =-->,{}|lg(23)B x y x ==-,则A B =( )A .3[,3)2 B .(3,)+∞ C .3(1,)2 D .3(,3)22、已知命题021x p x ∀≥≥:,;命题q :若x y >,则22x y >.则下列命题为真命题的是( )A .p q ∧ B .p q ∧⌝ C .p q ⌝∧⌝ D .p q ⌝∨ 3、已知直线,a b ,平面,αβ,且a α⊥,b β⊂,则“a b ⊥”是“//αβ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4、设偶函数()f x 的定义域为R ,当[0,)x ∈+∞时,()f x 是增函数,则(2),(),(3)f f f π--的大小关系是( )A . (2)()(3)f f f π-<<-B .()(2)(3)f f f π<-<-C .(3)(2)()f f f π-<-<D .(2)(3)()f f f π-<-<5. 将函数sin 6y x π⎛⎫=+⎪⎝⎭的图象上各点的横坐标压缩为原来的12倍(纵坐标不变),所得函数在下面哪个区间单调递增( ) A .,36ππ⎛⎫-⎪⎝⎭B .,22ππ⎛⎫-⎪⎝⎭ C .,33ππ⎛⎫- ⎪⎝⎭D .2,63ππ⎛⎫-⎪⎝⎭6、已知函数2()(1)x f x e x =-+(e 为自然对数的底),则()f x 的大致图象是( )7.设0a >,0b >4a 和2b 的等比中项,则21a b+的最小值为( ) A. B .8 C .9 D .108、 若某几何体的三视图如图所示,则此几何体的表面积是( )A .36πB .30πC .24πD .15π9、已知()f x 在R 上是可导函数,则()f x 的图象如图所示,则不等式()()2230xx f x '-->的解集为A .()(),21,-∞-+∞B .()(),21,2-∞-C .()()(),11,02,-∞--+∞D .()()(),11,13,-∞--+∞10、设147()9a -=,159()7b =,27log 9c =,则a , b , c 的大小顺序是 ( )A 、b a c <<B 、c a b <<C 、c b a <<D 、b c a <<11、已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线截圆22:(1)1M x y -+=所得,则该双曲线的离心率为( )A .43 B .5312、定义在区间),0(+∞上的函数)(x f 使不等式)(3)(')(2x f x xf x f <<恒成立,其中)('x f 为)(x f 的导数,则( ) A .16)1()2(8<<f f B .8)1()2(4<<f f C .4)1()2(3<<f f D .3)1()2(2<<f f 第II 卷(填空题,解答题,90分)二、填空题(共4题,每题5分)13.3()8f x x x =+-在(1,6-)处的切线方程为 14.某空间几何体的三视图如图所示,则该几何体的体积为15.某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,且甲、乙两名员工必须分到同一个车间,则不同分法的种数为 .16. 在ABC ∆中,c b a ,,分别为内角C B A ,,的对边,且bc a c b =-+222,0>⋅BC AB ,23=a ,则cb +的取值范围是 .三、解答题:本大题共6小题,满分70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.18.(本小题满分12分)雾霾影响人们的身体健康,越来越多的人开始关心如何少产生雾霾,春节前夕,某市健康协会为了了解公众对“适当甚至不燃放烟花爆竹”的态度,随机采访了50人,将凋查情况进行整理后制成下表:(1)以赞同人数的频率为概率,若再随机采访3人,求至少有1人持赞同态度的概率; (2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞同...“适当甚至不燃放烟花爆竹”的人数为X ,求随机变量X 的分布列和数学期望.19.(本小题满分12分) 正方形ADEF与梯形ABCD所在平面互相垂直,1,,2,2AD CD AB CD AB AD CD ⊥===点M 在线段EC 上且不与E,C 重合。
普宁英才华侨中学2018-2018学年度第二学期 摸底考试高三数学(理科)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号等相关信息填写在答题卷密封线内,并在“座位号”栏内填写座位号。
2. 所有题目必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷上各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}3,2,1,0,1,2A =---,{}23B x x =≤,则A B =(A ){}1,0,1-(B ){}0,2 (C ){}3,2,1,0,1,2--- (D )[]0,2(2)复数z 满足(1+i)z =i +2,则z 的虚部为(A )32(B )12(C )12-(D )12i -(3)已知等差数列{}n a 的前n 项和为n S ,且322315S S -=,则数列{}n a 的公差为(A )3(B )4(C )5 (D )6(4)设D 为△ABC 所在平面内一点,且3BC BD = ,则AD =(A )2133AB AC + (B )1233AB AC + (C )4133AB AC +(D )2533AB AC +(5)若空间四条直线a 、b 、c 、d ,两个平面α、β,满足b a ⊥,d c ⊥,α⊥a ,α⊥c ,则(A )α//b(B )b c ⊥(C )d b //(D )b 与d 是异面直线(6)若命题:“20,20x R ax ax ∃∈-->”为假命题,则a 的取值范围是(A )(,8][0,)-∞-+∞ (B )(8,0)-(C )(,0]-∞(D )[8,0]-(7)函数],[|,|sin ππ-∈+=x x x y 的大致图象是(A ) (B ) (C ) (D )(8)已知0a >且1a ≠,函数()13log ,0,0x x x f x a b x >⎧⎪=⎨⎪+≤⎩满足()02f =,()13f -=,则()()3f f -=(A )3-(B )2-(C )3(D )2(9)阅读如图1所示的程序框图,运行相应程序,输出的结果是(A )1234(B )2018(C )2258(D )722(10)六个学习小组依次编号为1、2、3、4、5、6,每组3人,现需从中任选3人组成一个新的学习小组,则3人来自不同学习小组的概率为 (A )5204(B )4568(C )1568(D )568(11)直线:42l x y +=与圆22:1C x y +=交于A 、B 两点,O 为坐标原点,若直线OA 、OB 的倾斜角分别为α、β,则cos cos αβ+= 图1 (A )1817 (B )1217- (C )417-(D )417(12)已知,a b R ∈、且2222290ab a b ++-=,若M 为22a b +的最小值,则约束条件⎩⎨⎧≤+≤+.2||||,322M y x M y x 所确定的平面区域内整点(横坐标纵坐标均为整数的点)的个数为 (A )29 (B )25(C )18 (D )16第Ⅱ卷本卷包括必考题和选考题两部分。
2018年高三数学一模试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012A =--,,,,,()(){}130B x x x =-+<,则A B = ( ) A .{}21,0--, B .{}0,1 C .{}1,01-, D .{}0,1,2 2.已知复数21iz i=+(i 为虚数单位),则z 的共轭复数为( ) A .1i -+ B .1i -- C .1i + D .1i - 3.下列说法正确的是( )A .若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥B .已知相关变量(),x y 满足回归方程 24y x =-,若变量x 增加一个单位,则y 平均增加4个单位C .命题“若圆()()22:11C x m y m -++-=与两坐标轴都有公共点,则实数[]0,1m ∈”为真命题D .已知随机变量()22X N σ ,,若()0.32P X a <=,则()40.68P X a >-=4.如图,在边长为2的正方形ABCD 中,M 是AB 的中点,过C ,M ,D 三点的抛物线与CD 围成阴影部分,则向正方形内撒一粒黄豆落在阴影部分的概率是( )A .16 B .13 C.12 D .235.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .33cmB .35cm C. 34cm D .36cm6.已知正项等比数列{}n a 的前n 项和为n S ,若48102a a a =,则3S 的最小值为( ) A .2 B .3 C.4 D.67.20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数n ,按照以下的规律进行变换:如果n 是个奇数,则下一步变成31n +;如果n 是个偶数,则下一步变成2n,这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确地说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i 值为6,则输入的n 值为( )A .5B .16C.5或32 D .4或5或32 8.在)12nx -的二项展开式中,若第四项的系数为7-,则n =( )A .9B .8 C.7 D .69.已知等差数列{}n a 的前n 项和为n S ,且8430S S =-≠,则412S S 的值为( ) A .13-B .112- C.112 D .1310.将函数()22sin cos f x x x x =-()0t t >个单位长度,所得图象对应的函数为奇函数,则t 的最小值为( ) A .23π B .3π C. 2π D .6π 11.如图,过抛物线()220y px p =>焦点F 的直线交抛物线于A ,B 两点,交其准线l 于点C ,若2BC BF =,且3AF =,则此抛物线方程为( )A .29y x =B .26y x = C.23y x = D.2y =12.已知函数()()23xf x x e =-,设关于x 的方程()()()22120f x mf x m R e--=∈有n 个不同的实数解,则n 的所有可能的值为( )A .3B .1或3 C.4或6 D .3或4或6第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()1,1a =- ,(),1b t =,若()()//a b a b +- ,则实数t =.14.设实数x ,y 满足不等式组70,310,350,x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩则2z x y =-的最大值为.15.已知双曲线经过点(1,,其一条渐近线方程为2y x =,则该双曲线的标准方程为. 16.已知等腰直角ABC △的斜边2BC =,沿斜边的高线AD 将ADC △折起,使二面角B ADC --的大小为3π,则四面体ABCD 的外接球的表面积为. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知在ABC △中,角A ,B ,C 的对边分别为a ,b ,c,且有cos cos cos 0a B b A C +=.(1)求角C 的大小;(2)当2c =时,求ABC S △的最大值.18. 某调查机构随机调查了20岁到70岁之间的600位网上购物者的年龄分布情况,并将所得数据按照[)20,30,[)30,40,[)40,50,[)50,60,[]60,70分成5组,绘制成频率分布直方图(如图).(1)求频率分布直方图中实数m 的值及这600位网上购物者中年龄在[)40,60内的人数; (2)现采用分层抽样的方法从参与调查的600位网上购物者中随机抽取10人,再从这10人中任选2人,设这2人中年龄在[)30,40内的人数为X ,求X 的分布列和数学期望.19. 如图,菱形ABCD 与四边形BDEF 相交于BD ,120ABC ∠=,BF ⊥平面ABCD ,//DE BF ,2BF DE =,AF FC ⊥,M 为CF 的中点,AC BD G = .(1)求证://GM 平面CDE ;(2)求直线AM 与平面ACE 成角的正弦值.20. 已知椭圆E 的两个焦点为()110F -,,()210F ,,离心率2e =(1)求椭圆E 的方程;(2)设直线():0l y x m m =+≠与椭圆E 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点T ,当m 变化时,求TAB △面积的最大值. 21. 已知函数()21axf x x e-=-(a 是常数).(1)求函数()y f x =的单调区间;(2)当()0,16x ∈时,函数()f x 有零点,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为,sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l sin 34πθ⎛⎫-= ⎪⎝⎭. (1)求曲线C 的普通方程及直线l 的直角坐标方程;(2)设P 是曲线C 上的任意一点,求点P 到直线l 的距离的最大值. 23.选修4-5:不等式选讲 已知函数()21f x x =-.(1)求不等式()1f x ≤的解集A ;(2)当,m n A ∈时,证明:1m n mn +≤+.试卷答案一、选择题1-5:ADCDB 6-10:DCBBD 11、12:CA 二、填空题13.1- 14.8 15.2214y x -= 16.73π三、解答题17.解:(1)因为cos cos cos 0a B b A C +=,由正弦定理,得sin cos sin cos cos 0A B B A C C +=,即()sin cos 0A B C C +=,即sin cos 0C C C =. 因为在ABC △中,0C π<<,所以sin 0C ≠,所以cos 2C =,解得4C π=.(2)由余弦定理,得222222cos c a b ab C a b =+-=+,即(224=2a b ab +≥,故(22ab ≤=,当且仅当a b ==.所以(11sin 221222ABC S ab C =≤⨯⨯=+△即ABC S △的最大值为118.解:(1)由频率分布直方图,可得()0.0300.0260.0140.012101m ++++⨯=,得0.018m =.则这600位网上购物者中年龄在[)40,60内的频率为()0.0180.01410=0.32+⨯, 故这600位网上购物者中年龄在[)40,60内的人数为6000.32=192⨯.(2)由频率分布直方图可知,年龄在[)30,40内的人数与其他年龄段的总人数比为0.03010310.030107⨯=-⨯,由分层抽样的知识知,抽出的10人中年龄在[)30,40内的人数为3,其他年龄段的总人数为7.所以X 的可能取值为0,1,2.()023********C C P X C ===,()11372107115C C P X C ===,()20372101215C C P X C ===所以X 的分布列为故X 的数学期望()0121515155E X =⨯+⨯+⨯=. 19.(1)证明:取BC 的中点N ,连接GN ,MN . 因为G 为菱形对角线的交点,所以G 为AC 中点.又N 为BC 中点,所以//GN CD ,又GN ⊄平面CDE ,CD ⊂平面CDE ,所以//GN 平面CDE .又因为M ,N 分别为FC ,BC 的中点.所以//MN FB ,又因为//DE BF ,所以//DE MN ,MN ⊄平面CDE ,DE ⊂平面CDE ,所以//MN 平面CDE ,又MN ,GN ⊂平面MNG ,MN GN N = ,所以平面//GMN 平面CDE .又GM ⊂平面GMN ,所以//GM平面CDE . (2)解:连接GF .设菱形的边长2AB =,则由120ABC ∠=,得1GB GD ==,GA GC ==又因为AF FC ⊥,所以FG GA ==则在直角GBF △中,BFDE =.由BF ⊥平面ABCD ,//DE BF ,得DE ⊥平面ABCD .以G 为坐标原点,分别以GA ,GD 所在直线为x 轴,y 轴,过点G 与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系G xyz -,则()0,0,0G,)0A,,01E ⎛ ⎝⎭,(0F -,,1,222M ⎛-- ⎝⎭,则)0GA =,,01GE ⎛= ⎝⎭ . 设(),,m x y z =为平面ACE 的一个法向量,则0,0,m GA m GE ⎧=⎪⎨=⎪⎩即00y z =⎨+=⎪⎩.令z =1y =-,所以(0,m =-.又1,22AM ⎛=- ⎝⎭,所以11cos ,10AM mAM m AM m+=== . 设直线AM 与平面ACE 所成角为θ,则sin θ=. 所以直线AM 与平面ACE20.解:(1)由离心率2e =1c =,解得a =所以1b =.所以椭圆E 的方程是2212x y +=. (2)解:设()11,A x y ,()22,B x y ,据221,2x y y x m ⎧+=⎪⎨⎪=+⎩得2234220x mx m ++-= ∵直线l 与椭圆E 有两个不同的交点,∴()()22412220m m ∆=-->,又0m ≠,所以m <0m ≠.由根与系数的关系得1243mx x -+=,212223m x x -=设线段AB 中点为C ,点C 横坐标12223C x x m x +==-,3C C my x m =+=,∴2,33m m C ⎛⎫- ⎪⎝⎭,∴线段AB 垂直平分线方程为233m m y x ⎛⎫-=-+ ⎪⎝⎭,∴点T 坐标为,03m ⎛⎫- ⎪⎝⎭,点T 到直线AB的距离d =,又AB ==,所以123TABS =△=232m =时,三角形TAB 面积最大,且()max TAB S =△.21.解:(1)当0a =时,()21f x x =-,函数在()0+∞,上单调递增,在()0-∞,上单调递减.当0a ≠时,()()()'2222ax ax axf x xe x a e eax x ---=+-=-+,因为0ax e ->, 令()220g x ax x =-+=,解得0x =或2x a=. ①当0a >时,函数()22g x ax x =-+在20,a⎡⎤⎢⎥⎣⎦上有()0g x ≥,即()'0f x ≥,函数()y f x =单调递增;函数()22g x ax x =-+在(),0-∞,2,a ⎛⎫+∞⎪⎝⎭上有()0g x <,即()'0f x <,函数()y f x =单调递减;②当0a <时,函数()22g x ax x =-+在2a ⎛⎫-∞ ⎪⎝⎭,,()0,+∞上有()0g x >,即()'0f x >,函数()y f x =单调递增;函数()22g x ax x =-+在2,0a ⎡⎤⎢⎥⎣⎦上有()0g x ≤,即()'0f x ≤,函数()y f x =单调递减.综上所述,当0a =时,函数()y f x =的单调递增区间为()0,+∞,递减区间为(),0-∞;当0a >时,函数()y f x =的单调递增区间为20,a ⎡⎤⎢⎥⎣⎦,递减区间为(),0-∞,2,a ⎛⎫+∞ ⎪⎝⎭; 当0a <时,函数()y f x =的单调递增区间为2,a ⎛⎫-∞ ⎪⎝⎭,()0,+∞,递减区间为2,0a ⎡⎤⎢⎥⎣⎦. (2)①当0a =时,由()210f x x =-=,可得1x =±,()10,16∈,故0a =满足题意. ②当0a >时,函数()y f x =在20,a ⎡⎤⎢⎥⎣⎦上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,(i )若()20,16a ∈,解得18a >. 可知20,x a ⎛⎫∈ ⎪⎝⎭时,()f x 是增函数,2,16x a ⎛⎫∈ ⎪⎝⎭时,()f x 是减函数,由()010f =-<,∴在()0,16上()2max 22410f x f e a a-⎛⎫==-≥⎪⎝⎭, 解得22a e e -≤≤,所以128a e <≤; (ii )若[)216,a ∈+∞,解得108a <≤.函数()y f x =在()0,16上递增, 由()010f =-<,则()161625610af e-=->,解得1ln 22a <.由11ln 228>,所以10,8a ⎛⎤∈ ⎥⎝⎦.③当0a <时,函数()y f x =在()0,16上递增,()01f =-,()161625610af e -=->,解得1ln 22a <, ∴0a <,综上所述,实数a 的取值范围是2,e⎛⎤-∞ ⎥⎝⎦.22.解:(1)因为2222cos sin 1y θθ+=+=, 所以曲线C 的普通方程为2213x y +=.sin 34πθ⎛⎫-= ⎪⎝⎭,展开得sin cos 3ρθρθ-=,即3y x -=, 因此直线l 的直角坐标方程为30x y -+=. (2)设),sin Pθθ,则点P 到直线l的距离为d ==≤ 等号成立当且仅当sin 13πθ⎛⎫-=- ⎪⎝⎭,即()1126k k Z πθπ=+∈时等号成立,即31,22P ⎛⎫- ⎪⎝⎭, 因此点P 到直线l的距离的最大值为223.(1)解:由211x -≤,得1211x -≤-≤,即1x ≤, 解得11x -≤≤,所以[]11A =-,.(2)证明:(证法一)()()()222222221111m n mn m n m n m n +-+=+--=---因为,m n A ∈,所以11m -≤≤,11n -≤≤,210m -≤,210n -≤, 所以()()22110m n ---≤,()221m n mn +≤+,又10mn +≥,故1m n mn +≤+.(证法二)因为,m n A ∈,故11m -≤≤,11n -≤≤, 而()()()1110m n mn m n +-+=--≤()()()1110m n mn m n +--+=++≥⎡⎤⎣⎦,即()11mn m n mn -+≤+≤+,故1m n mn +≤+.。
2016—-2017学年度普宁一中高三级理科数学摸底考试试题卷 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卷上.2。
用2B 铅笔将选择题答案在答题卷对应位置涂黑;答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;不准使用铅笔或涂改液。
不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁。
一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.设集合{}|(3)(1)0A x x x =-->,{}|lg(23)B x y x ==-,则AB =()A .3[,3)2B .(3,)+∞C .3(1,)2D .3(,3)22、已知命题021xp x ∀≥≥:,;命题q :若x y >,则22x y >.则下列命题为真命题的是( )A . p q ∧B .p q ∧⌝C .p q ⌝∧⌝D .p q ⌝∨3、已知直线,a b ,平面,αβ,且a α⊥,b β⊂,则“a b ⊥”是“//αβ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4、设偶函数()f x 的定义域为R ,当[0,)x ∈+∞时,()f x 是增函数,则(2),(),(3)f f f π--的大小关系是()A . (2)()(3)f f f π-<<-B .()(2)(3)f f f π<-<-C .(3)(2)()f f f π-<-<D .(2)(3)()f f f π-<-<5。
将函数sin 6y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标压缩为原来的12倍(纵坐标不变),所得函数在下面哪个区间单调递增( )A .,36ππ⎛⎫- ⎪⎝⎭B .,22ππ⎛⎫- ⎪⎝⎭C .,33ππ⎛⎫- ⎪⎝⎭D .2,63ππ⎛⎫- ⎪⎝⎭6、已知函数2()(1)xf x e x =-+(e 为自然对数的底),则()f x 的大致图象是( )7.设0a >,0b >,若2是4a 和2b 的等比中项,则21a b+的最小值为( )A .22B .8C .9D .108、 若某几何体的三视图如图所示,则此几何体的表面积是( )A .36πB .30πC .24πD .15π9、已知()f x 在R 上是可导函数,则()f x 的图象如图所示,则不等式()()2230xx f x '-->的解集为第8题图A .()(),21,-∞-+∞B .()(),21,2-∞-C .()()(),11,02,-∞--+∞D .()()(),11,13,-∞--+∞10、设147()9a -=,159()7b =,27log 9c =,则a , b , c 的大小顺序是 ( )A 、b a c <<B 、c a b <<C 、c b a <<D 、b c a <<11、已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线截圆22:(1)1M x y -+=所得)A .43BCD .5312、定义在区间),0(+∞上的函数)(x f 使不等式)(3)(')(2x f x xf x f <<恒成立,其中)('x f 为)(x f 的导数,则( ) A .16)1()2(8<<f f B .8)1()2(4<<f f C .4)1()2(3<<f f D .3)1()2(2<<f f 第II 卷(填空题,解答题,90分)二、填空题(共4题,每题5分) 13.3()8f x xx =+-在(1,6-)处的切线方程为14。
普宁侨中2017届高三级第二学期 摸底考试 试卷·理科数学 注意事项:1、答题前,考生务必将自己的考号、班别、姓名写在答卷密封线内。
2、答案填写在答卷上,必须在指定区域内、用黑色字迹的签字笔或钢笔作答,不能超出指定区域或在非指定区域作答,否则答案无效。
第I 卷 (选择题,60分)一、 选择题:(本大题共12小题,每小题5分)1. 已知集合{1,0,1,2}M =-,{|21,}N y y x x M ==+∈,则MN = ( )A. }2,1{B. {1,1}-C. {1,1,3,5}-D. {1,0,1,2}-2. 复数z 满足(1-i )z=m+i (m ∈R, i 为虚数单位),在复平面上z 对应的点不可能...在 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3. 已知命题p :0x ">,总有()11xx e +>,则p Ø为 ( )A. 00x $£,使得()0011xx e £+ B. 00x $>,使得()0011xx e £+C. 0x ">,总有()11x x e +£D. 0x "£,总有()11xx e +£4.函数错误!未找到引用源。
的图象是( )A. B. C. D.5.执行如图的程序框图,那么输出S 的值是( ) A .-1B .21 C .1 D .26.若60(5),0()2cos3,0x f x x f x tdt x π->⎧⎪=⎨+≤⎪⎩⎰,则(2017)f =( ) A.124 B. 1124 C.56 D. 127. 已知P 为抛物线x y 42=上一个动点,Q 为圆1)4(22=-+y x 上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和最小值是( ) A .5B .8C .25+D .117-8.设y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥≥12340y x x y x ,则132+++x y x 的取值范围是( )A .B .C .D .9.函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,則()17012f f π⎛⎫+⎪⎝⎭的值为( )A.2.2.1.1 10.在我国古代著名的数学专著《九章算术》里有—段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,曰增十三里:驽马初日行九十七里,曰减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢?( ) A . 12日 B .16日 C .8日 D .9日11.Q P ,为三角形ABC 中不同的两点,若023=++PC PB PA ,0543=++QC QB QA ,则QAB PAB S S ∆∆:为( ) A .1:2B .2:5C .5:2D .2:112. 已知偶函数)(x f y =对于任意的)2,0[π∈x 满足0sin )(cos )(>+'x x f x x f (其中)(x f '是函数)(x f 的导函数),则下列不等式中成立的是( ) A .)4()3(2ππf f <-B .)4()3(2ππ-<-f f C .)4(2)0(π->f fD .)3(3)6(ππf f <二、填空题:本大题共四小题,每小题5分,共20分13.已知实数x 、y 满足0401x y x y x +≥⎧⎪-+≥⎨⎪≤⎩,则y x +2的最小值是14.已知向量a 与b 的夹角为120︒,3a =,13a b +=,则b = . 15.已知等比数列{}n a 的第5项是二项式41x x ⎛⎫+ ⎪⎝⎭展开式中的常数项,则37a a ⋅的值 .16.已知偶函数)(x f 满足)(1)1(x f x f -=+,且当]0,1[-∈x 时,2)(x x f =,若在区间]3,1[-内,函数)2(log )()(+-=x x f x g a 有4个零点,则实数a 的取值范围是三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤。
2018年普通高等学校招生全国统一考试广东省理科数学模拟试卷(二)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知,x y R ∈,集合{}32,log A x =,集合{},B x y =,若{}0A B =,则x y +=( )A .13B .0C .1D .3 2.若复数11z i =+,21z i =-,则下列结论错误的是( ) A .12z z ⋅是实数 B .12z z 是纯虚数 C .24122z z = D .22124z z i += 3.已知()1,3a =-,(),4b m m =-,()2,3c m =,若//a b ,则b c ⋅=( ) A .7- B .2- C .5 D .84.如图,AD 是以正方形的边AD 为直径的半圆,向正方形内随机投入一点,则该点落在阴影区域内的概率为( )A .16π B .316 C.4πD .14 5.已知等比数列{}n a 的首项为1,公比1q ≠-,且()54323a a a a +=+=( )A .9-B .9 C.81- D .816.已知双曲线()2222:10,0x y C a b a b-=>>的一个焦点坐标为()4,0,且双曲线的两条渐近线互相垂直,则该双曲线的方程为( )A .22188x y -=B .2211616x y -= C. 22188y x -= D .22188x y -=或22188y x -= 7.已知某几何体的三视图如图所示,则该几何体的表面积为( )A .86π+B .66π+ C.812π+ D .612π+ 8.设x ,y 满足约束条件0,2,xy x y ≥⎧⎪⎨+≤⎪⎩则2z x y =+的取值范围是( )A .[]2,2-B .[]4,4- C.[]0,4 D .[]0,29.在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人——宰相西萨·班·达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒.当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下面是四位同学为了计算上面这个问题而设计的程序框图,其中正确的是( )A .B . C. D .10.已知数列{}n a 的前n 项和为n S ,115a =,且满足()()21252341615n n n a n a n n +-=-+-+,已知*,n m N ∈,n m >,则n m S S -的最小值为( )A .494-B .498- C.14- D .28-11.已知菱形ABCD 的边长为60BAD ∠=,沿对角线BD 将菱形ABCD 折起,使得二面角A BD C --的余弦值为13-,则该四面体ABCD 外接球的体积为( )AB.D .36π 12.已知函数()()ln 3xf x e x =-+,则下面对函数()f x 的描述正确的是( ) A .()3,x ∀∈-+∞,()13f x ≥B .()3,x ∀∈-+∞,()12f x >- C. ()03,x ∃∈-+∞,()01f x =- D .()()min 0,1f x ∈第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.将函数()()()2sin 20f x x ϕϕ=+<的图象向左平移3π个单位长度,得到偶函数()g x 的图象,则ϕ的最大值是 .14.已知0a >,0b >,6b ax x ⎛⎫+ ⎪⎝⎭展开式的常数项为52,则2a b +的最小值为 .15.已知函数()()2log 41x f x mx =++,当0m >时,关于x 的不等式()3log 1f x <的解集为 . 16.设过抛物线()220y px p =>上任意一点P (异于原点O )的直线与抛物线()280y px p =>交于A ,B 两点,直线OP 与抛物线()280y px p =>的另一个交点为Q ,则ABQ ABOS S ∆∆= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知60B =,8c =. (1)若点M ,N 是线段BC 的两个三等分点,13BM BC =,AN BM=,求AM 的值; (2)若12b =,求ABC ∆的面积.18. 如图:在五面体ABCDEF 中,四边形EDCF 是正方形,AD DE =,90ADE ∠=,120ADC DCB ∠=∠=.(1)证明:平面ABCD ⊥平面EDCF ; (2)求直线AF 与平面BDF 所成角的正弦值.19. 经销商第一年购买某工厂商品的单价为a (单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如下表:.已知某经销商下一年购买该商品的单价为X (单位:元),且以经销商在各段销售额的频率作为概率. (1)求X 的平均估计值.(2)该工厂针对此次的调查制定了如下奖励方案:经销商购买单价不高于平均估计单价的获得两次抽奖活动,高于平均估计单价的获得一次抽奖活动.每次获奖的金额和对应的概率为Y 的分布及数学期望.20. 已知椭圆()2212:108x y C b b+=>的左、右焦点分别为1F ,2F ,点2F 也为抛物线21:8C y x =的焦点. (1)若M ,N 为椭圆1C 上两点,且线段MN 的中点为()1,1,求直线MN 的斜率;(2)若过椭圆1C 的右焦点2F 作两条互相垂直的直线分别交椭圆于A ,B 和C ,D ,设线段AB ,CD 的长分别为m ,n ,证明11m n+是定值. 21. 已知()'fx 为函数()f x 的导函数,()()()2'200x x f x e f e f x =+-.(1)求()f x 的单调区间;(2)当0x >时,()xaf x e x <-恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为3,4x y a ⎧=+⎪⎨⎪=+⎩(t 为参数),圆C 的标准方程为()()22334x y -+-=.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程; (2)若射线()03πθρ=>与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.23.选修4-5:不等式选讲 已知()32f x mx x n =+-+.(1)当2m =,1n =-时,求不等式()2f x <的解集;(2)当1m =,0n <时,()f x 的图象与x 轴围成的三角形面积大于24,求n 的取值范围.试卷答案一、选择题1-5: CDADB 6-10: ABBCC 11、12:BB 二、填空题 13.6π-14. 2 15. ()0,1 16.3 三、解答题17.解:(1)由题意得M ,N 是线段BC 的两个三等分点, 设BM x =,则2BN x =,AN =,又60B =,8AB =, 在ABN ∆中,由余弦定理得2212644282cos60x x x =+-⨯⨯, 解得2x =(负值舍去),则2BM =. 在ABN ∆中,AM ===(2)在ABC ∆中,由正弦定理sin sin b cB C=,得8sin 2sin 123c BC b===. 又b c >,所以B C >,则C 为锐角,所以6cos 3C =. 则()1sin sin sin cos cos sin 2A B C B C B C =+=+=+=, 所以ABC ∆的面积1sin 482S bc A ===18.(1)证明:因为AD DE ⊥,DC DE ⊥,AD ,CD ⊂平面ABCD ,且AD CD D ⊃=, 所以DE ⊥平面ABCD .又DE ⊂平面EDCF ,故平面ABCD ⊥平面EDCF . (2)解:由已知//DC EF ,所以//DC 平面ABFE . 又平面ABCD平面ABFE AB =,故//AB CD .所以四边形ABCD 为等腰梯形.又AD DE =,所以AD CD =,易得AD BD ⊥,令1AD =,如图,以D 为原点,以DA 的方向为x 轴正方向,建立空间直角坐标系D xyz -, 则()0,0,0D ,()1,0,0A,12F ⎛⎫- ⎪ ⎪⎝⎭,()B ,所以3,,122FA ⎛⎫=-- ⎪ ⎪⎝⎭,()DB =,1,22DF ⎛⎫=- ⎪ ⎪⎝⎭. 设平面BDF 的法向量为(),,n x y z =,由0,0,n DB n DF ⎧⋅=⎪⎨⋅=⎪⎩所以0,10,22x y z =⎨-++=⎪⎩取2x =,则0y =,1z =,得()2,0,1n =,cos ,2FA n FA n FA n⋅<>===. 设直线与平面BDF 所成的角为θ,则sinθ=. 所以直线AF 与平面BDF 所成角的正弦值为5.19.解:(1)由题可知:0.20.90.30.850.240.80.120.750.10.70.040.873a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=.(2)购买单价不高于平均估计单价的概率为10.240.120.10.040.52+++==. Y 的取值为5000,10000,15000,20000. ()1335000248P Y ==⨯=,()1113313100002424432P Y ==⨯+⨯⨯=,()2111331500024416P Y C ==⨯⨯⨯=, ()11112000024432P Y ==⨯⨯=. 所以Y 的分布列为()1500010000150002000093758321632E Y =⨯+⨯+⨯+⨯=(元).20.解:因为抛物线22:8C y x =的焦点为()2,0,所以284b -=,故2b =.所以椭圆221:184x y C +=. (1)设()11,M x y ,()22,N x y ,则221122221,841,84x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得()()()()12121212084x x x x y y y y +-+-+=,又MN 的中点为()1,1,所以122x x +=,122y y +=. 所以212112y y x x -=--.显然,点()1,1在椭圆内部,所以直线MN 的斜率为12-. (2)椭圆右焦点()22,0F .当直线AB 的斜率不存在或者为0时,11m n +==当直线AB 的斜率存在且不为0时,设直线AB 的方程为()2y k x =-, 设()11,A x y ,()22,B x y 联立方程得()222,28,y k x x y ⎧=-⎪⎨+=⎪⎩消去y 并化简得()2222128880k x k x k +-+-=, 因为()()()()222228412883210kk k k ∆=--+-=+>,所以2122812k x x k +=+,()21228112k x x k-=+. 所以)22112k m k+==+,同理可得)2212k n k +=+.所以222211122118k km n k k⎫+++=+=⎪++⎭为定值.21.解:(1)由()()0120f f=+,得()01f=-.因为()()'2'220x xf x e e f=--,所以()()''0220f f=--,解得()'00f=.所以()22x xf x e e=-,()()'22221x x x xf x e e e e=-=-,当(),0x∈-∞时,()'0f x<,则函数()f x在(),0-∞上单调递减;当()0,x∈+∞时,()'0f x>,则函数()f x在()0,+∞上单调递增.(2)令()()()221x x xg x af x e x ae a e x=-+=-++,根据题意,当()0,x∈+∞时,()0g x<恒成立. ()()()()'222211211x x x xg x ae a e ae e=-++=--.①当12a<<,()ln2,x a∈-+∞时,()'0g x>恒成立,所以()g x在()ln2,a-+∞上是增函数,且()()()ln2,g x g a∈-+∞,所以不符合题意;②当12a≥,()0,x∈+∞时,()'0g x>恒成立,所以()g x在()0,+∞上是增函数,且()()()0,g x g∈+∞,所以不符合题意;③当0a≤时,因为()0,x∈+∞,所有恒有()'0g x<,故()g x在()0,+∞上是减函数,于是“()0g x<对任意()0,x∈+∞都成立”的充要条件是()00g≤,即()210a a-+≤,解得1a≥-,故10a-≤≤.综上,a的取值范围是[]1,0-.22.解:(1)在直线l的参数方程中消去t可得,34x y a--+=,将cosxρθ=,sinyρθ=代入以上方程中,所以,直线l的极坐标方程为3cos sin04aρθρθ--+=.同理,圆C的极坐标方程为26cos6sin140ρρθρθ--+=.(2)在极坐标系中,由已知可设1,3Mπρ⎛⎫⎪⎝⎭,2,3Aπρ⎛⎫⎪⎝⎭,3,3Bπρ⎛⎫⎪⎝⎭.联立2,36cos6sin140,πθρρθρθ⎧=⎪⎨⎪--+=⎩可得(23140ρρ-++=,所以233ρρ+=+因为点M 恰好为AB的中点,所以132ρ+=,即3,23M π⎛⎫+ ⎪ ⎪⎝⎭.把3M π⎫⎪⎪⎝⎭代入3cos sin 04a ρθρθ--+=,得(31130224a +⨯-+=,所以94a =. 23.解:(1)当2m =,1n =-时,()2321f x x x =+--.不等式()2f x <等价于()()3,223212,x x x ⎧<-⎪⎨⎪-++-<⎩ 或()()31,2223212,x x x ⎧-≤≤⎪⎨⎪++-<⎩ 或()()1,223212,x x x ⎧>⎪⎨⎪+--<⎩解得32x <-或302x -≤<,即0x <. 所以不等式()2f x <的解集是(),0-∞.(2)由题设可得,()3,3,3233,3,23,,2x n x n f x x x n x n x n x n x ⎧⎪+-<-⎪⎪=+-+=++-≤≤-⎨⎪⎪-+->-⎪⎩所以函数()f x 的图象与x 轴围成的三角形的三个顶点分别为3,03n A +⎛⎫-⎪⎝⎭,()3,0B n -,,322nn C ⎛⎫-- ⎪⎝⎭. 所以三角形ABC 的面积为()2613332326n n n n -+⎛⎫⎛⎫-+-=⎪⎪⎝⎭⎝⎭. 由题设知,()26246n ->,解得6n <-.。
2018届高三数学摸底题(理科)参考答案一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分. 9.2. 10.5,2. 11.283. 12. -18或8 13.3R 14.(2,3) 三、解答题:本大题共6小题,共80分。
15.(本小题满分12分)解:(Ⅰ)由已知数据,易知函数y =f (t )的周期T =12,振幅A =3, b =10∴106sin3+=ty π(0≤t ≤24)(Ⅱ)由题意,该船进出港时,水深应不小于5+6.5=11.5(米) ∴511106sin3.t≥+π∴ 6sintπ21≥解得,Z)(k 652662∈+≤≤+πππππk t k Z)(k 512112∈+≤≤+k t k在同一天内,取k =0或1 ∴ 1≤t ≤5或13≤t ≤17∴该船最早能在凌晨1时进港,下午17时出港,在港口内最多停留16个小时。
15.(本小题满分12分) (I )解法一:()1cos 23(1cos 2)sin 222x f x x θ-+=++2sin 2cos 2x x =++2)4x π=+……4分∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时,()f x 取得最大值2+因此,()f x 取得最大值的自变量x 的集合是,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.……8分 解法二:222()(sin cos )sin 22cos f x x x x x =+++1sin 21cos 2x x =+++2)4x π=++……4分∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时,()f x 取得最大值2+因此,()f x 取得最大值的自变量x 的集合是,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭……8分(Ⅱ)解:()2)4f x x π=+由题意得222()242k x k k Z πππππ-≤+≤+∈,即3()88k x k k Z ππππ-≤≤+∈. 因此,()f x 的单调增区间是()3,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.…………12分16.(本小题共 12 分)解:记该应聘者对三门指定课程考试及格的事件分别为 A ,B ,C , 则(),(),()P A a P B b P C c ===(Ⅰ)应聘者用方案一考试通过的概率1()()()()p P A B C P A B C P A B C P A B C =⋅⋅+⋅⋅+⋅⋅+⋅⋅(1)(1)(1)ab c bc a ac b abc =-+-+-+2;ab bc ca abc =++-应聘者用方案二考试通过的概率 2111()()()333p p A B p B C p A C =⋅+⋅+⋅1()3ab bc ca =++.(Ⅱ)因为[,,0,1a b c ⎤∈⎦, 所以122()23p p ab bc ca abc -=++-]2(1)(1)(1)0,3ab c bc a ca b ⎡=-+-+-≥⎣ 故12p p ≥, 即采用第一种方案,该应聘者考试通过的概率较大.17.(本小题共 14 分)解: (Ⅰ)∵ PA ⊥平面 ABCD , ∴ PA ⊥AC. ∵ AB ⊥AC ,PA ∩AB=A ,∴ AC ⊥平面PAB , 又 ∵ AB ⊂平面PAB , ∴ AC ⊥PB.(Ⅱ)连接BD ,与 AC 相交于 O ,连接 EO. ∵ ABCD 是平行四边形, ∴ O 是BD 的中点又 E 是 PD 的中点 ∴ EO ∥PB. 又 PB ∉平面 AEC ,EO ⊂平面 AEC , ∴ PB ∥平面 AEC.(Ⅲ)以A 为原点,AC ,AB ,AP 所在的直线分别为x 轴,y 轴,z 轴建立入图所示的直角坐标系,取 BC 中点 G ,连接 OG ,则点 G 的坐标为(,,0)22a b ,OG =(0,,0)2b. 又(0,,),22b bOE =-(,0,0).AC a = ,,OE AC OG AC ∴⊥⊥EOG ∴∠是二面角E AC B --的平面角cos cos ,2OE OG EOG OE OG OE OG⋅=<>==-⋅ 135O EOG ∴∠= ∴二面角E-AC-B 的大小为135o .18.(本小题满分14分)解:(Ⅰ)依题意得 a =2c ,ca 2=4,解得a =2,c =1,从而b =3.故椭圆的方程为 13422=+y x . (Ⅱ)解法1:由(Ⅰ)得A (-2,0),B (2,0).设M (x 0,y 0).∵M 点在椭圆上,∴ y 0=43(4-x 18). ○1 又点M 异于顶点A 、B ,∴-2<x 0<2,由P 、A 、M 三点共线可以得P (4,2600+x y ).从而BM =(x 0-2,y 0),BP =(2,2600+x y ). ∴·=2x 0-4+26020+x y =220+x (x 18-4+3y 18). ○2将○1代入○2,化简得·=25(2-x 0). ∵2-x 0>0,∴·>0,则∠MBP 为锐角,从而∠MBN 为钝角, 故点B 在以MN 为直径的圆内。
普宁勤建中学高三第二学期 摸底考试 理科数学试题注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足()1i 1i z -=--,则1z +=( )A . 1B . 0 CD . 22. 已知U =R ,函数()ln 1y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是( ) A . MN N = B . ()UMN =∅ð C . MN U = D .()U M N ⊆ð3. 已知,a b 都是实数,>ln ln a b >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 设变量,x y 满足10020015x y x y y -≤⎧⎪≤+≤⎨⎪≤≤⎩,则23x y +的最大值为( )A . 20B . 35C . 45D .555.已知03x π=是函数()()sin 2f x x ϕ=+的一个极大值点,则()f x 的一个单调递减区间是( )A . 2,63ππ⎛⎫⎪⎝⎭ B . 5,36ππ⎛⎫ ⎪⎝⎭ C . ,2ππ⎛⎫⎪⎝⎭D . 2,3ππ⎛⎫⎪⎝⎭6. 已知1F ,2F 分别是双曲线C :22221x y a b-=(0,0a b >>)的左右两个焦点,若在双曲线C 上存在点P 使1290F PF ∠=︒,且满足12212PF F PF F ∠=∠,那么双曲线C 的离心率为( ) A1 B . 2CD7. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知信息的概率为( ) A .25 B . 1225 C . 1625 D .458. 已知1tan 2x =,则2sin 4x π⎛⎫+= ⎪⎝⎭( ) A .110 B . 15C . 35D . 9109. 执行如图1所示的程序框图,输出的z 值 为( )A .3B .4C .5D .610.某一简单几何体的三视图如图2所示,该几何体的外接球的表面积是( )A . 13πB . 16πC . 25πD .27π侧视图俯视图图211.给出下列函数:① ()sin f x x x =;② ()e xf x x =+;③ ())lnf x x =;0a ∃>,使()d 0aaf x x -=⎰的函数是( )A . ①②B . ①③C . ②③D . ①②③12.设直线y t =与曲线C :()23y x x =-的三个交点分别为()()(),,,,,A a t B b t C c t ,且a b c <<,现给出如下结论:① abc 的取值范围是()0,4; ② 222a b c ++为定值; ③ c a -有最小值无最大值;其中正确结论的个数为A . 0B . 1C . 2D .3第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。
2018--2018学年度普宁一中摸底考试高三级文科综合注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卷上。
2.用2B铅笔将选择题答案在答题卷对应位置涂黑;答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;不准使用铅笔或涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卷的整洁。
第Ⅰ卷(选择题,共140分)一、选择题:本大题共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
物流业通常可将中心城区的相关产业吸引到物流园区附近,形成空间集聚。
下图示意重庆市规划建设的七大物流园区。
读图完成1~2题。
1.物流园区建成后,IT企业和船舶制造企业最可能入住的园区分别是A.①、⑥B.①、⑤C.②、⑦D.③、④2.物流园区的建设对该市产生的影响有A.仓储用地所占比重下降B.缩短居民上下班距离C.改善郊区的生态环境D.缓解中心城区交通压力下图示意某地区年均温的分布。
读下图,完成下面两题。
3.影响该地区年均温分布特征的主要因素是( )A.台风B.海陆分布C.地形D.大气环流4.图示①②③④四地中,年降水量最低的是( )A.①地B.②地C.③地D.④地读甲、乙两图,甲图中P地常年受某风带的影响。
据此回答5~7题。
5.图中P地气候类型属于A.地中海气候 B.温带海洋性气候 C.温带季风气候 D.热带草原气候6.关于乙图的说法,正确的是A. E→F→G→H自然带更替表现为垂直地带性分异 B.E处山地雪线高度低于G 处C.E、G两处都是多雨区,但降水类型不同 D.F、H地貌景观不同,主要原因是蒸发量不同7.若此时甲图所示地区受乙图中“三圈环流”的F控制,则A.N地受西风影响,温暖湿润 B.N地受西南季风影响,高温多雨C.海洋上等温线向南凸出 D.海洋上等温线向北凸出下表为某城市的气候资料。
普宁市高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=12. 若向量(1,0,x )与向量(2,1,2)的夹角的余弦值为,则x 为( )A .0B .1C .﹣1D .23. 已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U A B =,则()U C A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤-⎥⎝⎦(C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D )1,02⎛⎤- ⎥⎝⎦4. 设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( ) A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}5. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.6.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣lnx]=e+1,若x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是()A.(0,1) B.(e﹣1,1)C.(0,e﹣1)D.(1,e)7.如果过点M(﹣2,0)的直线l与椭圆有公共点,那么直线l的斜率k的取值范围是()A.B.C.D.8.函数f(x)=cos2x﹣cos4x的最大值和最小正周期分别为()A.,πB.,C.,πD.,9.直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为()A.0 B.1 C.2 D.310.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F 1、F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1、e 2,则e 1•e 2+1的取值范围为( ) A .(1,+∞)B.(,+∞) C.(,+∞) D.(,+∞)11.三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]12.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞二、填空题13.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .14.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .15.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .16.数据﹣2,﹣1,0,1,2的方差是 . 17.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 .18.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.三、解答题19.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,228b S =(*n N ∈).(1)求n a 和n b ;(2)若1n n a a +<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前项和n T .20.已知函数f (x )=|x ﹣5|+|x ﹣3|. (Ⅰ)求函数f (x )的最小值m ;(Ⅱ)若正实数a,b足+=,求证:+≥m.21.(本小题满分12分)设p:实数满足不等式39a≤,:函数()()32331932af x x x x-=++无极值点.(1)若“p q∧”为假命题,“p q∨”为真命题,求实数的取值范围;(2)已知“p q∧”为真命题,并记为,且:2112022a m a m m⎛⎫⎛⎫-+++>⎪ ⎪⎝⎭⎝⎭,若是t⌝的必要不充分条件,求正整数m的值.22.已知p:﹣x2+2x﹣m<0对x∈R恒成立;q:x2+mx+1=0有两个正根.若p∧q为假命题,p∨q为真命题,求m的取值范围.23.已知复数z=m(m﹣1)+(m2+2m﹣3)i(m∈R)(1)若z是实数,求m的值;(2)若z是纯虚数,求m的值;(3)若在复平面C内,z所对应的点在第四象限,求m的取值范围.24.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.25.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos()=1,M,N分别为C与x轴,y轴的交点.(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.26.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD长;(2)当CE⊥OD时,求证:AO=AD.普宁市高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:如图,++().故选C .2. 【答案】A【解析】解:由题意=,∴1+x=,解得x=0故选A【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.3. 【答案】C【解析】[]11,,0,1,0,22A B A B ⎛⎫⎡⎫=-∞== ⎪⎪⎢⎝⎭⎣⎭,(],1U =-∞,故选C .4. 【答案】B【解析】解:∵全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩C u N=﹛2,4﹜, ∴集合M ,N 对应的韦恩图为 所以N={1,3,5} 故选B5. 【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)nx n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .6. 【答案】 D【解析】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f′(x)=,x>0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.7.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.8.【答案】B【解析】解:y=cos2x﹣cos4x=cos2x(1﹣cos2x)=cos2x•sin2x=sin22x=,故它的周期为=,最大值为=.故选:B.9.【答案】B【解析】解:∵直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”,∴命题P是真命题,∴命题P的逆否命题是真命题;¬P:“若直线m不垂直于α,则m不垂直于l”,∵¬P是假命题,∴命题p的逆命题和否命题都是假命题.故选:B.10.【答案】B【解析】解:设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),由于△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,即有m=10,n=2c,由椭圆的定义可得m+n=2a1,由双曲线的定义可得m﹣n=2a2,即有a1=5+c,a2=5﹣c,(c<5),再由三角形的两边之和大于第三边,可得2c+2c=4c>10,则c>,即有<c<5.由离心率公式可得e1•e2===,由于1<<4,则有>.则e1•e2+1.∴e1•e2+1的取值范围为(,+∞).故选:B.【点评】本题考查椭圆和双曲线的定义和性质,考查离心率的求法,考查三角形的三边关系,考查运算能力,属于中档题.11.【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b 的取值范围是[﹣6,0)∪( 0,2]. 故选:B .【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.12.【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8kx =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
普宁市第二中学高三级下学期·摸底考试 理科数学试题 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卷上。
2.用2B 铅笔将选择题答案在答题卷对应位置涂黑;答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;不准使用铅笔或涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卷的整洁。
第Ⅰ卷一、选择题:本题共12小题,每小题5分, 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}2A x x =≤,{}2230B x x x =--≤,则A B =(A ) []1,2- (B ) []2,3- (C) []2,1-(D) []1,2(2)设(1i)(i)x y ++2=,其中,x y 是实数,则2i x y +=(A )1 (B (C (D (3)等比数列{}n a 的前n 项和为n S ,若230a S +=,则公比q =(A) 1- (B) 1 (C) 2- (D) 2(4)已知双曲线:C 12222=-bx a y (0,0>>b a )的渐近线方程为x y 21±=, 则双曲线C的离心率为 (A)25(B) 5 (C)26(D) 6(5)若将函数()sin 2cos 2f x x x =+的图象向左平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值是 (A )8π (B )4π (C )38π (D )34π(6)GZ 新闻台做“一校一特色”访谈节目, 分A, B, C 三期播出, A 期播出两间学校, B 期, C 期各播出1间学校, 现从8间候选学校中选出4间参与这三项任务, 不同的选法共有(A )140种 (B )420种 (C )840种 (D )1680种(7)已知函数2,0,()1,0,x x f x x x⎧≥⎪=⎨<⎪⎩ ()()g x f x =--,则函数()g x 的图象是(8)设0.40.7a =,0.70.4b =,0.40.4c = ,则,,a b c 的大小关系为(A) b a c << (B) a c b << (C) b c a << (D) c b a << (9)阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为(A) 7(10)已知抛物线:C y 交于M ,N (A)221 (11)如图, (A) π25 (C) π29(12) 若函数()e x f =(A) (],1-∞ 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(23)题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)在8)1(xx -的展开式中,常数项是 . (14)设椭圆22221(0)x y a b a b+=>>的两焦点与短轴一端点组成一正三角形三个顶点,若焦点到椭圆上点的最大距离为,a b 为实半轴长和 虚半轴长,焦点在y 轴上的双曲线标准方程为 . (15)一几何体的三视图如图2示,则该几何体的体积为 . (16)已知正项数列{}n a 的首项11a =,且对一切的正整数n ,均有:211(1)(1)0n n n n n n a na n a a na +++-++-=,则数 图2列{}n a 的通项公式n a = .三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,=1b ,且2c o s 20C a c --=.(Ⅰ)求角B 的大小;(Ⅱ)求△ABC 外接圆的圆心到AC 边的距离. (18)(本小题满分12分)如图3,在四棱锥ABCD P -中,AD O ∈,AD ∥BC ,AB ⊥AD ,AO=AB=BC=1,3=PC .(Ⅰ)证明:平面POC ⊥平面P AD ;(Ⅱ)若AD=2,P A=PD ,求CD 与平面P AB 所成角的余弦值. 图3(19)(本小题满分12分)某商场举行促销活动,有两个摸奖箱,A 箱内有一个“1”号球、两个“2”号球、三个“3”号球、四个无号球,B 箱内有五个“1”号球、五个“2”号球,每次摸奖后放回.消费额满100元有一次A 箱内摸奖机会,消费额满300元有一次B 箱内摸奖机会,摸得有数字的球则中奖,“1”号球奖50元、“2”号球奖20元、“3”号球奖5元,摸得无号球则没有奖金. (Ⅰ)经统计,消费额X 服从正态分布)625,150(N ,某天有1000位顾客,请估计消费额X(单位:元)在区间(100,150]内并中奖的人数;附:若),(~2σμN X ,则6826.0)(=+<<-σμσμX P ,9544.0)22(=+<<-σμσμX P .(Ⅱ)某三位顾客各有一次A 箱内摸奖机会,求其中中奖人数ξ的分布列;(Ⅲ)某顾客消费额为308元,有两种摸奖方法,方法一:三次A 箱内摸奖机会;方法二:一次B 箱内摸奖机会.请问:这位顾客选哪一种方法所得奖金的期望值较大. (20)(本小题满分12分)在平面直角坐标系xOy 中,已知点A (-1, 0)、B (1, 0)、C (0, -1),N 为y 轴上的点,MN 垂直于y 轴,且点M 满足AM BM ON CM ⋅=⋅(O 为坐标原点),点M 的轨迹为曲线T .(Ⅰ)求曲线T 的方程;(Ⅱ)设点P (P 不在y 轴上)是曲线T 上任意一点,曲线T 在点P 处的切线l 与直线54y =-交于点Q ,试探究以PQ 为直径的圆是否过一定点?若过定点,求出该定点的坐标,若不过定点,说明理由.(21)(本小题满分12分)设a >0,已知函数)ln()(a x x x f +-=(x >0).(Ⅰ)讨论函数)(x f 的单调性;(Ⅱ)试判断函数)(x f 在(0,)+∞上是否有两个零点,并说明理由.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一个题目计分. (22)(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程为⎩⎨⎧+=+-=ααsin 1cos 1t y t x (t 为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos +=θρρ.(Ⅰ)写出直线l 经过的定点的直角坐标,并求曲线C 的普通方程; (Ⅱ)若4πα=,求直线l 的极坐标方程,以及直线l 与曲线C 的交点的极坐标.(23)(本小题满分10分)选修4-5:不等式选讲设函数|2||1|)(--+=x m x x f . (Ⅰ)若1m =,求函数)(x f 的值域; (Ⅱ)若1m =-,求不等式x x f 3)(>的解集.普宁市第二中学高三级下学期·摸底考试 理科数学参考答案一、选择题(1)B (2)D (3)A (4)B (5)A (6)C(7)D (8)C (9)B (10)B (11)D (12)A二、填空题:解析:(15)==522=30222V V V V =+⨯⨯⨯长方体长方体长方体. (16)由211(1)(1)0n n n n n n a na n a a na +++-++-=1(1)(1)(1)0n n n n n a a na a +⇒++-+=,1(1)[(1)]0n n n a n a na +⇒++-=11n n a na n +⇒=+,则1212112112n n n n a a a n n a a a n n -----⋅=⋅-,1n a n⇒=. 三、解答题:(17)解:(Ⅰ)由2cos 20C a c --=,=1b 结合余弦定理得:22120a c a c a+---=,-------------------------------------------------------------------------------2分221a c ac ⇒+-=-,----------------------------------------------------------------------------------3分则2222211cos 222a cb ac B ac ac +-+-===-,-----------------------------------------------------5分∵0B π<< ∴23B π=.---------------------------------------------------------------------------7分(Ⅱ) 设△ABC 外接圆的半径为R ,由正弦定理知122sin sin 3b R B π===-------------------------------------------------------------------9分故R =,-------------------------------------------------------------------------------------------10分 则△ABC 外接圆的圆心到AC边的距离d ===.---------------------------------------------------------------12分(18)解:(Ⅰ)在四边形OABC 中,∵AO //BC ,AO =BC ,AB ⊥AD ,∴四边形OABC 是正方形,得OC ⊥AD ,-----------------------2分 在△POC 中,∵222PC OC PO =+,∴OC ⊥PO ,-------4分 又O AD PO = ,∴OC ⊥平面P AD ,又⊂OC 平面POC ,∴平面POC ⊥平面P AD ;-------------6分 (Ⅱ)解法1:由O 是AD 中点,P A=PD ,得PO ⊥AD ; 以O 为原点,如图建立空间直角坐标系O -xyz , ---------- 7分 得)0,1,0(-A ,)0,1,1(-B ,)2,0,0(P ,)0,0,1(C ,)0,1,0(D , 得)0,1,1(-=,)2,1,0(--=,)0,0,1(=, 设),,(z y x m =是平面P AB 的一个法向量,则⎪⎩⎪⎨⎧⊥⊥m PA m ,得⎪⎩⎪⎨⎧==⋅=--=⋅002x m z y PA m ,取z =1,得)1,2,0(-=m,----------------------------------------------------------------------------------10分设CD 与平面P AB 所成角为θ,则|,cos |sin m CD=><=θ33322=⋅=,E∴36cos =θ,即CD 与平面PAB所成角的余弦值为3------------------------------12分【解法2:连结OB ,∵OD//BC ,且OD=BC ∴BCDO 为平行四边形,∴OB//CD, ----------------------------7分由(Ⅰ)知OC ⊥平面P AD ,∴AB ⊥平面P AD ,∵AB ⊂平面PAB ,∴平面PAB ⊥平面PAD ,----------------------------------------------------8分过点O 作OE ⊥PA 于E ,连结BE ,则OE ⊥平面PAB , ∴∠OBE 为CD 与平面PAB 所成的角,----------------------10分 在Rt △OEB中,∵PO AO OE PA ⋅==,OB =,∴cos BEOBE OB∠=== 即CD 与平面P AB--------------------------------------------------12分】(19)解:(Ⅰ)依题意得150=μ,6252=σ,得25=σ,σμ2100-=, ------------ 1分消费额X 在区间(100,150]内的顾客有一次A 箱内摸奖机会,中奖率为0.6,--------- 2分人数约为)2(1000μσμ≤<-⨯X P 29544.01000⨯==477人,------------------------3分其中中奖的人数约为477×0.6=286人; -------------------------------------------------------- 4分(Ⅱ)三位顾客每人一次A 箱内摸奖中奖率都为0.6,三人中中奖人数ξ服从二项分布)6.0,3(B ,k k kC k P -⋅==334.06.0)(ξ,(k=0, 1, 2, 3) ----------------------------------------------------6分故ξ的分布列为-----------8分(Ⅲ)A 箱摸一次所得奖金的期望值为50×0.1+20×0.2+5×0.3=10.5,-------------------------9分B箱摸一次所得奖金的期望值为50×0.5+20×0.5=35,---------------------------------------10分方法一所得奖金的期望值为3×10.5=31.5,方法二所得奖金的期望值为35, 所以这位顾客选方法二所得奖金的期望值较大.-----------------------------------------------12分 (20)解:(Ⅰ)设点(,)M x y ,依题意知(0,)N y ,∵(1,),(1,),(0,),(,1)AM x y BM x y ON y CM x y =+=-==+,---------------------------2分 由AM BM ON CM ⋅=⋅得221(1)x y y y -+=+,即21y x =-, ∴所求曲线T 的方程为21y x =-------------------- 4(Ⅱ)解法1:设000(,)(0)P x y x ≠, 由21y x =-得'2y x =则00'|2l x x k y x ===---------------------------5分 ∴直线l 的方程为:0002()y y x x x -=- 令54y =-得20418x x x -=,即点Q 的坐标为20041(8x x -设(,)G x y 是以PQ 为直径的圆上任意一点,则由0PG QG ⋅=,得以PQ 为直径的圆的方程为:20000415()()()()084x x x x y y y x ---+-+=------①-----------8分在①中,令001,0x y =±=得35(1)()()084x x y y ++++=,------------------------②35(1)()()084x x y y --++=, -----------------------------------------------------------③由②③联立解得0,3.4x y =⎧⎪⎨=-⎪⎩或 0,1.2x y =⎧⎪⎨=-⎪⎩--------------------------------------------------------------10分将30,4x y ==-代入①式,左边=20041335()()8444x y -+---+0011022y y =-==右边, 即以PQ 为直径的圆过点3(0,)4-,--------------------------------------------------------------------11分 将10,2x y ==-代入①式,左边≠右边, ∴以PQ为直径的圆恒过点,该定点的坐标为3(0,)4---------------------------------------------12分【解法2:设000(,)(0)P x y x ≠,由21y x =-得'2y x =则00'|2l x x k y x === -----------------------------------------------------------------------------------------5分 ∴直线l 的方程为:0002()y y x x x -=-令54y =-得200418x x x -=,即点Q 的坐标为200415(,)84x x ---------------------------------------------6分设(,)G x y 是以PQ 为直径的圆上任意一点,则由0PG QG ⋅=,得以PQ 为直径的圆的方程为:20000415()()()()08x x x x y y y x ---+-+=------①------------8分假设以PQ 为直径的圆过定点),(b a , 则0)45)(()8121)((0000=+-++--b y b x x a x a , 0)45)(1(81823212000202=++-+-+-+b x b x a ax x a , )45)(1()45(81823212000202++++--+-+b b x b x a ax x a 0)45)(1()43(81)8123(20002=++++----b b x b x x a a ,令43,0-==b a ,上式恒成立, ∴以PQ 为直径的圆恒过定点,该点的坐标为3(0,)4-----------------------------------------------12分】【解法3:设000(,)(0)P x y x ≠,由21y x =-得'2y x =则00'|2l x x k y x ===------------------------------------------------------------------------------------------5分 ∴直线l 的方程为:0002()y y x x x -=-令54y =-得200418x x x -=,即点Q 的坐标为200415(,)84x x --------------------------------------------6分假设以PQ 为直径的圆恒过定点H ,则根据对称性,点H 必在y 轴上,设(0,)H t ,则由0PH QH ⋅=得20000415()()084x x t y t x -⋅+-+=------① --------------------------------------8分001355()()02844y t t y t +++-+=,031()()042t t y ++-=, ∴34t =-,即以PQ 为直径的圆恒过定点,该点的坐标为3(0,)4---------------------------12分】(21)解:(Ⅰ)ax xx f +-=121)(',----------------------------------------------------------------1分0)2(220)('22>+-+⇔>+⇔>a x a x x a x x f ,0)2(20)('22<+-+⇔<a x a x x f ,设22)2(2)(a x a x x g +-+=,则)1(16a -=∆, ①当1≥a 时,0≤∆,0)(≥x g ,即0)('≥x f , ∴)(x f 在),0(∞+上单调递增;-----------------------------------------------------------------3分②当10<<a 时,0>∆, 由0)(=x g 得a a aa x ---=---=122214241,aa x -+-=1222,-----------------------------------------------------------------------------4分可知210x x <<,由)(x g 的图象得:)(x f 在)122,0(a a ---和),122(∞+-+-a a 上单调递增;--------------------5分)(x f 在,122(a a ---)122a a -+-上单调递减. ---------------------------------6分(Ⅱ)解法1:函数)(x f 在(0,)+∞上不存在两个零点 ----------------------------------------------7分假设函数)(x f 有两个零点,由(Ⅰ)知,10<<a ,因为0ln )0(>-=a f ,则0)(2<x f ,即)ln(22a x x +<,由0)('2=x f 知222x a x =+,所以)(222ln x x <, 设t x =2,则)2l n(t t <(*), -----------------------------------------------------------------9分 由)4,1(1222∈-+-=a a x ,得)2,1(∈t ,设)2ln()(t t t h -=,得011)('>-=t t h , -------------------------------------------------10分所以)(t h 在)2,1(递增,得02ln 1)1()(>-=>h t h ,即)2ln(t t >,这与(*)式矛盾, ---------------------------------------------------------------------------------11分所以上假设不成立,即函数)(x f 没有两个零点. ------------------------------------------12分【解法2:函数)(x f 在(0,)+∞上不存在两个零点; -------------------------------------------------7分由(Ⅰ)知当1≥a 时,函数)(x f 在),0(∞+上单调递增,∴函数)(x f 在),0(∞+上至多有一个零点;-----------------------------------------------------8分当10<<a 时,∵0ln )0(>-=a f ,由(Ⅰ)知当2x x =时,()f x 有极小值,22()=()ln()f x f x x a =+极小11)]-,---------------------9分1,t =则12t <<,()ln(2)f x t t =-极小,设)2ln()(t t t h -=,得011)('>-=t t h ,------------------------------------------------------10分∴)(t h 在)2,1(单调递增,得02ln 1)1()(>-=>h t h ,即()0f x >极小,可知当10<<a 时,函数)(x f 在(0,)+∞不存在零点;综上可得函数)(x f 在(0,)+∞上不存在两个零点. -------------------------------------------12分】选做题:(22)解:(Ⅰ)直线l 经过定点)1,1(-,-----------------------------------------------------------------2分由2cos +=θρρ得22)2cos (+=θρρ,得曲线C 的普通方程为222)2(+=+x y x ,化简得442+=x y ;---5分(Ⅱ)若4πα=,得⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 221221,的普通方程为2+=x y ,----------------------------------6分则直线l 的极坐标方程为2cos sin +=θρθρ,------------------------------------------------8分联立曲线C :2cos +=θρρ.得1sin =θ,取2πθ=,得2=ρ,所以直线l 与曲线C 的交点为)2,2(π.------------10分(23)解:(Ⅰ)当1m =时,|2||1|)(--+=x x x f -------------------------------------------------1分∵3|)2()1(|||2||1||=--+≤--+x x x x ,-------------------------------------------------3分 3|2||1|3≤--+≤-∴x x ,函数)(x f 的值域为]3,3[-;------------------------------ 5分(Ⅱ)当m =-1时,不等式x x f 3)(>即x x x 3|2||1|>-++,------------------------------- -6分①当1-<x 时,得x x x 321>+---,解得51<x ,1-<∴x ; --------------------- 7分②当21<≤-x 时,得x x x 321>+-+,解得1<x ,11<≤-∴x ; --------------- 8分③当2≥x 时,得x x x 321>-++,解得1-<x ,所以无解; ------------------------9分综上所述,原不等式的解集为)1,(-∞. -----------------------------------------------------10分。
普宁勤建中学高三第二学期 摸底考试 理科数学试题注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足()1i 1i z -=--,则1z +=( )A . 1B . 0 CD . 22. 已知U =R ,函数()ln 1y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是( ) A . MN N = B . ()UMN =∅ð C . MN U = D .()U M N ⊆ð3. 已知,a b 都是实数,>ln ln a b >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 设变量,x y 满足10020015x y x y y -≤⎧⎪≤+≤⎨⎪≤≤⎩,则23x y +的最大值为( )A . 20B . 35C . 45D .555.已知03x π=是函数()()sin 2f x x ϕ=+的一个极大值点,则()f x 的一个单调递减区间是( )A . 2,63ππ⎛⎫⎪⎝⎭ B . 5,36ππ⎛⎫ ⎪⎝⎭ C . ,2ππ⎛⎫⎪⎝⎭D . 2,3ππ⎛⎫⎪⎝⎭6. 已知1F ,2F 分别是双曲线C :22221x y a b -=(0,0a b >>)的左右两个焦点,若在双曲线C 上存在点P 使1290F PF ∠=︒,且满足12212PF F PF F ∠=∠,那么双曲线C 的离心率为( ) A1 B . 2CD.27. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知信息的概率为( ) A .25 B . 1225 C . 1625 D .458. 已知1tan 2x =,则2sin 4x π⎛⎫+= ⎪⎝⎭( ) A .110B . 15C . 35D . 9109. 执行如图1所示的程序框图,输出的z 值 为( )A .3B .4C .5D .610.某一简单几何体的三视图如图2所示,该几何体的外接球的表面积是( )A . 13πB . 16πC . 25πD .27π侧视图俯视图图211.给出下列函数:① ()sin f x x x =;② ()e xf x x =+;③ ())lnf x x =;0a ∃>,使()d 0aaf x x -=⎰的函数是( )A . ①②B . ①③C . ②③D . ①②③12.设直线y t =与曲线C :()23y x x =-的三个交点分别为()()(),,,,,A a t B b t C c t ,且a b c <<,现给出如下结论:① abc 的取值范围是()0,4; ② 222a b c ++为定值; ③ c a -有最小值无最大值;其中正确结论的个数为A . 0B . 1C . 2D .3第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。
2018--2018学年度普宁一中高三级理科数学 摸底考试试题卷注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卷上。
2.用2B 铅笔将选择题答案在答题卷对应位置涂黑;答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;不准使用铅笔或涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卷的整洁。
一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.设集合{}|(3)(1)0A x x x =-->,{}|lg(23)B x y x ==-,则AB =( )A .3[,3)2 B .(3,)+∞ C .3(1,)2 D .3(,3)22、已知命题021x p x ∀≥≥:,;命题q :若x y >,则22x y >.则下列命题为真命题的是( )A . p q ∧B .p q ∧⌝C .p q ⌝∧⌝D .p q ⌝∨3、已知直线,a b ,平面,αβ,且a α⊥,b β⊂,则“a b ⊥”是“//αβ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4、设偶函数()f x 的定义域为R ,当[0,)x ∈+∞时,()f x 是增函数,则(2),(),(3)f f f π--的大小关系是( )A . (2)()(3)f f f π-<<-B .()(2)(3)f f f π<-<-C .(3)(2)()f f f π-<-<D .(2)(3)()f f f π-<-<5. 将函数sin 6y x π⎛⎫=+⎪⎝⎭的图象上各点的横坐标压缩为原来的12倍(纵坐标不变),所得函数在下面哪个区间单调递增( ) A .,36ππ⎛⎫-⎪⎝⎭B .,22ππ⎛⎫-⎪⎝⎭ C .,33ππ⎛⎫- ⎪⎝⎭D .2,63ππ⎛⎫-⎪⎝⎭6、已知函数2()(1)x f x e x =-+(e 为自然对数的底),则()f x 的大致图象是( )7.设0a >,0b >4a 和2b的等比中项,则21a b+的最小值为( ) A. B .8 C .9 D .108、 若某几何体的三视图如图所示,则此几何体的表面积是( )A .36πB .30πC .24πD .15π9、已知()f x 在R 上是可导函数,则()f x 的图象如图所示,则不等式()()2230xx f x '-->的解集为A .()(),21,-∞-+∞错误!未找到引用源。
B .()(),21,2-∞-错误!未找到引用源。
C .()()(),11,02,-∞--+∞D .()()(),11,13,-∞--+∞10、设147()9a -=,159()7b =,27log 9c =,则a , b , c 的大小顺序是 ( )A 、b a c <<B 、c a b <<C 、c b a <<D 、b c a <<11、已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线截圆22:(1)1M x y -+=所得)A .43 B .3 C .3D .53 12、定义在区间),0(+∞上的函数)(x f 使不等式)(3)(')(2x f x xf x f <<恒成立,其中)('x f 为)(x f 的导数,则( ) A .16)1()2(8<<f f B .8)1()2(4<<f f C .4)1()2(3<<f f D .3)1()2(2<<f f 第II 卷(填空题,解答题,90分)二、填空题(共4题,每题5分)13.3()8f x x x =+-在(1,6-)处的切线方程为 14.某空间几何体的三视图如图所示,则该几何体的体积为15.某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,且甲、乙两名员工必须分到同一个车间,则不同分法的种数为 .16. 在ABC ∆中,c b a ,,分别为内角C B A ,,的对边,且bc a c b =-+222,0>⋅BC AB ,23=a ,则cb +的取值范围是 .三、解答题:本大题共6小题,满分70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.18.(本小题满分12分)雾霾影响人们的身体健康,越来越多的人开始关心如何少产生雾霾,春节前夕,某市健康协会为了了解公众对“适当甚至不燃放烟花爆竹”的态度,随机采访了50人,将凋查情况进行整理后制成下表:(1)以赞同人数的频率为概率,若再随机采访3人,求至少有1人持赞同态度的概率; (2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞同...“适当甚至不燃放烟花爆竹”的人数为X ,求随机变量X 的分布列和数学期望.19.(本小题满分12分) 正方形ADEF与梯形ABCD所在平面互相垂直,1,,2,2AD CD AB CD AB AD CD ⊥===点M 在线段EC 上且不与E,C 重合。
(Ⅰ)当点M 是EC 中点时,求证:BM//平面ADEF ;(Ⅱ)当平面BDM 与平面ABF 求三棱锥M -BDE 的体积.20.(本小题满分12分)已知椭圆1:2222=+by a x C )0(>>b a 的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线01=++y x 与以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)设P 为椭圆C 上一点,若过点)0,2(M 的直线l 与椭圆C 相交于不同的两点S 和T , 满足OP t OT OS =+(O 为坐标原点),求实数t 的取值范围. 21.(本小题满分12分)已知函数x e x f =)(, ),(,)(R b a b ax x g ∈+= (1) 讨论函数)()(x g x f y +=的单调区间; (2) 如果1,210=≤≤b a ,求证:当0≥x 时,1)()(1≥+x g xx f . 请考生在第22、23题中任选一题做答,在答题卡对应的题号后的小圆圈内涂黑,如果多做,则按所做的第一题计分。
22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线()2:sin 2cos 0C a a ρθθ=>,过点()2,4P --的直线l的参数方程为2242x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),l 与C 分别交于,M N .(Ⅰ)写出C 的平面直角坐标系方程和l 的普通方程; (Ⅱ)若,,PM MN PN 成等比数列,求a 的值.23.(本小题满分10分)选修4-5:不等式选讲 设函数()()40f x x x m m m=-++>. (Ⅰ)证明:()4f x ≥;(Ⅱ)若()25f >,求m 的取值范围.2018--2018学年度普宁一中高三级理科数学 摸底考试参考答案一,选择题二、填空题(共4题,每题5分,20分) 13.4100x y --= 14. 83π- 15.36 16.)23,23( 三.解答题(17.(Ⅰ)设等差数列{a n }的公差为d ,由题意得 d=== 3.∴a n =a 1+(n ﹣1)d=3n ………3分设等比数列{b n ﹣a n }的公比为q ,则 q 3===8,∴q=2,∴b n ﹣a n =(b 1﹣a 1)qn ﹣1=2n ﹣1, ∴b n =3n+2n ﹣1………7分(Ⅱ)由(Ⅰ)知b n =3n+2n ﹣1, ∵数列{3n}的前n 项和为n (n+1),数列{2n ﹣1}的前n 项和为1×= 2n﹣1, ∴数列{bn}的前n 项和为;…………12分18、解:(1)随机采访的50人中,赞成人数有:4+6+12+7+3+3=35人,∵以赞同人数的频率为概率,∴赞同人数的概率p 1==,∴至少有1人持赞同态度的概率p=1﹣(1﹣)3=0.973.………6分(2)从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞同“适当甚至不燃放烟花爆竹”的人数为X , 依题意得X=0,1,2,3, P (X=0)==, P (X=1)=+=,P (X=2)=210252424141614C C C C C C C +=, P (X=3)=•=,∴X 的分布列是:∴X 的数学期望EX=+3×=.………12分19.(本小题满分12分) 解:试题解析:(Ⅰ)⊥⊥由正方形ADEF 得AD DE ,又面ADEF 面ABCD,且面ADEF 面ABCD=ADED ∴⊥面ABCD 以DA,DC,DE 分别为x,y,z 轴建立空间直角坐标系则A(2,0,0),B(2,2,0),C(0,4,0),E (0,0,2),M(0, 2,1)()2,0,1BM ∴=-,面ADEF 的一个法向量()0,4,0DC =0,..BM DC BM DC BM ADEF =∴⊥∴面-------------------5分(Ⅱ)依题意设M (0,t ,2-2t ),设面BDM 的法向量(,,)n x y z = 220,(2)02tDB n x yDM n ty z =+==+-=则令y=-1,则12(1,1,),4tn t=--,面ABF 的法向量2(1,0,0),n = 121212cos ,6n n n n n n <>===⋅,解得t=2-------------------10分 ∴M(0,2,1)为EC 的中点,122DEM CDE S S ∆∆==,B 到面DEM 的距离h=2 1433M BDE DEM V S h -∆=⋅= ------------------------------------------12分20. 解:(1)由题意,以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为222)(a y c x =+-,∴圆心到直线01=++y x 的距离a c d =+=2|1|(*)………1分 ∵椭圆C 的两焦点与短轴的一个端点的连线构成等腰直角三角形,c b =∴,c b a 22==,代入(*)式得1==c b ,22==∴b a .………3分故所求椭圆方程为1222=+y x ……………4分 (2)由题意知直线l 的斜率存在,设直线l 方程为)2(-=x k y ,设)(00y x P ⋅,将直线方程代入椭圆方程得:0288)21(2222=-+-+k x k x k ,……5分0816)28)(21(4642224>+-=-+-=∆∴k k k k ,212<∴k . ………6分 设),(),,(2211y x T y x S ,则2221218k k x x +=+,22212128k k x x +-=, ………7分由OP t OT OS =+,当0=t ,直线l 为x 轴,P 点在椭圆上适合题意;………8分当0=/t ,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+-=-+=+=+=+=22121022210214)4(218k kx x k y y ty k k x x tx2202181k k t x +⋅=∴,202141k k t y +-⋅= ………10分 将上式代入椭圆方程得:1)21(16)21(3222222224=+++k t k k t k .整理得:2222116k k t +=,………11分 由212<k 知,,402<<t 所以)2,0()0,2( -∈t ,综上可得)2,2(-∈t . ……………12分21.解:(l)b ax e x g x f y x++=+=)()(,R x ∈,a e y x+=' ………1分若0≥a ,则0>'y 所以函数)()(x g x f y +=的单调增区间为),(+∞-∞ ………2分 若0<a ,令0>'y ,得)ln(a x ->,令0<'y ,得)ln(a x -<,所以函数)()(x g x f y +=的单调增区间为)),(ln(∞+-a ,单调减区间为))ln(,(a --∞……………4分(2)当1,210=≤≤b a ,0≥x 时,要证1)()(1≥+x g xx f ,即证11≥++-ax x e x ,即证 1)1(+≥++-ax x ax e x ,即证,0)1)(1(≥++--x x e x α ……………5分设x ax e x h x ++-=-)1)(1()(,则0)0(=h ,a ax a e x h x -+--='-1)1()(, ………6分下证1+≥x e x,令1)(--=x e x x ϕ,则1)(-='x e x ϕ,当)0,(-∞∈x 时,0)(<'x ϕ;当),0(+∞∈x 时,0)(>'x ϕ,所以0)0()]([min ==ϕϕx ,所以1.+≥x e x,即xe x -≥-1, ……………8分所以a e a a e a ax a e x h x x x -+-+-≥-+--='--1)]1(1[1)1()(0)12)(1(21)12(≥--=-+-=--a e a a e x x ……………11分所以)(x h 在)0[∞+上单调递增,所以0)0()(=≥h x h ,所以当0≥x 时,1)()(1≥+x g xx f . ……………12分。