人教版八年级数学_第十二章_轴对称_综合检测试题
- 格式:doc
- 大小:66.00 KB
- 文档页数:6
人教版数学八年级上学期《轴对称》单元测试(时间:120分钟满分:150分)一、单选题1.在Rt△ABC中,∠ACB=90°,D,E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,则BD的长为( )A. 5cmB. 6cmC. 7cmD. 8cm2.如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是6cm,则∠AOB的度数是( )A. 25°B. 30°C. 35°D. 40°3.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有( )A. 4个B. 3个C. 2个D. 1个4.在平面直角坐标系中,点P(﹣3,2)关于直线对称点的坐标是( )A. (﹣3,﹣2)B. (3,2)C. (2,﹣3)D. (3,﹣2)5.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=( )A. 150°B. 160°C. 130°D. 60°6.已知等腰三角形的周长为14,其腰长为4,则它的底边长为( )A. 4B. 5C. 6D. 4或67.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,则AB,AC,CE的长度关系为( )A. AB>AC=CEB. AB=AC>CEC. AB>AC>CED. AB=AC=CE8.点P(2,﹣3)关于x轴的对称点的坐标为()A. (﹣2,﹣3)B. (2,3)C. (﹣2,3)D. (3,﹣2)9.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.10.△ABC中,AB=AC,CD为AB上的高,且△ADC为等腰三角形,则∠BCD等于( )A. 67.5°B. 22.5°C. 45°D. 67.5°或22.5°11.等腰三角形的一个角是40°,则它的顶角是()A. 40°B. 70°C. 100°D. 40°或100°12.在△ABC中,AD是∠BAC的角平分线,且AB=AC+CD.若∠BAC=60°则∠ABC=( )A. 20°B. 30°C. 40°D. 50°二、填空题13.如图△ABC中,∠BAC=78°,AB=AC,P为△ABC内一点,连BP,CP,使∠PBC=9°,∠PCB=30°,连PA,则∠BAP的度数为_______.14.在平面直角坐标系中,过(-1,0)作y轴的平行线L,若点A(3,-2),则A点关于直线L对称的点的坐标为______.15.如图所示,△ABC为等边三角形,D为AB的中点,高AH=10 cm,P为AH上一动点,则PD+PB的最小值为_______cm.16.如图为6个边长相等的正方形的组合图形,则______17.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,△BCE的周长为24,BC=10则AB的长为______三、解答题18.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短.19.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D、E.(1)求证:AE=2CE;(2)连结CD,请判断△BCD的形状,并说明理由.20.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.21.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)猜想∠EDC与∠BAD的数量关系?(不必证明)22.如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A 的度数.参考答案一、单选题1.在Rt△ABC中,∠ACB=90°,D,E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,则BD的长为()A. 5cmB. 6cmC. 7cmD. 8cm【答案】A【解析】【分析】根据CE垂直平分AD,得AC=CD,再根据等腰三角形的三线合一,得∠ACE=∠ECD,结合角平分线定义和∠ACB=90°,得∠ACE=∠ECD=∠DCB=30°,则∠A=60°,进而求得∠B=30°,则BD=CD=AC.【详解】因为CE垂直平分AD,所以AC=CD=5cm.所以∠ACE=∠ECD.因为CD平分∠ECB,所以∠ECD=∠DCB.因为∠ACB=90°,所以∠ACE=∠ECD=∠DCB=30°.所以∠A=90°−∠ACE=60°.所以∠B=90°−∠A=30°.所以∠DCB=∠B.所以BD=CD=5cm.故选:A.【点睛】考查线段垂直平分线的性质,角平分线的性质,等腰三角形的判定等,比较基础,掌握线段的垂直平分线的性质是解题的关键.2.如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是6cm,则∠AOB的度数是( )A. 25°B. 30°C. 35°D. 40°【答案】B【解析】【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OD,∠DOA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是6cm,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30,故选:B.【点睛】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明△OCD是等边三角形是解决问题的关键.3.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】如图所示:符合条件的小正方形共有3种情况.故选:B.【点睛】考查轴对称图形的设计,掌握轴对称图形的概念是解题的关键.4.在平面直角坐标系中,点P(﹣3,2)关于直线对称点的坐标是( )A. (﹣3,﹣2)B. (3,2)C. (2,﹣3)D. (3,﹣2)【解析】试题分析:点P关于直线对称点为点Q,作AP∥x轴交于A,∵是第一、三象限的角平分线,∴点A的坐标为(2,2),∵AP=AQ,∴点Q的坐标为(2,﹣3).故选C.考点:坐标与图形变化-对称.5.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=( )A. 150°B. 160°C. 130°D. 60°【答案】A【解析】试题分析:∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=(360°﹣∠BAD)=(360°﹣60°)=150°.故选A.考点:1.等腰三角形的性质;2.平行线的性质;3.多边形内角与外角.6.已知等腰三角形的周长为14,其腰长为4,则它的底边长为()A. 4B. 5C. 6D. 4或6【答案】C【解析】根据等腰三角形的两腰相等,即可求出底边的长度.【详解】腰是4时,则底边长为:故选:C.【点睛】考查等腰三角形的性质以及三角形周长的计算,熟练掌握等腰三角形的两腰相等是解题的关键.7.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,则AB,AC,CE的长度关系为()A. AB>AC=CEB. AB=AC>CEC. AB>AC>CED. AB=AC=CE【答案】D【解析】【分析】因为AD⊥BC,BD=DC,点C在AE的垂直平分线上,由垂直平分线的性质得AB=AC=CE;【详解】∵AD⊥BC,BD=DC,∴AB=AC;又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE;故选:D.【点睛】考查线段的垂直平分线的性质,线段的垂直平分线上的点到线段两个端点的距离相等.8.点P(2,﹣3)关于x轴的对称点的坐标为()A. (﹣2,﹣3)B. (2,3)C. (﹣2,3)D. (3,﹣2)【答案】B【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】点P(2,−3)关于x轴的对称点的坐标为(2,3),故选:B.【点睛】考查关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.9.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念,找出沿一条直线折叠,直线两旁的部分能够完全重合的字即可解答.【详解】根据轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,可得A是轴对称图形.故选:A.【点睛】轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴;10.△ABC中,AB=AC,CD为AB上的高,且△ADC为等腰三角形,则∠BCD等于( )A. 67.5°B. 22.5°C. 45°D. 67.5°或22.5°【答案】D【解析】【分析】根据题意,应该考虑两种情况,①CD在△ABC内部;②CD在△ABC外部.分别结合已知条件进行计算即可.【详解】①如右图所示,CD在△ABC内部,∵AB=AC,CD为AB上的高,∴∠B=∠ACB,又∵△ADC是等腰三角形,∴∴∴②如右图所示,CD在△ABC外部,∵AB=AC,CD为AB上的高,∴∠B=∠ACB,又∵△ADC是等腰三角形,∴∴∴故选:D.【点睛】考查等腰三角形的性质,画出示意图,数形结合是解题的关键.不要漏解.11.等腰三角形的一个角是40°,则它的顶角是()A. 40°B. 70°C. 100°D. 40°或100°【答案】D【解析】【分析】分这个角为顶角和底角,结合三角形内角和定理可求得答案.【详解】当40°角为顶角时,则顶角为40°,当40°角为底角时,则两个底角和为80°,求得顶角为故选:D.【点睛】考查等腰三角形的性质,注意分类讨论思想在解题中的应用.12.在△ABC中,AD是∠BAC的角平分线,且AB=AC+CD.若∠BAC=60°则∠ABC=( )A. 20°B. 30°C. 40°D. 50°【答案】C【解析】【分析】可在AB上取AC′=AC,则由题中条件可得BC′=C′D,即∠C=∠AC′D=2∠B,再由三角形的外角性质即可求得∠B的大小.【详解】如图,在AB上取AC′=AC,∵AD是角平分线,∴∠DAC=∠DAC′,∴△ACD≌△AC′D(SAS),∴CD=C′D,又∵AB=AC+CD,AB=AC′+C′B,∴BC′=C′D,∴又∵∴故选:C.【点睛】考查全等三角形的判定与性质, 三角形外角的性质,等腰三角形的性质等,作出辅助线是解题的关键.二、填空题13.如图△ABC中,∠BAC=78°,AB=AC,P为△ABC内一点,连BP,CP,使∠PBC=9°,∠PCB=30°,连PA,则∠BAP的度数为_______.【答案】69°【解析】【分析】在BC下方取一点D,使得三角形ABD为等边三角形,连接DP、DC,根据等边三角形的性质得到AD=AB=AC,求出∠DAC、∠ACD、∠ADC的度数,根据三角形的内角和定理求出∠ABC=∠ACB=51°,即∠CDB=141°=∠BPC,再证△BDC≌△BPC,得到PC=DC,进一步得到等边△DPC,推出△APD≌△APC,根据全等三角形的性质得到∠DAP=∠CAP=9°,即可求出答案.【详解】在BC下方取一点D,使得三角形ABD为等边三角形,连接DP、DC∴AD=AB=AC,∴∵∴∴又∵∴△BDC≌△BPC,∴PC=DC,又∵∴△DPC是等边三角形,∴△APD≌△APC,∴∴故答案为:69°.【点睛】本题主要考查对等腰三角形的性质,等边三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,作辅助线得到全等三角形是解此题的关键,此题是一个拔高的题目,有一点难度.14.在平面直角坐标系中,过(-1,0)作y轴的平行线L,若点A(3,-2),则A点关于直线L对称的点的坐标为______.【答案】【解析】【分析】根据点P(x,y)关于直线对称的点与点P的连线平行于轴,因而纵坐标与P的纵坐标相同,横坐标与x的平均数是,继而求解【详解】∵过(−1,0)作y轴的平行线L,∴点A(3,−2),关于直线对称的点的坐标是故答案为:【点睛】本题考查了直线对称点的坐标性质,解决本题的关键是掌握好对称点的坐标规律,注意结合图象,进行记忆和解题.15.如图所示,△ABC为等边三角形,D为AB的中点,高AH=10 cm,P为AH上一动点,则PD+PB的最小值为_______cm.【答案】10【解析】【分析】连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.【详解】连接PC,∵△ABC为等边三角形,D为AB的中点,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.故答案为:10【点睛】考查轴对称-最短路线问题,等边三角形的性质,找出点P的位置是解题的关键.16.如图为6个边长相等的正方形的组合图形,则______【答案】135°【解析】在△ABC和△DEA中,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1-∠2+∠3=90°-45°=45°,故答案为:45°.17.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,△BCE的周长为24,BC=10则AB的长为______【答案】14【解析】【分析】根据“线段垂直平分线的性质定理”即可得到AE=BE,由于△BCE的周长为24,利用线段的等量代换即可得到AC+BC的值;已知BC的长度,即可得到AC的长度,由于AB=AC,则问题得解.【详解】∵DE是AB的垂直平分线,∴AE=BE.∵△BCE的周长为24,∴BC+BE+CE=BC+AE+CE=BC+AC=24.∵BC=10.∴AC=14.∵AB=AC,∴AB=14.【点睛】本题主要考查线段垂直平分线的性质,线段垂直平分线的性质有:①线段的垂直平分线垂直且平分该线段;②线段的垂直平分线上任意一点,到线段两端点的距离相等;三、解答题18.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短.【答案】见解析【解析】【分析】(1)利用轴对称的性质找出对应点A′、B′、C′,顺次连接即为所求三角形.(2)利用轴对称求最短路径的性质得出P点位置.【详解】(1)(2)【点睛】本题考查成轴对称图形的画法及最短路径问题,关键在于理解轴对称的性质.19.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D、E.(1)求证:AE=2CE;(2)连结CD,请判断△BCD的形状,并说明理由.【答案】见解析【解析】【分析】(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得∠ABE=∠A;结合三角形外角的性质可得∠BEC的度数,再在Rt△BCE中结合含30°角的直角三角形的性质,即可证明第(1)问的结论;(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到∠ABC=60°,至此不难判断△BCD的形状【详解】(1)证明:连结BE,如图.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.(2)解:△BCD是等边三角形.理由如下:∵DE垂直平分AB,∴D为AB的中点.∵∠ACB=90°,∴CD=BD.又∵∠ABC=60°,∴△BCD是等边三角形.【点睛】此题考查了线段垂直平分线的性质、30°角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30°角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,20.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC≌△DAE,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE即可得∠FAE的度数;(3)延长BF到G,使得FG=FB,易证△AFB≌△AFG,根据全等三角形的性质可得AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS证得△CGA≌△CDA,由全等三角形的性质可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,在△CGA和△CDA中,,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.21.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)猜想∠EDC与∠BAD的数量关系?(不必证明)【答案】(1)15°(2)【解析】【分析】(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据(1)的结论猜出即可.【详解】(1)∵∴∴∵∵AD=AE,∴∴答:∠EDC的度数是15°.(2)∠EDC与∠BAD的数量关系是.【点睛】考查等腰三角形的性质,三角形内角和定理,三角形的外角性质,比较基础,难度不大.22.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A 的度数.【答案】(1)见解析;(2)40°.【解析】【分析】(1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.【详解】(1)∵CD是∠ACB的平分线,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【点睛】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°.。
八年级数学第十二章《全等三角形》练习试题 A. 20 ° B. 30° C. 40° D. 45°二、填空题。
(每题 3 分,共24 分)认真审题,认真填写哟!11、如图,AB ,CD 订交于点O,AD=CB ,请你增补一个条件,使得△ AOD姓名成绩≌△COB,增补的条件是。
一、选择题。
(每题 3 分,共30 分)仔细择一择,你必定很准!1、如图,AD 是△ABC 的中线,E、F 分别是AD 和AD 延长线上的点,且DE=DF ,12 、如图, OP 平分∠MON, PE⊥OM 于E, PF⊥ON 于连结BF,CE,以下说法:①CE=BF;②△ABD 和△ACD 的面积相等;③BF∥CE;④△BDF≌△CDE。
此中正确的有()F, OA=OB. 则图中有对全等三角形。
13、如图,在△ABC 中,∠C=90°,AD 均分∠BAC ,AB =15,A. 1 个B. 2 个C. 3 个D. 4 个CD=4,则△ABD 的面积是。
2、如图,已知AD =AE ,BD=CE,∠ADB =∠AEC =100°,∠BAE =70°,则以下结论错误的选项是()14、如图,在Rt△ABC 中,∠C=90°,AC=10 ,BC=5 ,线段PQ=AB ,A. △ABE ≌△DCAB. △ABD ≌△ACEC. ∠DAE =40°D. ∠C=30°3、如图,平行四边形ABCD 中,E,F 是对角线BD 上的两点,假如增添一P,Q 两点分别在AC 和过点 A 且垂直于AC 的射线AO 上运动,当AP= 时,△ABC 和△PQA 全等。
个条件使△ABE ≌△CDF ,则增添的条件不可以是()15、△ABC 中,∠C=90°,BC=4 cm,∠BAC 的均分线交BC A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2 于D 且BD:DC =5:3,则 D 点到AB 的距离为cm。
【关键字】试题第12章《轴对称图形》一、选择题1.下列标志中,可以看作是轴对称图形的是()2.正方形对称轴的条数是()A.1B.1C.1D.13.点P(2,-5)关于x轴对称的点的坐标为A.(-2,5)B.(2,5)C.(-2,-5)D.(2,-5)4.如图,直线CD是线段AB的笔直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A.6B.5C.4D.35.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()6.如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°7.在等腰△ABC中,AB=AC,其周长为,则AB边的取值范围是()A.<AB<B.<AB<C.<AB<D.<AB<10cm8.从一个等腰三角形纸片的底角顶点出发,能将其剪成两个等腰三角形纸片,则原等腰三角形纸片的底角等于()A.72°B.C.144°D.72°,或9.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA 的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()cmB.5.5C.6.5D.710.如图所示,已知△ABC和△ADE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AG与BD交于点F,连结OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确的结论个数()A.1个B.2个C.3个D.4个二、填空题11.如图,在Rt△ABC中,∠ABC=90°,AC=10cm,点D为AC的中点,则BD=___cm.12.如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B=___.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为___.14.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E,∠A=30°,AB=8,则DE的长度是___.15.如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=___.16.如图,在△ABC中,按以下步骤作图:①分别以点B、C为圆心,以大于BC的长为半径作弧,两弧相交于M、N两点;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为___.17.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距___m.18.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是___.三、解答题19.在平面直角坐标系中,已知点A(-3,1),B(-1,0),C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.20.如图,△ABC与△DEF关于直线l对称,请用无刻度的直尺,在下面两个图中分别作出直线l.21.如图,在等边△ABC中,AB=2,点P是AB边上任意一点(点P可以与点A重合),过点P作PE⊥BC,垂足为E,过点E作EF⊥AC,垂足为F,过点F作FQ⊥AB,垂足为Q,求当BP的长等于多少时,点P与点Q重合?22.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC 的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.23.如图,O为△ABC内部一点,OB=3,P、R为O分别以直线AB、直线BC为对称轴的对称点.(1)请指出当∠ABC在什么角度时,会使得PR的长度等于7?并完整说明PR的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC不是你指出的角度时,PR的长度是小于7还是会大于7?并完整说明你判断的理由.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.25.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E 作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数.(2)若CD=2,求DF的长.26.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点.(2)将如图1中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△CAN为等腰直角三角形.(3)将如图1中△BCE绕点旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.27.如图,△ABC 中,AB =AC ,∠A =36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC ) (1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是___度和___度. (2)在图2中画2条线段,使图中有4个等腰三角形.(3)继续按以上操作发现:在△ABC 中画n 条线段,则图中有___个等腰三角形,其中有___个黄金等腰三角形.28.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连结DC ,以DC 为边在BC 上方作等边△DCF ,连结AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其它作法与(1)相同.猜想AF 与BD 在(1)中的结论是否仍然成立? (3)深入探究: Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在其上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何等量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 运动至等边△ABC 边BA 的延长线上运动时,其它作法与图③相同.Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.参考答案: 一、1.D.点拨:A 、不是轴对称图形,不符合题意;B 、不是轴对称图形,不符合题意;C 、不是轴对称图形,不符合题意;D 、是轴对称图形,符合题意.故应选D .2.D.3.B.点拨:把点P (2,-5)的纵坐标-5改成它的相反数5,即可得到点P 关于x 轴对称点的坐标.4.B.点拨:由根据线段垂直平分线性质可以直接判断线段PA 与线段PB 的长度相等.5.B.点拨:按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到图形B .故应选B .6.B.点拨:∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,∴∠ADE =∠B =50°,∵∠A =26°,∴∠ADE =180°-50°-26°=104°;再由折叠可知:∠AED =∠A ′ED =104°,∴∠AEA ′=360°-104°-104°=152°.7.B.点拨:∵在等腰△ABC 中,AB =AC ,其周长为20cm ,∴设AB =AC =x ,则BC =20-2x cm ,∴2x >20-2x ,且20-2x >0,解得5cm <x <10cm.故应选B .8.D.点拨:如图,等腰三角形ABC 中,因为AB =AC ,所以∠ABC =∠C ,设顶角为α、底角为β,则根据三角形三内角和为180°,得α+2β=180.此时,由于过B 点画直线交AC 于D ,则△ADB 与△BDC 都是等腰三角形,若AD =DB =BC ,则β=2α,α+2β=180°,解得α=36°,β=72°;若AD =DB ,BC =DC ,则β=3α,α+2β=180°,解得α=7180,β=7540 .所以原等腰三角形纸片的底角等于72°,或5407⎛⎫ ⎪⎝⎭.故应选D . F D C B A 图① F D C B A 图② F D C B A 图③ F ′ F AC F ′D 图④B D A DC B A E M N图1 D C B A E M N 图2 DC B A E M N 图3 图1 C B A E F 图2 C B A E 图3C B A9.A.点拨:∵点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,∴PM =MQ ,PN =NR .∵PM =2.5cm ,PN =3cm ,MN =4cm ,∴RN =3cm ,MQ =2.5cm ,NQ =MN -MQ =4-2.5=1.5(cm ),则线段QR 的长为:RN +NQ =3+1.5=4.5(cm ).故应选A .10.D.点拨:因为BC =AC ,∠BCD =∠ACE =120°,CD =CE ,所以△BCD ≌△ACE ,从而得①AE =BD 是正确的;又因为△BCD ≌△ACE ,所以∠FBC =∠GAC ,根据BC =AC ,∠BCF =∠ACG =60°,得△BCF ≌△ACG ,所以②AG =BF 是正确的;由△BCF ≌△ACG ,得CF =CG ,而∠FCG =60°,所以∠CGF =∠CFG =∠FCG =60°,所以③FG ∥BE 是正确的;如图,过C 作CM ⊥BD 于M ,CN ⊥AE 于N ,易得△BCM ≌△CAN ,所以CM =CN ,所以④∠BOC =∠EOC 是正确的.故应选D .二、11.5. 12.90°.点拨:因为△ABC 与△A ′B ′C ′关于直线l 对称,∠C ′=60°,所以∠C ′=∠C =60°,在△ABC 中,因为∠A =30°,所以∠B =180°-30°-60°=90°. 13.10.点拨:由角平分线的性质及题中已知条件可得PD =PE ,又因为PD =10,所以PE =10.14.2.点拨:∵D 为AB 的中点,AB =8,∴AD =4,∵ DE ⊥AC 于点E ,∴∠DEA =90°,∵∠A =30°,∴DE =12AD =2; 15.15°.点拨:∵折叠该纸片,使点A 落在点B 处,折痕为DE ,∴EA =EB ,∴∠EBA =∠A .又∵AB =AC ,∠A =50°,∴∠B =65°,∠EBA =50°,∴∠CBE =15°.16.105°.点拨:由①的作图可知CD =BD ,∴∠DCB =∠B =25°,∴∠ADC =50°.又∵CD =AC ,∴∠A =∠ADC =50°,∴∠ACD =80°,∴∠ACB =80°+25°=105°.17.200.点拨:由条件,得∠ABC =90°+30°=120°,∠BAC =90°-60°=30°,所以∠ACB =180°-∠ABC -∠BAC =180°-120°-30°=30°,所以∠ACB =∠BAC ,所以BC =AB =200,即B 、C 两地相距200m.18.(12)n -1·75°.点拨:∵A 1B =CB ,∠B =30°,∴∠C =∠BA 1C =12(180°-∠B )=75°,又∵A 1A 2=A 1D ,∴∠A 1A 2D =∠A 1DA 2=12∠DA 1C =12×75°(三角形外角等于不相邻两内角之和)=2112-×75°=2112-⎛⎫ ⎪⎝⎭×75°;同样,∵A 2A 3=A 2E ,∴∠A 2A 3E =∠A 2EA 3=12∠DA 2A 1=12×12×75°=14×75°=3112-×75°=3112-⎛⎫ ⎪⎝⎭×75°;同理,∠A 3A 4F =∠A 3FA 4=12∠EA 3A 2=4112-⎛⎫ ⎪⎝⎭×75°;…第n 个三角形中以A n 为顶点的内角度数是112n -⎛⎫ ⎪⎝⎭×75°. 三、19.如图,△ABC 就是所求的三角形,A ,B ,C 三点关于y 轴的对称点分别为A ′(3,1),B ′(1,0),C ′(2,-1),△A ′B ′C ′就是△ABC 关于y 轴对称的图形. 20.如图1和2所示中的直线l 21.设BP =x ,在Rt △PBE 中,∠BPE Rt △G F O D C B AE M NEFC中,∠FEC=30°,所以FC=12EC=1-14x,所以AF=2-FC=2-(1-14x)=1+14x,同理,AQ=12AF=12+18x,当点P与点Q重合时,有BP+AQ=2,即x+(12+18x)=2,解得x=43,故当BP=43时,点P与点Q重合.22.(1)证明:∵CD=CB,E为BD的中点,∴CE⊥BD,∴∠AEC=90°.又∵F为AC的中点,∴EF=12AC.(2)∵∠BAC=45°,∠AEC=90°,∴∠ACE=∠BAC=45°,∴AE=CE.又∵F为AC的中点,∴EF⊥AC,∴EF为AC的垂直平分线,∴AM=CM,∴AM+DM=CM+DM =CD.又∵CD=CB,∴AM+DM=BC.23.(1)∠ABC=90°时,PR=7.证明:连接PB、RB,∵P、R为O分别以直线AB、直线BC为对称轴的对称点,∴PB=OB=312,RB=OB=312,∵∠ABC=90°,∴∠ABP+∠CBR=∠ABO+∠CBO=∠ABC=90°,∴点P、B、R三点共线,∴PR=2×312=7.(2)PR的长度是小于7.理由:∠ABC≠90°,则点P、B、R三点不在同一直线上,∴PB+BR>PR,∵PB+BR=2OB=2×312=7,∴PR<7.24.(1)①②、①③.(2)选①②证明如下:在△BOE和△COD中,∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD,∴△BOE≌△COD(AAS),∴BO=CO,∠OBC=∠OCB,∴∠EOB+∠OBC =∠DOC+∠OCB,即∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.25.(1)∵三角形ABC为等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形,∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.26.(1)∵点M为DE的中点,∴DM=ME.∵AD∥EN,∴∠ADM=∠NEM,又∵∠DMA=∠EMN,∴△DMA≌△EMN,∴AM=MN,即M为AN的中点.(2)由(1)中△DMA≌△EMN可知DA=EN,又∵DA=AB,∴AB=NE,∵∠ABC=∠NEC=135°,BC=CE,∴△ABC≌△NEC,∴AC=CN,∠ACB=∠NCE,∵∠BCE=∠BCN+∠NCE=90°,∴∠BCN+∠ACB=90°,∴∠CAN=90°,∴△CAN为等腰直角三角形.(3)由(2)可知AB=NE,BC=CE.又∵∠ABC=360°-45°-45°-∠DBE=270°-∠DBE=270°-(180°-∠BDE-∠BED)=90°+∠BDE+∠BED=90°+∠ADM-45°+∠BED=45+∠MEN+∠BED=∠CEN,∴△ABC≌△NEC,再同(2)可证△CAN 为等腰直角三角形,∴(2)中的结论是否仍然成立.27.(1)如图1所示.∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度.(2)画法不惟一.如,如图2所示.四个等腰三角形分别是:△ABE,△BCE,△BEF,△CEF.(3)如图3所示.当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.28.(1)AF=BD.证明:因为△ABC和△DCF均是等边三角形,所以∠ACB=∠DCF,所以∠ACB-∠ACD=∠DCF-∠ACD,即∠BCD=∠ACF.在△BDC和△AFC中,BC=AC,∠BCD=∠ACF,DC=FC,所以△BDC≌△AFC,所以AF=BD.(2)仍然成立.证法同(1).(3)Ⅰ:AF+BF′=AB.证明:由(1)可证AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,所以AF+BF′=AB.Ⅱ.在Ⅰ中的结论不成立,新结论是:AF-BF′=AB.证明:同(1)可证△BDC≌△AFC,所以AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,因为BD-AD=AB,所以AF-BF′=AB.此文档是由网络收集并进行重新排版整理.word可编辑版本!。
第十二章 全等三角形 单元检测题 (17)一、单选题1.如图,△ABC ≌△DEF ,点A 与点D 对应,点C 与点F 对应,则图中相等的线段有( )A .1组B .2组C .3组D .4组2.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,CD ,BE 相交于点O ,BE =CD ,则图中全等的三角形共有( )A .0对B .1对C .2对D .3对3.如图,用“AAS ”直接判定△ACD ≌△ABE ,需要添加的条件是( )A .∠ADC =∠AEB ,∠C =∠BB .∠ADC =∠AEB , CD =BEC .AC =AB ,AD =AED .AC =AB ,∠C =∠B4.如图,B 、E 、C 、F 在同一直线上,BE CF =,AB DE =,添加下列哪个条件,可以证明ABC △≌DEF ( )A .BC =EFB .∠A =∠DC .AC ∥DFD .AC =DF5.下列语句:①全等三角形的周长相等.②面积相等的三角形是全等三角形.③若成轴对称的两个图形中的对称线段所在直线相交,则这个交点一定在对称轴上.④全等三角形的所有边相等.其中正确的有( )A .0个B .1个C .2个D .3个 6.在ABC △内部取一点P ,使得点P 到ABC △的的三边距离相等,则点P 是ABC △的( ).A .三条高的交点B .三条角平分线的交点C .三条中线的交点D .三边的垂直平凡线的交点7.已知如图,直线AC ,BD 相交于点O ,且OA OD =,添加一个条件后,仍不能判定ABO DCO △≌△的是( ).A .BO CO =B .A D ∠=∠C .AB DC =D .B C ∠=∠8.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .10 9.如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是BC 的中点,则BE+CF 与EF 的大小关系是( )A .BE+CF >EFB .BE+CF =EFC .BE+CF <EFD .无法确定10.如图,在△ABC 中,AB =AC ,D 、E 分别为BC 、AC 的中点,F 为AD 上一点,当EF ⊥AC 时,图中的全等三角形的对数是( )A .1对B .2对C .3对D .4对11.如图,AB CD ∥,BP 和CP 分别平分ABC ∠和DCB ∠,AD 过点P ,且与AB 垂直。
八年级数学上册第十一、十二、十三章综合测试一.选择题:(每题3分,共30分)1.下列图案是几种名车的标志,请你指出,在这几个图案中是轴对称图形的共有()A.1个B.2个C.3个D.4个2.电子钟镜子里的像如图所示,实际时间是()A.21:10 B.10:21 C.10:51 D.12:013.下列结论中正确的是()A.有两边及一角对应相等的两个三角形全等B.有两角及一边相等的两个三角形全等C.有两边相等的两个直角三角形全等D.有斜边和一锐角相等的两个直角三角形全等4.如图工人师傅砌门常用木条EF固定长方形门框ABCD,使其不变形的根据()A.两点之间线段最短 B.长方形的对称性C.长方形的四个角都是直角 D.三角形的稳定性5.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°6.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点D.三边上高的交点7.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm8.如图,直线l1、l2相交于点A,点B是直线外一点,在直线l1、l2上找一点C,使△ABC为一个等腰三角形.满足条件的点C有()A.2个B.4个C.6个D.8个9.下面说法错误的个数有()(1)全等三角形对应边上的中线相等.(2)有两条边对应相等的等腰直三角形全等.(3)一条斜边对应相等的两个直角三角形全等.(4)两边及其一边上的高也对应相等的两个三角形全等.A.1个B.2个C.3个D.4个10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC 延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定二.填空题(每空2分,共36分)11.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.12.如图,△ABC≌△ADE,则AB=,∠E=∠.若∠BAE=120°,∠BAD=40°,则∠BAC=.13.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形;⑥平行四边形.其中一定是轴对称图形的有个.14.如图,点D在边BC上,DE⊥AB,DF⊥BC,垂足分别为点E,D,BD=CF,BE =CD.若∠AFD=155°,则∠EDF=.15.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.16.如图,△ABC中,∠C=90°,AC=BC=a,AB=b,AD平分∠CAB交BC于D,DE⊥AB,垂足为E,则△DEB的周长为.(用a、b代数式表示)17.如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入号球袋.18.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.19.如图,BD垂直平分AC,则结论①AB=AD;②AD=DC;③∠BAC=∠DAC;④∠ABD=∠CBD中成立的是.(填序号)20.如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为时,能够使△BPE与△CQP全等.三、用心解一解(共34分)21.(5分)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C相对应);1(2)在直线l上找一点P,使得PA+PB的和最小.22.(5分)如图:某通信公司在A区要修建一座信号发射塔M,要求发射塔到两城镇P、Q的距离相等,同时到两条高速公路l1、l2的距离也相等.请用直尺和圆规在图中作出发射塔M的位置.(不写作法,保留作图痕迹)23.(6分)已知:如图,AC=AB,CD=BD,求证:∠ACD=∠ABD.24.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.25.(8分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、AD平分∠BAC;(1)求证:BE=CF;(2)已知AC=20,BE=4,DF=8,求四边形ABCD的面积.四、仔细想一想做一做(共20分)26.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.一.选择题:(每题3分,共30分)1.C; 2.C; 3.D; 4.D; 5.A;6.C; 7.C; 8.D; 9.B; 10.B;二.填空题(每空2分,共36分)11.3; 12.AD;C;80°; 13.4; 14.65°;15.AH=CB等(只要符合要求即可); 16.b; 17.1;18.4; 19.②④; 20.3厘米/秒或厘米/秒;三、用心解一解(共34分)21.(5分)解:(1)如图所示,△A1B1C1即为所求的三角形:;(2)如图所示:点A关于直线l的对称点A′,连接A′B与直线l交于点P,则P点即为所求..解:如图所示:,点M即为所求.23.(6分)证明:连接AD.在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠ACD=∠ABD.24.(8分)解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.25.(8分)证明:(1)∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∠DEB=∠DFC=90°,在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)∵DE⊥AB,DF⊥AC,∴∠E=∠DFA=90°,在Rt△AED和Rt△AFD中,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵Rt△BED≌Rt△CFD,∴CF=BE,∵AC=20,BE=4,∴AB=AE﹣BE=AF﹣CF=AC﹣CF﹣CF=20﹣4﹣4=12.∴四边形ABCD的面积=.四、仔细想一想做一做(共20分)26.解:问题背景:∵小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,∴EF=FG,FG=FD+DG=FD+BE,∴EF=BE+FD,故答案为:EF=BE+FD;探索延伸:上述结论EF=BE+FD成立,理由:如图2,延长FD到点G,使得DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,∵AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠DAF+∠BAE=∠BAD﹣∠EAF=∠BAD,∴∠GAF=∠EAF,又∵AG=AE,AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF,∵GF=DF+DG=DF+BE,∴EF=BE+FD;实际应用:如图3,连接EF,延长AE、BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠FOE=70°=,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=60°+120°=180°,∴图3符合探索延伸的条件,∴EF=AE+FB=×(60+80)=210(海里),即此时两舰艇之间的距离210海里.。
第1页 共8页 ◎ 第2页 共8页人教版八年级数学轴对称章检测卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知点A (a ,2)与点B (3,b )关于x 轴对称,则a +2b =( ) A .-4B .-1C .-2D .42.下列图标中,是轴对称图形的是( )A .B .C .D .3.在平面直角坐标系中,点A (3,﹣1)关于x 轴对称的点的坐标为( ) A .(﹣3,1)B .(1,﹣3)C .(﹣3,﹣1)D .(3,1)4.如图,在ABC 中,DE 是AC 的垂直平分线,且分别交BC 、AC 于点D 和E ,70B ∠=︒,25C ∠=︒,则BAD ∠为( )A .55︒B .60︒C .65︒D .70︒5.剪纸是我国传统的民间艺术.将一张正方形纸片按图1,图2中的方式沿虚线依次对折后,再沿图3中的虚线裁剪,最后将图4中的纸片打开铺平,所得图案应该是( )A .B .C .D .6.如图,在△ABC 中,BD 平分△ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若△A =60°,△ACE =24°,则△ABE 的度数为( )A .24°B .30°C .32°D .48°7.下列图案中,是轴对称图形的是( )A .B .C .D .第3页 共8页 ◎ 第4页 共8页8.如图,△ABC 与A B C '''关于直线MN 对称,BB '交MN 于点O ,则下列结论不一定正确的是( )A .AC AC =''B .BO B O ='C .AA MN '⊥D .AB B C ''∥9.下列图形中,轴对称图形的个数是( )A .1个;B .2个;C .3个;D .4个;10.如图,△ABC 中△A =40°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,点C 恰好落在BE 上的点G 处,此时△BDC =82°,则原三角形的△B 的度数为( )A .57°B .60°C .63°D .70°二、填空题11.把一张长方形纸条ABCD 沿EF 折叠成图△,再沿HF 折叠成图△,若△DEF =β(0°<β<90°),用β表示△C ''FE ,则△C ''FE =_______.12.如图,将ABC 沿AB 边对折,使点C 落在点D 处,延长CA 到E ,使AE AD =,连接CD 交AB 于F ,连接ED ,则下列结论中:△若ABC 的周长为12,5DE =,则四边形ABDE 的周长为17;△AB DE ∥;△90CDE ∠=︒;△2ADE ADF S S =△△,正确的有_____________.13.如图,在△ABC 中,△B 、△C 的平分线交于点F ,过点F 作DE △BC 交AB 于点D ,交AC 于点E ,下列结论:△△BDF ,△ADE 都是等腰三角形;△DE =BD +CE ;△△ADE 的周长等于AB +AC ;△BF=CF ;△若△A =80°,则△BFC =130°,其中正确的有_________14.如图,在平行四边形ABCD 中,60C ∠=︒,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B ,F 为圆心,大于12BF 的长为半径画弧,两弧交于一点P ,连接AP 并延长交BC 于点E ,连接EF .设AE 与BF 相交于点O ,若四边形ABEF 的周长为16,则四边形ABEF 的面积是_________.第5页 共8页 ◎ 第6页 共8页15.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABO △△ADO ,下列结论:△AC △BD ;△CB =CD ;△△ABC △△ADC ;△DA =DC .其中不正确结论的序号是____.16.如图,在ABC 中,90ACB ∠=︒,15B ∠=︒,DE 的垂直平分线AB 分别交AB 、BC 于点D 、E ,连接AE ,若6cm BE =,则AC 等于___________cm .17.等腰三角形的顶角是100︒,那么它的一个底角的度数是________.18.如图,在△ABC 中,AB =8,BC =9,AC =5,直线m 是△ABC 中BC 边的垂直平分线,P 是直线上的一动点,则△APC 的周长的最小值为________.三、解答题19.如图,在△ABC 中,AB =BC ,△ABC =120°,AB 的垂直平分线DE 交AC 于点D ,连接BD ,若AC =12(1)求证:BD △BC . (2)求DB 的长.20.如图,E 为ABC 的外角CAD ∠平分线上的一点,AE //BC ,BF AE =.(1)求证:ABC 是等腰三角形;(2)若4AF =,求CE 的长.21.如图,△ABC 是边长为6的等边三角形,三边上分别有点E 、D 、F ,使得AE =BD =CF ,过点E 作EP △DF ,垂足为点P(1)求证:△BDE △△CFD ; (2)求△DEP 的度数;第7页 共8页 ◎ 第8页 共8页(3)当点E 、D 、F 分别在三边BA 、CB 及AC 的延长线上时,过点E 作EP △DF ,垂足为点P ,若AE =BD =CF =2,若△BDE 的周长为19,求DP 的长. 22.如图,AB 是线段,AD 和BC 是射线,AD//BC .(1)尺规作图:作AB 的垂直平分线EF ,垂足为O ,且分别与射线BC 、AD 相交于点E 、F (不写作法,保留作图痕迹);(2)在(1)条件下,连接AE ,求证:AE=AF .23.已知:如图,△ABC 是等边三角形,边长为6,点D 为动点,AD 绕点A 逆时针旋转60°得到AE .(1)如图1,连接BD ,CE ,求证BD CE =;(2)如图2,BAD DBC ∠=∠,连接DE ,求证:点B ,D ,E 三点在同一条直线上; (3)如图3,点D 在△ABC 的高BF 上,连接EF ,求EF 的最小值. 24.已知:Rt ABC ,90B .求作:点P ,使点P 在ABC 内部,且,45PB PC PBC =∠=︒.25.在正方形网格中,建立如图所示的平面直角坐标系,△ABC 的三个顶点都在格点上,△ABC 关于y 轴对称图形为△A 1B 1C 1(要求:A 与A 1,B 与B 1,C 与C 1相对应)(1)写出A 1,B 1,C 1的坐标,并画出△A 1B 1C 1的图形; (2)求△A 1B 1C 1的面积;(3)点P 是y 轴上一动点,画出P A +PC 最短时,点P 的位置.(保留作图痕迹,不写画法)26.如图,在平面直角坐标系中,A (3,4),B (1,2),C (5,1).(1)作出△ABC 关于y 轴的对称图形△1A 1B 1C ; (2)写出△1A 1B 1C 的三个顶点的坐标;(3)连接1AA ,1BB ,并求出四边形11ABB A 的面积.参考答案:1.B【分析】先根据关于x轴对称的点的坐标特点求出a、b,再代入计算即可.【详解】解:△点A(a,2)与点B(3,b)关于x轴对称,所以a=3,b=−2,△a+2b=3+2×(−2)=-1.故选B.【点睛】此题主要考查关于x轴对称的点的坐标特点.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.2.D【分析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【详解】A、不是轴对称图形,此项不符题意;B、不是轴对称图形,此项不符题意;C、不是轴对称图形,此项不符题意;;D、是轴对称图形,此项符合题意;故选:D.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.3.D【分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】解:点P(3,−1)关于x轴对称的点的坐标是(3,1)故选:D.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.B【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到△DAC=△C,根据三角形内角和定理求出△BAC的度数,计算出结果.【详解】解:△DE是AC的垂直平分线,△DA=DC,△△DAC=△C=25°,△△B=70°,△C=25°,△△BAC=85°,△△BAD=△BAC-△DAC=60°,故选:B.【点睛】本题考查的是线段垂直平分线的性质的知识,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.A【分析】依据翻折变换,将图4中的纸片按顺序打开铺平,即可得到一个图案.【详解】解:将图4中的纸片打开铺平,所得图案应该是:故选:A.【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确地找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.6.C【分析】先根据BC的垂直平分线交BD于点E证明△BFE△△CFE(SAS),根据全等三角形∠=∠=∠,再根据三角形内角和定理即可得到的性质和角平分线的性质得到ABE EBF ECF答案.【详解】解:如图:△BC的垂直平分线交BD于点E,△BF=CF,△BFE=△CFE=90°,在△BFE和△CFE中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩, △△BFE △△CFE (SAS ),△EBF ECF ∠=∠(全等三角形对应角相等), 又△BD 平分△ABC , △ABE EBF ECF ∠=∠=∠,又△180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), △180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, △196323ABE ∠=⨯︒=︒,故选:C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,解题的关键是证明ABE EBF ECF ∠=∠=∠. 7.C【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各选项判断即可.【详解】根据轴对称图形的定义可知A 、B 、D 均不是轴对称图形, 只有C 是轴对称图形. 故选:C .【点睛】本题考查了轴对称图形的知识,属于基础题,解答本题的关键是找出对称轴从而判段是否是轴对称图形. 8.D【分析】根据轴对称的性质逐项判断即可得.【详解】解:A .AC AC='',则此项正确,不符合题意; B .BO B O =',则此项正确,不符合题意; C .AA MN '⊥,则此项正确,不符合题意; D .AB B C ''∥不一定正确,则此项符合题意; 故选:D .【点睛】本题考查了轴对称的性质,解题的关键是熟练掌握轴对称的性质:成轴对称的两个图形的对应边相等,对应角相等,对称轴垂直平分对应点连接的线段.9.C【分析】根据轴对称图形的概念对各图形分析判断即可得解. 【详解】解:第1个不是轴对称图形; 第2个是轴对称图形; 第3个是轴对称图形; 第4个是轴对称图形; 故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 10.C【分析】根据折叠的性质可知:△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC ,根据三角形外角性质可得:△DBA =△BDC ﹣△A =82°﹣40°=42°,进一步可求出△ABE =△A 'BE =21°,△ABC =3×21°=63°,即原三角形的△B =63°.【详解】解:由折叠性质可得,△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC , △△BDC 是△BDA 的外角,△△DBA =△BDC ﹣△A =82°﹣40°=42°, △△ABE =△A 'BE =21°,△△ABC =3×21°=63°,即原三角形的△B =63°, 故选:C .【点睛】此题主要考查的是图形的折叠及三角形外角性质,能够根据折叠的性质发现△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC 是解答此题的关键. 11.1803β︒-【分析】先利用平行线的性质得到EFH DEF β∠=∠=,180EFC β∠=︒-,再根据折叠的性质得到180EFC β∠'=︒-,所以1802HFC β∠'=︒-,接着再利用折叠的性质得到1802C FH C FH β∠''=∠'=︒-,然后计算C FH EFH ''∠-∠即可.【详解】四边形ABCD 为长方形,//AD BC ∴,EFH DEF β∴∠=∠=,180EFC β∠=︒-,方形纸条ABCD 沿EF 折叠成图△, 180EFC EFC β∴∠'=∠=︒-,1801802HFC EFC EFH βββ∴∠'=∠'-∠=︒--=︒-,长方形ABCD 沿HF 折叠成图△, 1802C FH C FH β∴∠''=∠'=︒-,18021803C FE C FH EFH βββ∴∠=∠-∠=︒--=''︒-''.故答案为:1803β︒-.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等. 12.△△△△【分析】△由题知AE =AC ,BD =BC ,可得结论正确;△由三角形外角知△CAB +△DAB =△ADE +△AED ,又知△CAB =△DAB ,△ADE =△AED ,即可得△CAB =△DAB =△ADE =△AED ,即可得证结论; △由对称知CD △AB ,由AB △DE 可得结论;△由△知S △ADE =12DF •DE ,S △ADF =12DF •AF ,证AF 是中位线可得AF =12DE ,即可得证结论.【详解】解:△由图形翻折可知,AD =AC ,BD =BC , △AE =AD , △AE =AC ,△C 四边形ABDE =C △ABC +DE , △C △ABC =12,DE =5, △C 四边形ABDE =17, △△正确;△由图形翻折知,△CAB =△DAB , △AE =AD , △△ADE =△AED ,又△△CAB +△DAB =△ADE +△AED , △△CAB =△DAB =△ADE =△AED , △AB //DE , △△正确;△由△知,AB //DE ,由图形翻折知,CD△AB,△△CF A=△CDE=90°,△△正确;△由△知,△CF A=△CDE=90°,△S△ADE=12DF•DE,S△ADF=12DF•AF,△A是EC的中点,AB//DE,△AF是△CDE的中位线,△AF=12DE,△S△ADE=2S△ADF,△△正确,故答案为:△△△△.【点睛】本题主要考查图形的翻折,三角形的面积,平行线的判定和性质等知识点,证明AB DE是解题的关键.13.△△△【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【详解】解:△△B、△C的角平分线交于点F,△△DBF=△CBF,△ECF=△BCF,设△DBF=△CBF=α,△ECF=△BCF=β,△DE BC∥,△△DFB=△CBF=α,△EFC=△BCF=β,△△DBF=△DFB,△EFC=△ECF,△DB=DF,EF=EC,△△BDF与△CEF为等腰三角形,△DE=DF+EF=BD+CE,故△正确;△△ADE的周长为AD+AE+DE=AD+AE+BD+CE=AB+AC,故△正确;只有当△ABC是等腰三角形时,即△ABC=△ACB,则△FBC=△FCB,△ADE=△AED,则BF =CF,AD=AE,根据现有条件无法证明BF=CF,并且无法证明△ADE=△A或△AED=△A,即无法证明△ADE为等腰三角形,故△、△错误;△△A =80°,△△FBC +△FCB =218080︒-︒=50°, △△BFC =180°-50°=130°,故△正确.故答案为△△△.【点睛】本题考查了等腰三角形的性质与判定及角平分线的定义及平行线的性质,三角形内角和定理;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.14.【分析】根据题意可知AE 是BF 的垂直平分线,可得AB=AF ,BE=EF ,再根据“AAS ”证明△AOF △△EOB ,可得AF=BE ,进而根据“四边相等的四边形是菱形”得出四边形ABEF 是菱形,可知AF=AB=4,再说明△ABF 是等边三角形,可求出BF=4,然后根据勾股定理求出AO ,最后根据菱形的面积等于对角线乘积的一半得出答案即可.【详解】根据题意可知AE 是BF 的垂直平分线,△AB=AF ,BE=EF .△△F AO=△BEO ,△AOF=△BOE ,BO=FO ,△△AOF △△EOB ,△AF=BE ,△AB=BE=EF=AF ,△四边形ABEF 是菱形,△AF=AB=4.△四边形ABCD 是平行四边形,且△C =60°,△△BAF =60°,△△ABF 是等边三角形,△BF=4,△OF=2.在Rt △AOF 中,AO ===,△AE =△11==422ABEF S AE BF ⨯⋅⨯⨯四边形故答案为:【点睛】本题主要考查了尺规作垂直平分线,菱形的判定和性质,平行四边形的性质,等边三角形的判定和性质,勾股定理等,掌握菱形面积的计算方法是解题的关键.15.△【分析】根据全等三角形的性质可得AOB AOD ∠=∠,根据平角的定义可得1180902AOB AOD ∠=∠=⨯︒=︒,即可判断△,根据全等三角形的性质得出AB AD =,BO DO =,结合△可得AC 是BD 的垂直平分线,即可判断△,根据SSS 即可证明△,不能得出结论△.【详解】解:△△ABO △△ADO ,△AOB AOD ∠=∠,AB AD =,BO DO =△四边形ABCD 的对角线AC 、BD 相交于点O , △1180902AOB AOD ∠=∠=⨯︒=︒, △△AC △BD 正确;△AB AD =,BO DO =△AC 是BD 的垂直平分线,△△CB =CD 正确;△,,AB AD BC DC AC AC ===,△△△ABC △△ADC 正确;由已知条件不能判断△DA =DC .故答案为:△.【点睛】本题考查了全等三角形的性质与判定,垂直平分线的性质与判定,掌握以上知识是解题的关键.16.3【分析】根据垂直平分线的性质,可知6AE BE ,再由三角形外角的性质得出30AEC ABE BAE ∠=∠+∠=︒,最后由含30°的直角三角形的性质得出AC 的值即可.【详解】解:△DE 垂直平分AB ,6BE =△6AE BE ,又15B ∠=︒△15ABE BAE ∠=∠=︒,△30AEC ABE BAE ∠=∠+∠=︒,又△90ACB ∠=︒△在Rt AEC 中,132AC AE == 故答案为:3.【点睛】本题考查了垂直平分线的性质、三角形的外角的性质、含30°的直角三角形的性质,解题的关键在于对知识的灵活运用.17.40︒##40度【分析】根据等腰三角形的性质即可得. 【详解】解:根据题意得,底角的度数为:1(180100)402⨯︒-︒=︒, 故答案为:40︒.【点睛】本题考查了等腰三角形的性质,解题的关键是熟记等腰三角形的性质. 18.13【分析】首先连接PC ,由中垂线的性质可得PB =PC ,由于△APC 的周长为AC +P A +PC ,AC 长度固定,则只要P A +PB 最小即可,此时可推出P 、A 、B 三点共线,即P A +PB =AB ,由此计算即可.【详解】解:如图,连接PC ,则由中垂线的性质可得PB =PC ,△△APC 的周长=AC +P A +PC ,△△APC 的周长=AC +P A +PB ,△AC =5,△要使得△APC 的周长最小,使得P A +PB 最小即可,显然,根据两点之间线段最短,可知当P 、A 、B 三点共线时,P A +PB 最小此时,P 点即在AB 边上,P A +PB =AB ,△P A +PB 最小值为8,△△APC 的周长最小为:8+5=13,故答案为:13.【点睛】本题考查最短路径问题,以及中垂线的性质,理解并掌握中垂线的性质,以及最短路径问题的基本处理方式是解题关键.19.(1)见解析(2)4【分析】(1)根据等腰三角形的性质和三角形内角和定理求出△A=△C=30°,再根据线段垂直平分线的性质得出AD=BD,求出△DBA=30°,据此即可证得;(2)根据含30°角的直角三角形的性质求出BD=12CD,求出AD=12CD,据此求出答案即可.【详解】(1)证明:△AB=BC,△ABC=120°,△1180302A C ABC∠=∠=︒-∠︒()=,△AB的垂直平分线是DE,△AD=BD,△△DBA=△A=30°,△△DBC=△ABC﹣△DBA=120°﹣30°=90°,△BD△BC;(2)解:△△DBC=90°,△C=30°,△12BD CD=,△AD=BD,△1123AD CD AC==,△AC=12,△AD=4,△BD=AD=4.【点睛】本题考查了线段垂直平分线的性质,含30°角的直角三角形的性质,三角形内角和定理,等腰三角形的性质等知识点,能灵活运用知识点进行推理和计算是解此题的关键.20.(1)证明见解析(2)4【分析】(1)先根据平行线的性质可得DAE B ∠=∠,EAC ACB ∠=∠,再根据角平分线的定义可得DAE EAC ∠=∠,从而可得B ACB ∠=∠,然后根据等腰三角形的判定即可得证; (2)先根据三角形全等的判定证出ABF CAE ≅,再根据全等三角形的性质即可得.【详解】(1)证明:△AE //BC ,DAE B ∴∠=∠,EAC ACB ∠=∠, E 为ABC 的外角CAD ∠平分线上的一点,DAE EAC ∴∠=∠,B ACB ∴∠=∠,AB AC ∴=,ABC ∴是等腰三角形.(2)解:由(1)已得:,DAE B DAE EAC ∠=∠∠=∠,B EAC ∴∠=∠,在ABF △和CAE 中,AB CA B EAC BF AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CAE ∴≅,AF CE ∴=,4AF =,4CE ∴=.【点睛】本题考查了等腰三角形的判定、三角形全等的判定与性质等知识点,熟练掌握等腰三角形的判定是解题关键.21.(1)见解析;(2)30°;(3)4.5【分析】(1)直接根据SAS 证明△BDE △△CFD 即可;(2)由(1)得△BDE △△CFD ,则△BED =△CDF ,即可推出△ EDP =△B =60°,再由EP △DF ,即可得到△ DEP =30° ;(2)根据△ABC 边长为6, AE =BD =2,得到BE =AB +AE =8,由△BDE 的周长为19,求出DE =19-BD -BE =9,然后证明△BDE △△CFD 得到△DEB =△FDC ,推出△EDP =60°,即可利用含30度角的直角三角形的性质求解.【详解】解:(1)△△ABC是等边三角形,△△B=△C=60°,AB=BC,△AE=BD=CF,△AB-AE=BC-BD,即BE=CD,△△BDE△△CFD(SAS);(2)由(1)得△BDE△△CFD,△△BED=△CDF,又△△EDC=△B+△BED,△△ EDP+△CDF=△B+△BED,△△ EDP=△B=60°,△EP△DF,△△EPD=90°,△△ DEP=30° ;(2)△△ABC边长为6,AE=BD =2,△BE=AB+AE=8,又△△BDE的周长为19,△ DE=19-BD-BE=9,△△ABC是等边三角形,△△ABC=△ACB=60°,BA=CB,△△EBD=180°-△ABC=180°-△ACB=△DCF=120°,又△BD=AE,△BA+AE=CB+BD,即BE=CD,△△BDE△△CFD(SAS),△△DEB=△FDC,△△EBC=△EDB+△DEB=60°,△△EDB+△FDC=60°,即△EDP=60°,又△EP△DF,△△EPD=90°,△△ DEP=30°,△DE=2DP,△DP= 4.5.【点睛】本题主要考查了等边三角形的性质,全等三角形的性质与判定,三角形外角的性质,含30度角的直角三角形的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.22.(1)见详解;(2)见详解【分析】(1)按照垂直平分线的作法画出AB的垂直平分线即可;(2)通过平行线的性质及垂直平分线的性质得出BAF EAB∠=∠,然后通过ASA证明≅,再由全等三角形的性质即可得出结论.AOE AOF【详解】(1)如图(2)如图,连接AE//AD BCEBA BAF∴∠=∠△EF是AB的垂直平分线,90 EB EA AOE AOF∴=∠=∠=︒EBA EAB∴∠=∠BAF EAB∴∠=∠在AOE△和AOF中,EAO FAO AO AOAOE AOF ∠=∠⎧⎪=⎨⎪∠=⎩()AOE AOF ASA∴≅AE AF∴=【点睛】本题主要考查尺规作图及全等三角形的判定及性质,掌握垂直平分线的作法和全等三角形的判定方法及性质是解题的关键.23.(1)见解析(2)见解析(3)3 2【分析】(1)证明△BAD△△CAE,从而得出结论;(2)△BAD=△CAE=△CBE,所以△ABC=△ABD+△CBE=△ABD+△BAD=60°,从而得出△ADB=120°,进一步得出结论;(3)可证得△ACE=△ABF=30°,从而得出点E的运动轨迹,进而求得EF的最小值.【详解】(1)△△ABC是等边三角形,△AB=AC,△BAC=60°,△AD 绕点A 逆时针旋转60°得到AE ,△△DAE =60°,AD =AE ,△△BAC =△DAE ,△△BAC -△DAC =△DAE -△DAC ,即:△BAD =CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , △△BAD △△CAE (SAS ),△BD =CE ;(2)由(1)知:△CAE =△BAD ,△△CAE =△CBE ,△△BAD =△CBE ,△△ABC 是等边三角形,△△ABC =60°,△△ABD +△CBE =60°,△△ABD +△BAD =60°,△△ADB =180°-(△ABD +△BAD )=120°,△AD =AE ,△DAE =60°,△△ADE 是等边三角形,△△ADE =60°,△△ADB +△ADE =180°,△B 、D 、E 在同一条直线上;(3)如图,连接CE ,由(1)得:△BAD △△CAE ,△△ACE=△ABD,△△ABC是等边三角形,△AB=BC,△ACB=△ABC=60°,△BF△AC,△△ABF=12△ABC=30°,CF=AF=12AC=3,△△ACE=30°,△△BCE=△ACB+△ACE=90°,△点E在过点C且与BC垂直的直线上运动,△当FE垂直于该直线时,CE最小(图中点CE′),△△CE′F=90°,△ACE=30°,△FE′=12CF=32,△EF的最小值为:32.【点睛】本题考查了等边三角形性质,直角三角形性质,全等三角形的判定和性质等知识,解决问题的关键是熟练掌握“手拉手”模型.24.见解析【分析】分别以点B、C为圆心,大于BC长的一半为半径画弧,交于两点,连接这两点,然后再以点B为圆心,适当长为半径画弧,交AB、BC于点M、N,以点M、N为圆心,大于MN长一半为半径画弧,交于一点Q,连接BQ,进而问题可求解.【详解】解:如图,点P即为所求:【点睛】本题主要考查角平分线与垂直平分线的尺规作图,熟练掌握角平分线与垂直平分线的尺规作图是解题的关键.25.(1)A1(4,1) ;B1(2,-1);C1(1,3);见解析;(2)5;(3)见解析【分析】(1)根据关于y轴对称的点的坐标特征,纵坐标相同,横坐标互为相反数,先找到A 、B 、C 关于y 轴对称的点,然后顺次连接即可;(2)根据111A B C △的面积等于其所在的长方形面积减去周围三个三角形面积求解即可; (3)连接1A C 与y 轴交于点P 即为所求.【详解】解:(1)如图所示,111A B C △即为所求;由图可知,1A 的坐标为(4,1),1B 的坐标为(2,-1),1C 的坐标为(1,3);(2)由图可知111111341422325222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△; (3)如图所示,连接1A C 与y 轴交于点P 即为所求;【点睛】本题主要考查了画轴对称图形,坐标与图形变化,轴对称最短路径等等,解题的关键在于能够熟练掌握关于y 轴对称的点的坐标特征.26.(1)作图见详解(2)1(3,4)A -,1(1,2)B -,1(5,1)C -(3)作图见详解,四边形11ABB A 的面积为8【分析】(1)先依次作A ,B ,C 关于y 轴的对称点,再顺次连接即可.(2)由图写出1A ,1B ,1C 坐标即可.(3)由图可知四边形11ABB A 为梯形,用梯形面积公式即可求得面积.【详解】(1)(2)解:由(1)中图可知1(3,4)A -,1(1,2)B -,1(5,1)C -(3)解:如图四边形11ABB A 的面积=1(26)282+⨯= 【点睛】本题考查了轴对称的作图,以及平面直角坐标系相关知识点.掌握轴对称的作图步骤是解题关键.。
第十二章轴对称测试1 轴对称制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
学习要求1.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联络,能识别轴对称图形.2.理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.一、填空题1.假如一个图形沿着一条直线_____,直线两旁的局部可以_____,那么这个图形....叫做_____,这条直线叫做它的_____,这时,我们也就说这个图形....关于这条直线〔或者轴〕_____.2.把一个图形沿着某一条直线折叠,假如它可以与_____重合,那么这两图形...叫做关于_____,这条直线叫做_____,折后重合的点是_____,又叫做_____.3.成轴对称的两个图形的主要性质是〔1〕成轴对称的两个图形是_____;〔2〕假如两个图形关于某条直线对称,那么对称轴是任何一对_____的垂直平分线.4.轴对称图形的对称轴是_____.5.〔1〕角是轴对称图形,它的对称轴是_____;〔2〕线段是轴对称图形,它的对称轴是_____;〔3〕圆是轴对称图形,它的对称轴是_____.二、选择题6.在图1-1中,是轴对称图形.....的是〔〕图1-17.在图1-2的几何图形中,一定是轴对称图形的有〔〕图1-2A.2个B.3个C.4个D.5个8.如图1-3,ΔABC与ΔA'B'C'关于直线l对称,那么∠B的度数为〔〕图1-3A.30°B.50°C.90°D.100°9.将一个正方形纸片依次按图1-4a,b的方式对折,然后沿图c中的虚线裁剪,成图d款式,将纸展开铺平,所得到的图形是图1-5中的〔〕图1-4图1-510.如图1-6,将矩形纸片ABCD〔图①〕按如下步骤操作:〔1〕以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E〔如图②〕;〔2〕以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F〔如图③〕;〔3〕将纸片收展平,那么∠AFE的度数为〔〕图1-6A.60°°C.72°D.75°综合、运用、诊断一、解答题11.请分别画出图1-7中各图的对称轴.〔1〕正方形〔2〕正三角形〔3〕相交的两个圆图1-712.如图1-8,ΔABC中,AB=BC,ΔABC沿DE折叠后,点A落在BC边上的A'处,假设点D为AB边的中点,∠A=70°,求∠BDA'的度数.图1-813.在图1-9中你能否将的正方形按如下要求分割成四局部,〔1〕分割后的图形是轴对称图形;〔2〕这四个局部图形的形状和大小都一样.请至少给出四种不同分割的设计方案,并画出示意图.图1-914.在图1-10这一组图中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形.图1-10拓展、探究、考虑15.,如图1-11,在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,求∠OED的度数.图1-11测试2 线段的垂直平分线学习要求1.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及断定,会画线段的垂直平分线.2.能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.课堂学习检测一、填空题1.经过_____并且_____的_____ 叫做线段的垂直平分线.2.线段的垂直平分线有如下性质:线段的垂直平分线上的_____与这条线段_____的_____相等.3.线段的垂直平分线的断定,由于与一条线段两个端点间隔相等的点在_____,并且两点确定_____,所以,假如两点M、N分别与线段AB两个端点的间隔相等,那么直线MN是_____.4.完成以下各命题:〔1〕线段垂直平分线上的点,与这条线段的_____;〔2〕与一条线段两个端点间隔相等的点,在_____;〔3〕不在线段垂直平分线上的点,与这条线段的_____;〔4〕与一条线段两个端点间隔不相等的点,_____;〔5〕综上所述,线段的垂直平分线是_____的集合.5.如图2-1,假设P是线段AB的垂直平分线上的任意一点,那么〔1〕ΔPAC≌_____;〔2〕PA=_____;〔3〕∠APC=_____;〔4〕∠A=_____.图2-16.ΔABC中,假设AB-AC=2cm,BC的垂直平分线交AB于D点,且ΔACD的周长为14cm,那么AB=_____,AC_____.7.如图2-2,ΔABC中,AB=AC,AB的垂直平分线交AC于P点.〔1〕假设∠A=35°,那么∠BPC=_____;〔2〕假设AB=5 cm,BC=3 cm,那么ΔPBC的周长=_____.图2-2综合、运用、诊断一、解答题8.:如图2-3,线段AB.求作:线段AB的垂直平分线MN.作法:图2-39.:如图2-4,∠ABC及两点M、N.求作:点P,使得PM=PN,且P点到∠ABC两边的间隔相等.作法:图2-4拓展、探究、考虑10.点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的间隔总相等.假如存在,请作出定点B;假设不存在,请说明理由.图2-511.如图2-6,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,那么点E、F是否关于AD对称?假设对称,请说明理由.图2-6测试3 轴对称变换学习要求1.理解轴对称变换,能作出图形关于某条直线的对称图形.2.能利用轴对称变换,设计一些图案,解决简单的实际问题.一、填空题1.由一个_____得到它的_____叫做轴对称变换.2.假如由一个平面图形得到它关于某一条直线l的对称图形,那么,〔1〕这个图形与原图形的_____完全一样;〔2〕新图形上的每一点,都是_____;〔3〕连接任意一对对应点的线段被_____.3.由于几何图形都可以看成是由点组成的,因此,要作一个平面图形的轴对称图形,可归结为作该图形上的这些点关于对称轴的______.二、解答题4.试分别作出图形关于给定直线l的对称图形.〔1〕图3-1〔2〕图3-2〔3〕图3-35.如图3-4所示,平行四边形ABCD及对角线BD,求作ΔBCD关于直线BD的对称图形.〔不要求写作法〕图3-46.如图3-5所示,长方形纸片ABCD中,沿着直线EF折叠,求作四边形EFCD关于直线EF的对称图形.〔不要求写作法〕图3-57.为了美化环境,在一块正方形空地上分别种植不同的花草,现将这块空地按以下要求分成四块:〔1〕分割后的整个图形必须是轴对称图形;〔2〕四块图形形状一样;〔3〕四块图形面积相等,现已有两种不同的分法:①分别作两条对角线〔图①〕,②过一条边的四等分点作该边的垂线段〔图②〕,〔图②中的两个图形的分割看作同一种方法〕.请你按照上述三个要求,分别在图③的三个正方形中,给出另外三种不同的分割方法.〔只画图,不写作法〕图3-6综合、运用、诊断8.:如图3-7,A、B两点在直线l的同侧,点A'与A关于直线l对称,连接A'B交l于P点,假设A'B =a.〔1〕求AP+PB;〔2〕假设点M是直线l上异于P点的任意一点,求证:AM+MB>AP+PB.图3-79.:A、B两点在直线l的同侧,试分别画出符合条件的点M.〔1〕如图3-8,在l上求作一点M,使得|AM-BM|最小;作法:图3-8〔2〕如图3-9,在l上求作一点M,使得|AM-BM|最大;作法:图3-9 〔3〕如图3-10,在l上求作一点M,使得AM+BM最小.图3-10拓展、探究、考虑10.〔1〕如图3-11,点A、B、C在直线l的同侧,在直线l上,求作一点P,使得四边形APBC的周长最小;图3-11〔2〕如图3-12,线段a,点A、B在直线l的同侧,在直线l上,求作两点P、Q〔点P在点Q的左侧〕且PQ=a,四边形APQB的周长最小.图3-1211.〔1〕:如图3-13,点M在锐角∠AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得ΔPMQ的周长最小;图3-13〔2〕:如图3-14,点M在锐角∠AOB的内部,在OB边上求作一点P,使得点P到点M的间隔与点P到OA边的间隔之和最小.图3-14测试4 用坐标表示轴对称学习要求1.运用所学的轴对称知识,认识和掌握在平面直角坐标系中,与点关于x轴或者y轴对称点的坐标的规律,进而能在平面直角坐标系中作出与一个图形关于x轴或者y轴对称的图形.2.能运用轴对称的性质,解决简单的数学问题或者实际问题,进步分析问题和解决问题的才能.课堂学习检测一、解答题1.按要求分别写出各对应点的坐标:点A〔2,4〕B〔-1,5〕C〔-3,-7〕D〔6,-8〕E〔9,0〕F〔0,-2〕关于y轴的对称点A'〔〕B'〔〕C'〔〕D'〔〕E'〔〕F'〔〕关于x轴的对称点A''〔〕B''〔〕C''〔〕D''〔〕E''〔〕F''〔〕2.:线段AB,并且A、B两点的坐标分别为〔-2,1〕和〔2,3〕.〔1〕在图4-1中分别画出线段AB关于x轴和y轴的对称线段A1B1及A2B2,并写出相应端点的坐标.图4-1〔2〕在图4-2中分别画出线段AB关于直线x=-1和直线y=4的对称线段A3B3及A4B4,并写出相应端点的坐标.图4-23.如图4-3,四边形ABCD的顶点坐标分别为A〔1,1〕,B〔5,1〕,C〔5,4〕,D〔2,4〕,分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D2的顶点坐标.图4-3综合、运用、诊断4.如图4-4,ΔABC中,点A的坐标为〔0,1〕,点C的坐标为〔4,3〕,点B的坐标为〔3,1〕,假如要使ΔABD与ΔABC全等,求点D的坐标.图4-4拓展、探究、考虑5.如图4-5,在平面直角坐标系中,直线l是第一、三象限的角平分线.图4-5实验与探究:〔1〕由图观察易知A〔0,2〕关于直线l的对称点A'的坐标为〔2,0〕,请在图中分别标明B〔5,3〕、C〔-2,5〕关于直线l的对称点B'、C'的位置,并写出它们的坐标:B'_____、C'_____;归纳与发现:〔2〕结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P〔a,b〕关于第一、三象限的角平分线l的对称点P'的坐标为_____ 〔不必证明〕;运用与拓广:〔3〕两点D〔1,-3〕、E〔-1,-4〕,试在直线l上确定一点Q,使点Q到D、E两点的间隔之和最小,并求出Q点坐标.测试5 等腰三角形的性质学习要求掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.课堂学习检测1._____的_____叫做等腰三角形.2.〔1〕等腰三角形的性质1是______________________________________________.〔2〕等腰三角形的性质2是______________________________________________.〔3〕等腰三角形的对称性是_____,它的对称轴是_____.图 5-13.如图5-1,根据条件,填写上由此得出的结论和理由.〔1〕∵ΔABC中,AB=AC,∴∠B=______.〔〕〔2〕∵ΔABC中,AB=AC,∠1=∠2,∴AD垂直平分______.〔〕〔3〕∵ΔABC中,AB=AC,AD⊥BC,∴BD=______.〔〕〔4〕∵ΔABC中,AB=AC,BD=DC,∴AD⊥______.〔〕4.等腰三角形中,假设底角是65°,那么顶角的度数是_____.5.等腰三角形的周长为10cm,一边长为3cm,那么其他两边长分别为_____.6.等腰三角形一个角为70°,那么其他两个角分别是_____.7.等腰三角形一腰上的高与另一腰的夹角是20°,那么等腰三角形的底角等于_____.8.等腰直角三角形的底边长为5cm,那么它的面积是〔〕A.25cm2B.2C.10cm2D.29.等腰三角形的两边长分别为25cm和13cm,那么它的周长是〔〕A.63cm B.51cmC.63cm和51cm D.以上都不正确10.△ABC中,AB=AC,D是AC上一点,且AD=BD=BC,那么∠A等于〔〕A.45°B.36°C.90°D.135°综合、运用、诊断一、解答题11.:如图5-2,ΔABC中,AB=AC,D、E在BC边上,且AD=AE.求证:BD=CE.图5-212.:如图5-3,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.图5-313.:如图5-4,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.图5-4拓展、探究、考虑14.:如图5-5,RtΔABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.求证:〔1〕DE=DF;〔2〕ΔDEF为等腰直角三角形.图5-515.在平面直角坐标系中,点P〔2,3〕,Q〔3,2〕,请在x轴和y轴上分别找到M点和N点,使四边形PQMN周长最小.〔1〕作出M点和N点.〔2〕求出M点和N点的坐标.图5-6测试6 等腰三角形的断定学习要求掌握等腰三角形的断定定理.课堂学习检测一、填空题1.等腰三角形的断定定理是_________________________________________________.2.ΔABC中,∠B=50°,∠A=80°,AB=5cm,那么AC=______.3.如图6-1,AE∥BC,∠1=∠2,假设AB=4cm,那么AC=____________.4.如图6-2,∠A=∠B,∠C+∠CDE=180°,假设DE=2cm,那么AD=____________.图6-1 图6-2 图6-3 图6-45.如图6-3,四边形ABCD中,AB=AD,∠B=∠D,假设CD=,那么BC=______.6.如图6-4,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,那么ΔOMN的周长=______.7.ΔABC中,CD平分∠ACB,DE∥BC交AC于E,DE=7cm,AE=5cm,那么AC=______.8.ΔABC中,AB=AC,BD是角平分线,假设∠A=36°,那么图中有______个等腰三角形.9.判断以下命题的真假:〔1〕有两个内角分别是70°、40°的三角形是等腰三角形.〔〕〔2〕平行于等腰三角形一边的直线所截得的三角形仍是等腰三角形.〔〕〔3〕有两个内角不等的三角形不是等腰三角形.〔〕〔4〕假如一个三角形有不在同一顶点处的两个外角相等,那么这个三角形是等腰三角形.〔〕综合、运用、诊断一、解答题10.:如图6-5,ΔABC中,BC边上有D、E两点,∠1=∠2,∠3=∠4.求证:△ABC是等腰三角形.图6-511.:如图6-6,ΔABC中,AB=AC,E在CA的延长线上,ED⊥BC.求证:AE=AF.图6-612.:如图6-7,ΔABC中,∠ACB=90°,CD⊥AB于D,BF平分∠ABC交CD于E,交AC于F.求证:CE=CF.图6-713.如图6-8,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.图6-8拓展、探究、考虑14.如图6-9,假设A、B是平面上的定点,在平面上找一点C,使ΔABC构成等腰直角三角形,问这样的C点有几个?并在图6-9中画出C点的位置.图6-915.如图6-10,对于顶角∠A为36°的等腰ΔABC,请设计出三种不同的分法,将ΔABC分割为三个三角形,并且使每个三角形都是等腰三角形.图6-10测试7 等腰三角形的断定与性质学习要求纯熟运用等腰三角形的断定定理与性质定理进展推理和计算.课堂学习检测一、填空题1.假如一个三角形的两条高线相等〔如图7-1〕,那么这个三角形一定是______.图7-12.如图7-2,在ΔABC中,高AD、BE交于H点,假设BH=AC,那么∠ABC=______.图7-23.如图7-3,ΔABC中,AB=AC,AD=BD,AC=CD,那么∠BAC=______.图7-34.如图7-4,在ΔABC中,∠ABC=120°,点D、E分别在AC和AB上,且AE=ED=DB=BC,那么∠A 的度数为______°.图7-45.如图7-5,ΔABC是等腰直角三角形,BD平分∠ABC ,DE⊥BC于点E,且BC=10cm,那么△DCE的周长为______cm.图7-5二、选择题6.△ABC中三边为a、b、c,满足关系式〔a-b〕〔b-c〕〔c-a〕=______图7-50,那么这个三角形一定为〔〕A.等边三角形B.等腰三角形C.等腰钝角三角形D.等腰直角三角形7.假设一个三角形是轴对称图形,那么这个三角形一定是 〔 〕A .等边三角形B .不等边三角形C .等腰三角形D .等腰直角三角形8.如图7-6,ΔABC 中,AB =AC ,∠BAC =108°,假设AD 、AE 三等分∠BAC ,那么图中等腰三角形有 〔 〕A .4个B .5个C .6个D .7个图7-6 图7-79.等腰三角形两边a 、b 满足|a -b +2 |+〔2a +3b -11〕2=0,那么此三角形的周长是〔 〕A .7B .5C .8D .7或者510.如图7-7,ΔABC 中,AB =AC ,BE =CD ,BD =CF ,那么∠EDF = 〔 〕A .2∠AB .90°-2∠AC .90°-∠AD .A o∠-2190 三、解答题11.:如图7-8,AD 是∠BAC 的平分线,∠B =∠EAC ,EF ⊥AD 于F .求证:EF 平分∠AEB .图7-812.:如图7-9,在ΔABC中,CE是角平分线,EG∥BC,交AC边于F,交∠ACB的外角〔∠ACD〕的平分线于G,探究线段EF与FG的数量关系并证明你的结论.图7-913.如图7-10,过线段AB的两个端点作射线AM,BN,使AM∥BN,请按以下步骤画图并答复.〔1〕画∠MAB、∠NBA的平分线交于点E,∠AEB是什么角?〔2〕过点E任作一线段交AM于点D,交BN于点C.观察线段DE、CE,有什么发现?请证明你的猜测.〔3〕试猜测AD,BC与AB有什么数量关系?图7-1014.:如图7-11,ΔABC中,AB=AC,∠A=100°,BE平分∠B交AC于E.〔1〕求证:BC=AE+BE;〔2〕探究:假设∠A=108°,那么BC等于哪两条线段长的和呢?试证明之.图7-11测试8 等边三角形学习要求掌握等边三角形的性质和断定.课堂学习检测一、填空题1._____的_____叫做等边三角形.2.等边三角形除一般的等腰三角形的性质外,它的特有性质主要有:〔1〕边的性质:_____;〔2〕角的性质:_____;〔3〕对称性:等边三角形是_____图形,它有_____ 对称轴.3.等边三角形的断定方法:〔1〕三条边_____的_____是等边三角形;〔2〕三个角_____的_____是等边三角形;〔3〕_____的等腰三角形是等边三角形.4.含30°角的直角三角形的一个主要性质是______.5.判断以下命题的真假:①有一个外角是120°的等腰三角形是等边三角形.〔〕②有两个外角相等的等腰三角形是等边三角形.〔〕③有一边上的高也是这边上的中线的等腰三角形是等边三角形.〔〕④三个外角都相等的三角形是等边三角形.〔〕6.:如图8-1,ΔABC是等边三角形,AE⊥BC于E,AD⊥CD于D,假设AB∥CD,那么图中60°的角有_____个.图8-17.如图8-2,B、C、D在一直线上,ΔABC、ΔADE是等边三角形,假设CE=15cm,CD=6cm,那么AC =_____,∠ECD=_____.图8-28.如图8-3,ΔABC中,AB=AC,∠BAC=120°,DE垂直平分AC交BC于D,垂足为E,假设DE=2cm,那么BC=_____cm.图8-3综合、运用、诊断解答题9.:如图8-4,ΔABC和ΔBDE都是等边三角形.〔1〕求证:AD=CE;〔2〕当AC⊥CE时,判断并证明AB与BE的数量关系.图8-410.如图8-5,ΔABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.〔1〕请在图中找出一对全等三角形,用符号“≌〞表示,并加以证明;〔2〕求证:AF=BD.图8-511.:如图8-6,四边形ABCD中,AC平分∠BAD,CD∥AB,BC=6cm,∠BAD=30°,∠B=90°.求CD 的长______.图8-6拓展、探究、考虑12.〔1〕如图8-7,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC,求∠AEB的大小;图8-7〔2〕如图8-8,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转〔△OAB和△OCD不能重叠〕,求∠AEB的大小.图8-813.:如图8-9,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连接CE、DE.求证:CE=DE.图8-9日期:2022年二月八日。
第十二章《轴对称》一、选择题1.如图,下列图形中,轴对称图形的个数是( )A.1 B.2 C.3 D.42.下列图形中对称轴最多的是( )A.圆B.正方形C.等腰三角形D.长方形3. 小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( )A 、21:10B 、10:21C 、10:51D 、12:014.下列说法中,正确的是( )A.关于某直线对称的两个三角形是全等三角形B.全等三角形是关于某直线对称的C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.有一条公共边变得两个全等三角形关于公共边所在的直线对称5. 点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 6..到△ABC 的三个顶点距离相等到的点是( )A.三条中线的交点B.三条角平分线的交点C.三条高线的交点 D 三条边的垂直平分线的交点二、填空题(每题4分,共36分)1. 已知点A (x ,-4)与点B (3,y )关于y 轴对称,那么x +y 的值为_______.2.如果点P (4,-5)和点Q(a ,b)关于y 轴对称,则a =_____,b=____。
3.点(-2,1)点关于x 轴对称的点坐标为_ _;关于y 轴对称的点坐标为_ _。
4. 如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米, 则△EBC 的周长为 厘米 5.如图1,△ABC 中,AB=AC=14cm ,D 是AB 的中点,DE ⊥AB 于D 交AC 于E ,△EBC 的周长是24cm ,则BC=_________.EDCAB(1)6.如图,∠AOB 内一点P ,P 1、P 2分别是P 关于OA 、OB 的对称点,P 1P 2交OA 于M ,交OB 于N ,若P 1P 2 = 5cm ,则ΔPMN 的周长是( )A.3cmB.4cmC.5cmD.6cmEDCAA三、作图题(共16分)1、(10分)已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.2.如图2,直线AD 是线段BC 的垂直平分线,求证:∠ABD=∠ACD.3.如图,△ABC 中∠ACB=90°,AD 平分∠BAC ,DE ⊥AB 于E ,求证:直线AD 是CE 的垂直平分线.D CA B ED CA。
第十二章《全等三角形》检测试题(二)一.选择题1.下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等2.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC,若BE=7,AB =3,则AD的长为()A.3 B.5 C.4 D.不确定3.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 4.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.65.如图,用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS6.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE7.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°8.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB 9.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D10.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS11.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BAC C.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC12.如图,AD为∠CAF的角平分线,BD=CD,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确结论的序号有()A.①②③④B.②③④C.①②③D.①②④二.填空题13.已知△ABC≌△DEF,∠A=50°,∠B=60°,则∠F=.14.如图,在直线l上有三个正方形m、q、n,若m、q的面积分别为4和9,则n的面积为.15.如图,△ABC中,点D、E在BC边上,∠BAD=∠CAE请你添加一对相等的线段或一对相等的角的条件,使△ABD≌△ACE.你所添加的条件是.16.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.17.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE=.18.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.三.解答题19.在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD =CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.20.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.21.如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当AF+FD=AE时,求证:∠AFD=2∠AED.22.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).参考答案一.选择题1.解:两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故选:D.2.解:∵∠DCE=90°,∴∠ACD+∠BCE=90°,∵BE⊥AC,∴∠CBE=90°,∠E+∠BCE=90°,∴∠ACD=∠E,在△ACD和△BCE中,,∴△ACD≌△BEC(AAS),∴AD=BC,AC=BE=7,∵AB=3,∴BC=AC﹣AB=7﹣3=4.故选:C.3.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选:B.4.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得DE=3,∴CD=3.故选:A.5.解:从角平分线的作法得出,△AFD与△AED的三边全部相等,则△AFD≌△AED.故选:D.6.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.7.解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.8.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.故选:B.9.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选:C.10.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.11.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.12.解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,在Rt△CDE和Rt△BDF中,,∴Rt△CDE≌Rt△BDF(HL),故①正确;∴CE=AF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正确;∵Rt△CDE≌Rt△BDF,∴∠DBF=∠DCE,∵∠AOB=∠COD,(设AC交BD于O),∴∠BDC=∠BAC,故③正确;∴∠DAE=∠DCB,∵∠DBC=∠DCB,∴∠DAE=∠DBC,∵Rt△ADE≌Rt△ADF,∴∠DAE=∠DAF,∴∠DAF=∠CBD,故④正确;综上所述,正确的结论有①②③④共4个.故选:A.二.填空题(共6小题)13.解:∵∠A=50°,∠B=60°,又∵∠A+∠B+C=180°,∴∠C=70°,∵△ABC≌△DEF,∴∠F=∠C,即:∠F=70°.故答案为:70°.14.解:由于m、q、n都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,且AC=CD,∠ABC=∠DEC=90°∴△ACB≌△DCE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S n=S m+S q=4+9=13,∴正方形n的面积为13,故答案为:13.15.解:添加AB=AC,∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,∴△ABD≌△ACE(ASA),故答案为:AB=AC.16.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.17.解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.18.解:∵AA′∥BC,∴∠A′AB=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC=∠ABC=70°,∴∠A′AB=∠AA′B=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故答案为:40°.三.解答题(共5小题)19.解:(1)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°,在△BDE和△CDF中,∵∴△BDE≌△CDF(AAS).∴DE=DF;(2)EF=FC+BE,理由:过点D作∠CDG=∠BDE,交AN于点G,在△BDE和△CDG中,,∴△BDE≌△CDG(ASA),∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°,∴∠EDF=∠GDF.在△EDF和△GDF中,,∴△EDF≌△GDF(SAS).∴EF=GF,∴EF=FC+CG=FC+BE.20.(1)证明:∵∠ABC=90°,∴∠DBC=90°,在△ABE和△CBD中∴△ABE≌△CBD(SAS);(2)解:∵AB=CB,∠ABC=90°,∴∠BCA=45°,∴∠AEB=∠CAE+∠BCA=30°+45°=75°,∵△ABE≌△CBD,∴∠BDC=∠AEB=75°.21.证明:(1)过点D作DM⊥AB于M,DN⊥AC于N,如图1所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB和△DNF中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在AB上截取AG=AF,连接DG.如图2所示,∵AD平分∠BAC,∴∠DAF=∠DAG,在△ADF和△ADG中.,∴△ADF≌△ADG(SAS).∴∠AFD=∠AGD,FD=GD又∵AF+FD=AE,∴AG+GD=AE,又∵AE=AG+GE,∴FD=GD=GE,∴∠GDE=∠GED又∵∠AGD=∠GED+∠GDE=2∠GED.∴∠AFD=2∠AED22.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.23.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.。
八年级数学:轴对称图形与轴对称练习(含答案)八年级数学:轴对称图形与轴对称练习(含答案)一、选择题(共8小题)1.下列各图,不是轴对称图形的是()A.B.] C.D.2.下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是()A.上海自来水来自海上B.有志者事竞成C.清水池里池水清D.蜜蜂酿蜂蜜3.下列说法错误的是()A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴4.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.观察图形…并判断照此规律从左到右第四个图形是( )A .B .C.D.6.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行第5题图第6题图第7题图7.如图,两个三角形关于某条直线成轴对称,其中已知某些边的长度和某些角的度数,则x的度数是()A.55°B.60°C.65°D.70°8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A.B.C.D.二、填空题(共10小题)9.2011年11月2日,即20111102,正好前后对称,因而被称为“完美对称日”,请你写出本世纪的一个“完美对称日”:_________ .10.写出一个至少具有2条对称轴的图形名称_________ .11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是_________ (填出所有符合要求的小正方形的标号)12.在轴对称图形中,对应点的连线段被_________ 垂直平分.13.下列图形中,一定是轴对称图形的有_________ ;(填序号)(1)线段(2)三角形(3)圆(4)正方形(5)梯形.14.如图是汽车牌照在水中的倒影,则该车牌照上的数字是_________ .15.请同学们写出两个具有轴对称性的汉字_________ .16.如图,国际奥委会会旗上的图案由5个圆环组成.每两个圆环相交的部分叫做曲边四边形,如图所示,从左至右共有8个曲边四边形,分别给它们标上序号.观察图形,我们发现标号为2的曲边四边形(下简称“2”)经过平移能与“6”重合,2又与_________ 成轴对称.(请把能成轴对称的曲边四边形标号都填上)第11题图第14题图第16题图17.如图,长方形ABCD中,长BC=a,宽AB=b,(b<a<2b),四边形ABEH和四边形ECGF都是正方形.当a、b满足的等量关系是_________ 时,图形是一个轴对称图形.18.请利用轴对称性,在下面这组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形:三、解答题(共5小题)19.判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.20.如图,五边形ABCDE是轴对称图形,线段AF所在直线为对称轴,找出图中所有相等的线段和相等的角.21.如图,l是该轴对称图形的对称轴.(1)试写出图中二组对应相等的线段:;(2)试写出二组对应相等的角:;(3)线段AB、CD都被直线l .22.如图是由两个等边三角形(不全等)组成的图形.请你移动其中的一个三角形,使它与另一个三角形组成轴对称图形,并且所构成的图形有尽可能多的对称轴.画出你所构成的图形,它有几条对称轴?23.有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:22,131,1991,123321,…,像这样的数,我们叫它“回文数”.回文数实际上是由左右排列对称的自然数构成的,有趣的是,当你遇到一个普通的数(两位以上),经过一定的计算,可以变成“回文数”,办法很简单:只要将这个数加上它的逆序数就可以了,若一次不成功,反复进行下去,一定能得到一个回文数,比如:①132+231=363②7299+9927=17226,17226+62271=79497,成功了!(1)你能用上述方法,将下列各数“变”成回文数吗?①237 ②362(2)请写出一个四位数,并用上述方法将它变成回文数.参考答案一、选择题(共8小题)1.A 2.B 3.C 4.A 5.D 6.B 7.B 8.D二.填空题(共10小题)9.20011002,20100102(答案不唯一);10.矩形;11.2,3,4,5,712.对称轴;13.(1)(3)(4);14.21678 .;15.甲、由、中、田、日等.;16.1,3,7 ;17.;18.三.解答题(共5小题)19.解:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.则(1)(3)(5)(6)(9)不是轴对称图形;(2)(4)有1条对称轴;(7)有4条对称轴;(8)有1条对称轴;(10)有2条对称轴.20.解:相等的线段:AB=AE,CB=DE,CF=DF;相等的角:∠B=∠E,∠C=∠D,∠BAF=∠EAF,∠AFD=∠AFC.21.(1)AC=BD,AE=BE,CF=DF,AO=BO ;(2)∠BAC=∠ABD,∠ACD=∠BDC;(3)垂直平分.22.解:如图,小正三角形再大正三角形的内部,该图形有3条对称轴.23.解:(1)①237+732=969,②362+263=625,(2)1151+1511=2662;。
第十二章 轴对称一、填空题(每小题2分,共20分)1、 等腰三角形是 对称图形,它至少有 条对称轴.2、等腰三角形的顶角与底角的度数之比为4:1,则它的各内角度数为 _______________ .3、已知△ABC 是轴对称图形.且三条高的交点恰好是C 点,则△ABC 的形状是 ___________.4、直线y=kx+4与坐标轴围成的三角形是等腰三角形,则k=5、已知点P(一3,2),点P 关于X 轴的对称点坐标为 ____6、Rt △ABC 中,∠ACB=90°,CD 是高,∠A=30°,BD=5cm ,则AB=7、观察上图中的图片,请说出图中小亮衣服上的数字是:8、如果等腰三角形一腰上的高与腰的夹角为30°,则该三角形的顶角的度数为 9、已知点A(一2,4),B(2,4),C(1,2),D(-1,2),E(一3,1),F(3,1)是平面坐标系内的6个点,选择其中三个点连成一个三角形,剩下三个点连成另一个三角形,若这两个三角形关于y 轴对称,就称为一组对称三角形,那么,坐标系中可找出 ____________组对称三角形.10、小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是 二、选择题(每小题3分,共18分)第6B ADC12、下列命题中,不正确的是( )(A)关于直线对称的两个三角形一定全等.(B)两个大小一样的圆形纸片随意平放在水平桌面上构成轴对称图形. (C)若两图形关于直线对称,则对称轴是对应点所连线段的垂直平分线. (D)等腰三角形一边上的高、中线及这边对角平分线重台.13、将长方形ABCD 沿折痕EF 折叠,使CD 落在GH 的位置,若∠BGH=55°,则∠HEF=( ) (A)55° (B) 65°(C)72.5 (D)75° 12、等腰三角形的一个内角是50。
(A) (B (C)(D)第十二章 轴对称测试 2一、填空题1.长方形的对称轴有_________________条.2.等腰三角形的对称轴最多有___________条.3.如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm,△ABD 的周长为13cm,则△ABC 的周长为____________.4.观察字母A 、E 、H 、O 、T 、W 、X 、Z ,其中不是轴对称的字母是______________.5.(-2,1)点关于x 轴对称的点坐标为__________.6.等腰三角形的顶角为x 度,则一腰上的高线与底边的夹角是___________度.7.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在上图中再将两个空白的小正方形涂黑,使它成为轴对称图形.8.如图,四边形ABCD 沿直线l 对折后互相重合,如果AD ∥BC,有下列结论: ①AB ∥CD ②AB=CD ③AB ⊥BC ④AO=OC 其中正确的结论是_______________.(把你认为正确的结论的序号都填上) 二、选择题9.下列图形:①角②两相交直线③圆④正方形,其中轴对称图形有 ( ) (A)4个 (B)3个 (C)2个 (D)1个10.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是 ( ) (A)圆 (B)正方形 (C)长方形 (D)等腰梯形11.点(3,-2)关于x 轴的对称点是 ( ) (A )(-3,-2) (B )(3,2) (C )(-3,2) (D )(3,-2) 12.下列平面图形中,不是轴对称图形的是 ( )13.下列英文字母属于轴对称图形的是 ( ) (A) N (B) S (C) H (D) KABCDlO ABDCE14.下列图形中对称轴最多的是( )(A)圆(B)正方形(C)等腰三角形(D)线段15.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确...的是 ( )(A)∠B=∠C (B)AD⊥BC (C)AD平分∠BAC (D)AB=2BD三、解答题(每题8分,共40分)16.如图,(1)在直线l上找一点,使PA=PB. (2)作线段AB的中垂线EF(3)作∠AOB的角平分线OC(4)要在公路MN上修一个车站P,使得P向A,B两个地方的距离和最小,请在图中画出P的位置。
八年级数学
《轴 对 称》
一、填空题(每小题3分,共30分)
1.角是轴对称图形,其对称轴是________________________.
2.点M (-2,1)关于x 轴对称点N 的坐标是_____________.
3.等腰三角形的周长为30cm ,一边长是12cm ,则另两边的长分别 是_________________.
4.如图,在△ABC 中,AB =AC =14cm ,边AB 的中垂线交AC 于D , 且△BCD 的周长为24cm ,则BC =__________.
5.在△ABC 中,AB =AC =10cm ,∠A =60°,则BC =________.
6.如图,在△ABC 中,∠ACB =90°,∠B =30°,CD ⊥AB 于点D , 若AD =2,则AC =_____,BA =______.
7.一个等腰三角形的一个外角等于110°,则这个三角形的三个内角分别是________________.
8.点(2,5)关于直线x =1的对称点的坐标为__________.
9.已知点A (x ,-4)与点B (3,y )关于y 轴对称,那么x +y 的值为_______.
10.已知:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .
二、选择题(每小题3分,共30分)
11.下列图形中:①角,②正方形,③梯形,④圆,⑤菱形,⑥平行四边形,其中是轴对称图形的有( )
A 、2个
B 、3个
C 、4个
D 、5个
12.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( )
A 、21:10
B 、10:21
C 、10:51
D 、12:01 13.如图所示,共有等腰三角形( )
A 、5个
B 、4个
C 、3个
D 、2个
14.平面内点A (-1,2)和点B (-1,6)的对称轴是( )
A 、x 轴
B 、y 轴
C 、直线y =4
D 、直线x =-1
15.将一等边三角形剪去一个角后,∠BDE +∠CED 等于( )
A 、120°
B 、240°
C 、300°
D 、1360°
16.等腰三角形底边上的高等于腰的一半,则它的顶角度数为( )
A 、60°
B 、90°
C 、100°
D 、120°
17.在下列说法中,正确的是( )
A 、如果两个三角形全等,则它们必是关于直线成轴对称的图形
B 、如果两个三角形关于某直线成轴对称,那么它们是全等三角形
C 、等腰三角形是关于底边中线成轴对称的图形
D 、一条线段是关于经过该线段中点的直线成轴对称的图形
18.把一张长方形的纸沿对角线折叠,则重合部分是( )
A 、直角三角形
B 、长方形
C 、等边三角形
D 、等腰三角形
19.若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形的关系为( )
A 、关于x 轴成轴对称图形
B 、关于y 轴成轴对称图形
C 、关于原点成中心对称图形
D 、无法确定
20.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )
A .①②③
B .①②④
C .①③
D .①②③④
三、解答题(共40分)
21.(5分)画图:试画出下列正多边形的所有对称轴,并完成表格,
根据上表,猜想正n 边形有_________条对称轴。
22.(5分)如图,已知线段AB 的端点B 在直线 l 上(AB 与 l 不垂直)请在直线 l 上另找一点C ,使△ABC 是等腰三角形,这样的点能找几个?请你找出所有符合条件的点.
23.(6分)如图,在△ABC 中,AB =AC ,∠BAC =100°,MP 、NQ 分别垂直平A
B l
分AB、AC,求∠1
24.(6分)如图,在△ABC中,AB=AC=10cm,∠B=15°,CD是AB边上的高,求CD的长.
D
A
B C
25.(6分)一个等腰三角形的一个内角比另一个内角的2倍少30°,求这个三角形的三个内角的度数.
26.(6分)如图,已知△ABC ,∠CAE 是△ABC 的外角,在下列三项中:①AB =AC ;②AD 平分∠CAE ;③AD ∥BC .选择两项为题设,另一项为结论,组成一个真命题,并证明.
27.(6分)如图,AB =AE ,∠B =∠E ,BC =ED ,点F 是CD 的中点.
(1)求证: AF ⊥CD
(2)若连结BE ,请你直接写出三个新的结论(无需证明) .
A B C D
E
八年级第12章《轴对称》答案
一、填空题:
1、角的平分线所在的直线;
2、(-2,-1);
3、12cm,6cm或9cm,9cm;
4、10cm
5、10cm
6、4,8
7、70°,55°,55°或70°,70°,40°
8、(0,5)
9、-7 10、
15
二、选择题:
11、C12、C13、A14、C15、B16、D17、B18、D19、B20、D
三、解答题
21、3,4,5,6,7,n22、4个23、∠1=40°,∠2=20°24、CD=5cm 25、48°,66°,66°或52.5°,52.5°,75°.26、略
27、(1)提示:连结AC,AD,证明△ABC≌△AED,得AC=AD,利用等腰三角形三线合一的性质。
(2)①△ABE是等腰三角形,②∠ABE=∠AEB,③∠CBE=∠DEB,④AF垂直平分BE。