高三数学第一轮复习讲义(49)
- 格式:doc
- 大小:256.50 KB
- 文档页数:4
高考数学一轮总复习:课时规范练49排列与组合基础巩固组1.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有()A.12种B.24种C.48种D.120种2.从4名男生和2名女生中选出2名男生和1名女生担任元旦联欢晚会的主持人,则不同的选法共有()A.6种B.12种C.24种D.18种3.(2021广东深圳一模)小明跟父母、爷爷和奶奶一同参加节目,5人坐一排.若小明的父母都与他相邻,则不同坐法的种数为()A.6B.12C.24D.484.(2021河北石家庄第十九中学月考)某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85B.86C.91D.905.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个6.下列等式中,不成立的是()A.A n m=n!m!B.C n m -1+C n m=C n+1m C.C n m =C n n -mD.A n m =n A n -1m -17.在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则下列结论不正确的是( )A.抽出的3件产品中恰好有1件是不合格品的抽法有C 21C 982种B.抽出的3件产品中恰好有1件是不合格品的抽法有C 21C 992种C.抽出的3件中至少有1件是不合格品的抽法有(C 21C 982+C 22C 981)种D.抽出的3件中至少有1件是不合格品的抽法有(C 1003−C 983)种8.某校举办优质课比赛,决赛阶段共有6名教师参加.如果甲、乙、丙三人中有一人第一个出场,且最后一个出场的只能是甲或乙,则不同的出场方案共有 种.9.(2021湖南雅礼中学模拟)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答)综合提升组10.(2021安徽安庆月考)某市践行“干部村村行”活动,现有3名干部,下乡到5个村蹲点指导工作,每个村必须有1名干部,每个干部至多去3个村,则不同的选派方案共有 ( )A.243种B.210种C.150种D.125种11.有13名医生,其中女医生6人,现从中抽调5名医生组成医疗小组前往疫区.若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为N ,则下列等式能成为N 的算式的是( )①C 135−C 71C 64 ②C 72C 63+C 73C 62+C 74C 61+C 75 ③C 135−C 71C 64−C 65 ④C 72C 113A.①③B.②③C.②④D.①④12.(2021河南部分学校联考)某市疾控中心决定将含A ,B 在内的6名专家平均分配到3所县疾控中心去指导防疫工作,若A ,B 2名专家不能分配在一起,则不同的分配方法有 种.13.(2021浙江高三专题练习)在新高考改革中,学生可从物理、历史,化学、生物、政治、地理、技术7科中任选3科参加高考,则学生有 种选法.现有甲、乙两名学生先从物理、历史两科中任选一科,再从化学、生物、政治、地理四门学科中任选两科,则甲、乙二人恰有一门学科相同的选法有 种.创新应用组14.从装有n+1个不同小球的口袋中取出m 个小球(0<m ≤n ,m ,n ∈N ),共有C n+1m 种取法.在这C n+1m种取法中,可以视作分为两类:第一类是某指定的小球未被取到,共有C 10·C n m 种取法;第二类是某指定的小球被取到,共有C 11·C n m -1种取法.显然C 10·C n m +C 11·C n m -1=C n+1m ,即等式C n m +C n m -1=C n+1m 成立.试根据上述想法,下面式子C n m +C k 1·C n m -1+C k 2·C n m -2+…+C k k ·C n m -k (其中1≤k<m ≤n ,k ,m ,n ∈N )应等于( )A.C n+k mB.C n+k+1mC.C n+k m+1D.C n+m k15.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有 种.课时规范练49 排列与组合1.B 解析:因为同学甲只能在周一值日,所以除同学甲外的4名同学将在周二至周五值日,所以5名同学值日顺序的编排方案共有A 44=24(种). 故选B .2.B 解析:由题意,从4名男生和2名女生中选出2名男生和1名女生担任元旦联欢晚会的主持人,可分两步:第一步,先从4名男生中选出2人,有C 42=6种选法; 第二步,从2名女生中选出1人,有C 21=2种选法.由分步乘法计数原理可得,共有C 42×C 21=12种不同的选法.故选B .3.B 解析:将小明父母与小明三人进行捆绑,其中小明居于中间,形成一个元素,则有A 22种坐法,再与爷爷和奶奶进行排序,则不同坐法有A 22A 33=12(种).故选B .4.B 解析:由题意,可分三类:第1类,男生甲入选,女生乙不入选,则方法种数为C 31C 42+C 32C 41+C 33=31; 第2类,男生甲不入选,女生乙入选,则方法种数为C 41C 32+C 42C 31+C 43=34; 第3类,男生甲入选,女生乙入选,则方法种数为C 32+C 41C 31+C 42=21.由分类加法计数原理,男生甲与女生乙至少有1人入选的方法种数为31+34+21=86. 故选B .5.B 解析:由题意可知,4开头的满足题意的偶数的个数为C 21A 43,5开头的满足题意的偶数的个数为C 31A 43,根据分类加法计数原理可得,比40000大的偶数共有C 21A 43+C 31A 43=120个.故选B .6.A 解析:A n m =n (n-1)…(n-m+1)=n!(n -m)!,故A 错误;根据组合数性质知B,C 正确;A n m =n!(n -m)!=n ·(n -1)![(n -1)-(m -1)]!=n A n -1m -1,故D 正确.故选A .7.B 解析:根据题意,若抽出的3件产品中恰好有1件是不合格品,即抽出的3件产品中有2件合格品,1件不合格品,则合格品的取法有C 982种,不合格品的取法有C 21种,恰好有1件是不合格品的取法有C 21C 982种取法,故A 正确,B 错误.若抽出的3件中至少有1件是不合格品,有2种情况,①抽出的3件产品中有2件合格品,1件不合格品,有C 21C 982种取法;②抽出的3件产品中有1件合格品,2件不合格品,有C 22C 981种取法.则抽出的3件中至少有1件是不合格品的抽法有(C 21C 982+C 22C 981)种,故C 正确.也可以使用间接法,在100件产品中任选3件,有C 1003种取法,其中全部为合格品的取法有C 983种,则抽出的3件中至少有1件是不合格品的抽法有(C 1003−C 983)种取法,故D 正确.故选B . 8.96 解析:若第一场比赛从甲或乙开始,则最后一场从甲或乙产生,故不同的出场方案有A 22A 44=48种;若第一场比赛从丙开始,最后一场从甲或乙产生,故不同的出场方案有A 21A 44=48种.根据分类加法计数原理,不同的出场方案共有48+48=96(种).9.660 解析:第一类,从8名学生中选1女3男,有C 63C 21=40种选法,从4人中选2人作为队长和副队长有A 42=12种选法,故共有40×12=480种选法;第二类,从8名学生中选2女2男,有C 62C 22=15种选法,从4人中选2人作为队长和副队长有A 42=12种选法,故共有15×12=180种选法,根据分类加法计数原理,共有480+180=660种不同的选法.10.C 解析:3名干部可供选派,下乡到5个村蹲点指导工作,每个村都需要1名干部,每个干部至多去3个村,于是可以把5个村分为(1,1,3)和(1,2,2)两组,当为(1,1,3)时,有C 53A 33=60(种);当为(1,2,2)时,有C 52C 32A 22·A 33=90(种).根据分类加法计数原理,可得不同的选派方案共60+90=150(种). 故选C .11.B 解析:13名医生,其中女医生6人,则男医生7人.(方法1 直接法)若选派2男3女,则不同的选派方法有C 72C 63;若选派3男2女,则不同的选派方法有C 73C 62;若选派4男1女,则不同的选派方法有C 74C 61;若选派5男,则不同的选派方法有C 75.由分类加法计数原理,不同的选派方法种数为N=C 72C 63+C 73C 62+C 74C 61+C 75.(方法2 间接法)13名医生,任取5人,减去抽调4名女医生和5名女医生的情况,即N=C 135−C 71C 64−C 65.故选B .12.72 解析:将6名专家平均分配到3所县疾控中心的方法种数为C 62C 42C 22A 33·A 33=C 62C 42C 22=90,其中A ,B 2名专家分配在一起的方法种数为C 42C 22A 22·A 33=3C 42C 22=18,故A ,B 2名专家不能分配在一起的不同的分配方法有90-18=72(种).13.35 60 解析:由题意,7科中任选3科,则学生有C 73=7×6×53×2×1=35种选法. 分为两类,第一类:物理、历史两科中有相同学科,则选法有C 21C 42C 22=12(种); 第二类:物理、历史两科中没有相同学科,则选法有A 22C 41A 32=48(种),由分类加法计数原理,甲、乙二人恰有一门学科相同的选法有12+48=60(种).14.A 解析:在C n m +C k 1·C n m -1+C k 2·C n m -2+…+C k k ·C n m -k 中,从第一项到最后一项表示从装有n 个白球,k 个黑球的袋子里,取出m 个球的所有情况取法总数的和,故式子表示的意思为从装有n+k 个球中取出m 个球的不同取法数C n+k m .故选A .15.26 解析:①当甲、丙、丁顾客都不选微信时,则甲有2种选择,当甲选择现金时,其余2人有A 22=2(种)选择;当甲选择支付宝时,丙、丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选支付宝或现金,有1+C21C21=5(种)选择.故有2+5=7(种)选择.②当甲、丙、丁顾客都不选支付宝时,则甲有2种选择,当甲选择现金时,其余2人有A22=2(种)选择;当甲选择微信时,丙、丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选微信或现金,故有1+C21C21=5(种)选择.故有2+5=7(种)选择.③当甲、丙、丁顾客都不选银联卡时,若有人使用现金,则有C31A22=6(种)选择,若没有人使用现金,则有C32A22=6(种)选择.故有6+6=12(种)选择.根据分类加法计数原理可得共有7+7+6+6=26(种)选择.。
第49讲直线与圆的位置关系一、课程标准1、能根据给定直线、圆的方程,判断直线与圆的位置关系2、能用直线和圆的方程解决一些简单的数学问题与实际问题.二、基础知识回顾1、直线与圆的位置关系(1)三种位置关系:相交、相切、相离.(2)圆的切线方程的常用结论①过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2;②过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2;③过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.三、自主热身、归纳总结1、若直线ax+by=1与圆x2+y2=1相交,则点P(a,b)与圆的位置关系为()A. 在圆内B. 在圆上C. 在圆外D. 位置不确定【答案】C【解析】∵圆心(0,0)到直线ax+by=1的距离d=1a2+b2<1,∴a2+b2>1,即点P(a,b)在圆外.故选C.2、直线kx-y-4k+3=0与圆x2+y2-6x-8y+21=0的交点个数为()A. 0B. 1C. 2D. 1或2【答案】C【解析】∵直线kx-y-4k+3=0过定点(4,3),且点(4,3)在圆x2+y2-6x-8y+21=0内,∴交点个数为2个.故选C .3、若直线x -y +1=0与圆(x -a)2+y 2=2有公共点,则实数a 的取值范围是( )A . [-3,-1]B . [-1,3]C . [-3,1]D . (-∞,-3]∪[1,+∞) 【答案】C【解析】由题意可得,圆的圆心为(a ,0),半径为2,∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a≤1.故选C .4、过点(2,3)与圆(x -1)2+y 2=1相切的直线的方程为________________. 【答案】 x =2或4x -3y +1=0【解析】 ①若切线的斜率存在时,设圆的切线方程为y =k(x -2)+3,由圆心(1,0)到切线的距离为半径1,得k =43,所以切线方程为4x -3y +1=0;②若切线的斜率不存在,则切线方程为x =2,符合题意,所以直线方程为4x -3y +1=0或x =2.5、直线l :3x -y -6=0与圆x 2+y 2-2x -4y =0相交于A ,B 两点,则AB =________. 【答案】 10【解析】 由x 2+y 2-2x -4y =0,得(x -1)2+(y -2)2=5,所以该圆的圆心坐标为(1,2),半径r =5,又圆心(1,2)到直线3x -y -6=0的距离为d =|3-2-6|32+(-1)2=102,由⎝⎛⎭⎫AB 22=r 2-d 2,得AB 2=4×⎝⎛⎭⎫5-52=10,即AB =10.6、(多选)已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( )A. 6B.5 C .- 6 D .-5【答案】BD【解析】因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =±5,故选B 、D.7、(多选)已知圆C :(x -3)2+(y -3)2=72,若直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则m =( )A .2B .4C .6D .10【答案】AD【解析】圆C :(x -3)2+(y -3)2=72的圆心C 的坐标为(3,3),半径r =62,因为直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点, 所以圆心到直线的距离为22, 则有d =|6-m |1+1=22, 解得m =2或10,故选A 、D.8、(2019·湖南长沙月考)设直线l :(m -1)x +(2m +1)y +3m =0(m ∈R )与圆(x -1)2+y 2=8相交于A ,B 两点,C 为圆心,且△ABC 的面积等于4,则实数m =________. 【答案】-12或-72【解析】设CA ,CB 的夹角为θ,圆的半径为r .所以S △ABC =12r 2sin θ=4sin θ=4,得θ=π2.易知圆心C 到直线l 的距离为2,所以|4m -1|m -12+2m +12=2,解得m =-12或-72.四、例题选讲考点一、直线与圆的位置关系例1、(1)直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定(2)已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( )A .m ∥l ,且l 与圆相交B .m ⊥l ,且l 与圆相切C .m ∥l ,且l 与圆相离D .m ⊥l ,且l 与圆相离 【答案】(1)A (2)C【解析】 (1)由题意知圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. (2)因点P 在圆内,故有a 2+b 2<r 2,直线m 是以P 为中点的弦所在的直线,所以m ⊥OP ,所以直线m的斜率k m =-a b ,因此m ∥l .又直线l 到圆心(0,0)的距离d =r 2a 2+b 2>r 2r =r ,故直线l 与圆相离.故选C.变式1、(1)(2020·杭州模拟)若无论实数a 取何值时,直线ax +y +a +1=0与圆x 2+y 2-2x -2y +b =0都相交,则实数b 的取值范围为( )A .(-∞,2)B .(2,+∞)C .(-∞,-6)D .(-6,+∞)(2)若圆x 2+y 2=r 2(r >0)上恒有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围是( ) A .(2+1,+∞) B .(2-1,2+1) C .(0,2-1) D .(0,2+1)【答案】(1) C (2)A【解析】(1)∵x 2+y 2-2x -2y +b =0表示圆,∴8-4b >0,即b <2.∵直线ax +y +a +1=0过定点(-1,-1),∴点(-1,-1)在圆x 2+y 2-2x -2y +b =0的内部,∴6+b <0,解得b <-6,∴b 的取值范围是(-∞,-6).故选C.(2)计算得圆心到直线l 的距离为22=2>1,如图,直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离2+1.变式2、已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点,直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)直线l 能否将圆C 分割成弧长之比为1∶3的两段弧?若能,求出直线l 的方程;若不能,请说明理由.【解析】(1)(方法1)将y =kx 代入圆C 的方程x 2+(y -4)2=4,得(1+k 2)x 2-8kx +12=0.∵直线l 与圆C 交于M ,N 两点,∴Δ=(-8k)2-4×12(1+k 2)>0,得k 2>3,(*)∴k 的取值范围是(-∞,-3)∪(3,+∞).(方法2)求圆心到直线的距离d =41+k 2<2解得k >3或k <- 3. (2)假设直线l 将圆C 分割成弧长的比为1∶3的两段弧,则劣弧MN 所对的圆心角∠MCN =90°,由圆C :x 2+(y -4)2=4知圆心C(0,4),半径r =2.在Rt △MCN 中,可求弦心距d =r·sin 45°=2,故圆心C(0,4)到直线kx -y =0的距离||0-41+k2=2,∴1+k 2=8,k =±7,经验证k =±7满足不等式(*),故l 的方程为y =±7x.方法总结:判断直线与圆的位置关系的常见方法(1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 考点二 圆的弦长问题例2、已知直线ax -y +2-a =0与圆C :(x -3)2+(y -1)2=9相交于A ,B 两点,若弦AB 的长为32,求实数a 的值.【解析】 因为圆心到直线ax -y +2-a =0的距离为||2a +1a 2+1,所以⎝ ⎛⎭⎪⎫||2a +1a 2+12+⎝⎛⎭⎫3222=9,解得a =1或a =7.变式1、(1)在平面直角坐标系xOy 中,直线3x -y +1-3=0被圆x 2+y 2-6x -2y +1=0截得的弦长为________.(2)当直线l :ax -y +2-a =0被圆C :(x -3)2+(y -1)2=9截得的弦长最短时,实数a 的值为________. (3)若直线l :ax -y +2-a =0与圆C :(x -3)2+(y -1)2=9相交于A ,B 两点,且∠ACB =90°,则实数a 的值为________.【答案】(1) 2 6 (2)2 (3)1或7【解析】(1) 圆x 2+y 2-6x -2y +1=0的圆心为C(3,1),半径r =3,点C 到直线3x -y +1-3=0的距离d =3,所求弦长为l =2r 2-d 2=2 6.【解析】(2) 由ax -y +2-a =0得直线l 恒过点M(1,2).又因为点M(1,2)在圆C 的内部,当MC 与l 垂直时,弦长最短,所以k MC ·k l =-1,所以2-11-3×a =-1,解得a =2 .(3)由题意,得圆心C(3,1),半径r =3且∠ACB =90°,则圆心C 到直线l :ax -y +2-a =0的距离为22r ,即||2a +1a 2+1=322,解得a =1或a =7.变式2、(1) 过点M(1,2)的直线l 与圆C :(x -3)2+(y -1)2=9相交于A ,B 两点,若弦AB 的长为25,则直线l 的方程为 _(2)已知圆C :(x -1)2+(y -2)2=2截y 轴所得线段与截直线y =2x +b 所得线段的长度相等,则b =________. 【答案】(1) x =1或3x -4y +5=0(2)±5【解析】 (1)当直线l 的斜率不存在时,x =1,符合条件;当直线l 的斜率存在时,设直线l 的方程为y-2=k(x -1),所以圆心到直线kx -y +2-k =0的距离为||2k +1k 2+1,由⎝ ⎛⎭⎪⎫||2k +1k 2+12+⎝⎛⎭⎫2522=9,解得k =34,即直线l 的方程为3x -4y +5=0.综上所述,所求直线l 的方程为x =1或3x -4y +5=0.(2)记圆C 与y 轴的两个交点分别是A ,B ,由圆心C 到y 轴的距离为1,|CA |=|CB |=2可知,圆心C (1,2)到直线2x -y +b =0的距离也等于1才符合题意,于是|2×1-2+b |5=1,解得b =± 5.方法总结:弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2. 考点三 圆的切线问题例3、(徐州一中2019届模拟)已知点P (2+1,2-2),点M (3,1),圆C :(x -1)2+(y -2)2=4.(1)求过点P 的圆C 的切线方程; (2)求过点M 的圆C 的切线方程.【解析】 由题意得圆心C (1,2),半径r =2.(1)因为(2+1-1)2+(2-2-2)2=4,所以点P 在圆C 上. 又k PC =2-2-22+1-1=-1,所以切线的斜率k =-1k PC =1.所以过点P 的圆C 的切线方程是y -(2-2)=1×[x -(2+1)],即x -y +1-22=0. (2)因为(3-1)2+(1-2)2=5>4,所以点M 在圆C 外部. 当过点M 的直线斜率不存在时,直线方程为x =3, 即x -3=0.又点C (1,2)到直线x -3=0的距离d =3-1=2=r ,即此时满足题意,所以直线x =3是圆的切线. 当切线的斜率存在时,设切线方程为y -1=k (x -3),即kx -y +1-3k =0,则圆心C 到切线的距离d=|k -2+1-3k |k 2+1=r =2,解得k =34.所以切线方程为y -1=34(x -3),即3x -4y -5=0.综上可得,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0.变式1、已知点P(2+1,2-2),点M(3,1),圆C :(x -1)2+(y -2)2=4.(1) 求过点P 的圆C 的切线方程;(2) 求过点M 的圆C 的切线方程,并求出切线长. 【解析】 (1) 由题意得圆心C(1,2),半径r =2.因为(2+1-1)2+(2-2-2)2=4, 所以点P 在圆C 上. 又k PC =2-2-22+1-1=-1,所以切线的斜率k =-1k PC=1,所以过点P 的圆C 的切线方程是y -(2-2)=x -(2+1),即x -y +1-22=0. (2) 因为(3-1)2+(1-2)2=5>4, 所以点M 在圆C 外部.当过点M 的直线斜率不存在时,直线方程为x =3,即x -3=0,满足题意; 当切线的斜率存在时,设切线方程为y -1=k(x -3),即kx -y +1-3k =0, 则圆心C 到切线的距离d =|k -2+1-3k|k 2+1=2,解得k =34,所以切线方程为y -1=34(x -3),即3x -4y -5=0.综上所述,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0. 因为MC =(3-1)2+(1-2)2= 5,所以过点M 的圆C 的切线长为MC 2-r 2=5-4=1.变式2、已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A(4,-1).【解析】(1)设切线方程为x +y +b =0,则|1-2+b|2=10,∴b =1±25,∴切线方程为x +y +1±25=0.(2)设切线方程为2x +y +m =0,则|2-2+m|5=10,∴m =±52,∴切线方程为2x +y±52=0. (3)∵k AC =-2+11-4=13,∴过切点A(4,-1)的切线斜率为-3, ∴过切点A(4,-1)的切线方程为y +1=-3(x -4),即3x +y -11=0.方法总结:求圆的切线方程应注意的问题求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时应注意斜率不存在的切线.五、优化提升与真题演练1、【2020年天津卷】知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r的值为_________. 【答案】5【解析】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =可得6==5r . 故答案为:5.2、【2020年浙江卷】.设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】 (1).(2). 3- 【解析】由题意,12,C C 1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.3、【2020年全国2卷】.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.B.C.5D.5【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为12113255d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==;所以,圆心到直线230x y --=. 故选:B.4、【2020年全国3卷】若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12C. y =12x +1 D. y =12x +12【答案】D【解析】设直线l 在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.5、(2020届清华大学附属中学高三第一学期12月月考)已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,若OAB ∆为正三角形,则实数m 的值为( ) A.2 B.2CD- 【答案】D【解析】 由题意得,圆22:1O x y +=的圆心坐标为(0,0),半径1r =. 因为OAB ∆为正三角形,则圆心O 到直线0x y m -+==即2d ==,解得2=m或2m =-,故选D. 6、(2020届山东省枣庄、滕州市高三上期末)已知直线1:0l kx y +=()k R ∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A.B.C.5+D.3+【答案】C 【解析】由0220kx y x ky k +=⎧⎨-+-=⎩,消去参数k 得22(1(1)2x y -+-=),所以A 在以(1,1)C 为半径的圆上,又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --,5CD ==,∴AB 的最大值为5CD =+故选:C.7、【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===8、 (2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.【解析】 (1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:BC 的中点坐标为⎝⎛⎭⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22.由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m 2.联立⎩⎨⎧ x =-m 2,y -12=x 2⎝⎛⎭⎫x -x 22,又x 22+mx 2-2=0,可得⎩⎨⎧ x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92.故过A ,B ,C 三点的圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。
第四十九课时 圆与方程课前预习案考纲要求1.掌握圆的定义及性质,圆的标准方程与一般方程,2.能用直线和圆的方程解决一些简单的问题,解决对称问题、轨迹问题、最值问题,以及直线与圆和其他数学知识的综合问题。
基础知识梳理1.圆的方程(1) 圆的定义:平面内 的点的集合(轨迹)叫做圆。
(2)圆的标准方程:圆心在),(b a c 、半径为r 的圆的标准方程是 (3)圆的一般方程:当0422>-+F E D 时,方程 ①叫做圆的一般方程.它表示圆心为 ,半径为 的圆;当2240D E F +-=时,①表示点 ;当2240D E F +-<时,①不表示任何图形。
(4)求圆的方程的方法:待定系数法.....,先定式,后定量。
如果与圆心和半径有关,一般选标准式,否则用一般式。
2.直线与圆的位置关系(1)设直线:0l Ax By C ++=圆222:()()C x a y b r -+-=,圆心到直线的距离为 (2)判断直线与圆的位置关系的方法方法一(几何法):比较圆心到直线的距离d 与圆的半径r 的大小关系①⇔直线与圆相交 ;②⇔直线与圆相切 ;③⇔直线与圆相离 方法二(代数法):通过判别式判断直线与圆的方程组的实数解的情况,确定直线和圆的位置。
(3)过圆上一点的圆的切线方程设圆的标准方程222x y r +=,点M(x 0,y 0)为圆上一点,则过M 的圆的切线方程为: ;设圆的标准方程为222:()()C x a y b r -+-=,点M(x 0,y 0)圆上一点,则过M 的圆的切线方程为:;(4)求圆的切线的方法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k .提醒:在利用点斜式求切线方程时,不要漏掉垂直于x 轴的切线,即斜率不存在时的情况. (5)求直线和圆相交的弦长方法一:解半径、半弦、弦心距组成的直角三角形(注意解直角三角形算出的是弦长的一半)。
专题:利用常见函数的奇偶性解题知识梳理:1、掌握高中常见函数的奇偶性,单调性可提高解题速度2、加强知识的归纳整理工作,由知识点构建知识块3、常见的奇,偶函数类型(10≠>a a 且):①指数型奇函数:f(x)=11+-±x x a a ,f(x)=)(x x a a --±, ②对数型奇函数:f(x)=±lgx b xb +-,f(x)=±lg(x x ++12),③幂函数奇函数:f(x)=m x (为奇数m ),f(x)=xb x ±④常见偶函数:f(x)=m x (为偶数m ) f(x)=|x| 典型例题:例1:已知函数f(x)=11+-x x a a (a>1) (1)判断f(x)奇偶性 (2)求函数f(x)的值域变式:已知函数31()231x x f x x -=++,则满足不等式()(32)0f a f a ++>的实数a 的取值范围是 .变式1:【答案】12⎛⎫-+∞ ⎪⎝⎭例2:(2018·全国卷Ⅱ)函数f (x )=e x -e -xx 2的图象大致为( )变式:已知函数f (x )=e x -1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.例3:判断并证明函数f(x)=lg x x +1-1的奇偶性 (思考f(x)=lg xx-+11的奇偶性?)例4:判断并证明函数f(x)=lg(x x ++12)的奇偶性 (思考f(x)=lg(x x -+12的奇偶性?)变式1:已知函数xxa x f +-=1log )(3为奇函数,则实数a 的值为________.变式2:设函数f(x)=1)1ln(1222+++++x x x x )(的最大值为M ,最小值为N ,试确定M+N 的值变式3:函数())lnf x kx =的图象不可能是( )A. B .C .D .例5:已知,,则( ) A . B . C . D .例6:已知函数2111)(x x x f +-+=,则满足f (x -1)<⎪⎭⎫ ⎝⎛31f 的x 取值范围是( ) A .11(,)33- B .]31,31[- C .24(,)33D .]34,32[课后作业:1、已知函数f(x)=xxa a 22+-是奇函数,则f(a)的值等于( )A.-31B.3C.-31或3D.31或32、(2022年华美月考,多选)已知函数()1212xxf x -=+,())lg g x x =,则( )A .函数()f x 为偶函数B .函数()g x 为奇函数C .函数()()()F x f x g x =+在区间[]1,1-上的最大值与最小值之和为01()1f x x x=+-()2f a =()f a -=4-2-1-3-D .设()()()F x f x g x =+,则()()210F a F a +--<的解集为()1,+∞ 3、(2019·金版创新)已知函数f (x )是奇函数,g (x )=f (x )+21+2x ,x ∈(-1,1),则g ⎪⎭⎫⎝⎛21+g ⎪⎭⎫⎝⎛21-的值为________. 4、(2019·海淀联考)已知函数f (x )=2x-12x +1.(1)判断函数f (x )的奇偶性;(2)判断并证明f (x )在其定义域上的单调性;(3)若f (k ·3x)+f (3x-9x+2)<0对任意x ≥1恒成立,求实数k 的取值范围.专题:利用常见函数的奇偶性解题典型例题: 例1:【答案】(1)奇函数(2)(-1,1) 【解析】(1)()f x 的定义域为R .又()()11111111xxx x xxa a a f x f x a aa ------====-+++,所以()f x 为奇函数. (2)11211,2120<+-<-∴<+<x x a a ,即值域为(-1,1) 变式:【答案】(∞+-,21) 【解析】0313113132131321313)()(=+-++-=-+-+++-=-+--xxx x x x x x x x x f x f 所以x x f x x 21313)(++-=为奇函数,因为1313)(+-=x x x f 在定义域上单调递增,又f(x)=2x 在定义域上单调递增,所以x x f xx 21313)(++-=在定义域上是增函数 2123)23()(->⇒-->⇒-->∴a a a a f a f例2:【答案】B 【解析】依题意,注意到函数的定义域是}0|{≠∈x R x ,且)()()(22x f xe e x e e xf x x x x -=--=--=---,因此)(x f 是奇函数,其图象关于原点成中心对称,选项A 不正确,且当x>0时,)(x f >0,选项D 不正确,又+∞→+∞→)(,x f x ,结合选项知B 正确,故选B变式:【答案】]21,1[-【解析】函数f (x )=e x-1e x 是常见的奇函数,且在定义域内是单调递增的,因为f (a -1)+f (2a 2)≤0a a a f a f a f -≤⇒-=--≤∴12)1()1()2(22解得:211≤≤-a例3:【答案】奇函数【解析】由条件知:函数的定义域为11<<-x 关于原点对称 所以f(x)+f(-x)=lgx x +1-1+lg x x -+11=0,即函数f(x)是奇函数,同理f(x)=lg xx-+11也是奇函数 例4:【答案】奇函数【解析】由条件知:函数的定义域为R 关于原点对称 所以f(x)+f(-x)=lg(x x ++12)+lg(x x -+12)=lg1=0即函数f(x)是奇函数,同理f(x)=lg()x x -+12也是奇函数变式1:【答案】1【解析】由条件知:奇函数的定义域要关于原点对称,所以分母1-≠x ,为了对称,分子a=1变式2:【答案】2【解析】由已知得1)1ln(21)(22+++++=x x x x x f 因为)1ln())(1)(ln(22x x x x ++-=-++-,所以)1ln(2x x y ++=是奇函数,进而可判定,函数1)1ln(2)(22++++=x x x x x g 为奇函数,则)(x g 的最大值1M 和最小值1N ,满足1M+1N =0,因为1,111+=+=N N M M ,所以M+N=2变式3:【答案】C 【解析】因为A,B 选项中,图像关于原点对称,所以f(x)为奇函数,f(x)+f(-x)=0 1010)1ln()1ln(2222±=⇒=-⇒=+++-+k x k kx x kx x )(即当K=1时,f(x)的图像为选项A,当K=-1时,f(x)的图像为选项B 而C,D 选项中,图像关于Y 轴对称,所以f(x)为偶函数,f(x)=f(-x)00)1ln()1ln(22=⇒=⇒++=-+k kx kx x kx x 即当K=0时,0)(≥x f 故f(x)的图像为选项D ,故f(x)的图像不可能为C例5:【答案】A 【解析】设xx x f x g 11)()(+=+=则)(1)()(x g x f x g -=+-=-,所以)(x g 是奇函数,31)()(=+=a f a g 因为)(x g 是奇函数,所以31)()(-=+-=-a f a g 所以4)(-=-a f ,故选A例6:【答案】C 【解析】函数2111)(xx x f +-+=在[)∞+,0上为增函数,所以不等式f (x -1)<⎪⎭⎫ ⎝⎛31f 等价为 f (|x -1|)<⎪⎭⎫ ⎝⎛31f 所以|x -1|)<31⇒3432<<x课后作业:1、【答案】C 【解析】因为函数f(x)=x xa a 22+-是奇函数,所以f(-x)=-f(x)整理得:02,02)22(2122>=-=+-x x x x a a a 因为))((,所以1±=a 代入选C2、【答案】BCD 【解析】函数xx x f 2121)(+-=是奇函数,所以A 错,函数g(x)=lg )x x -+12是奇函数,所以B 正确,.函数()()()F x f x g x =+在区间[]1,1-上是奇函数,在对称区间上,最大值最小值之和为0,C 正确;是减函数xx f 2121)(++-=,010ln 11)()1lg()(2'2<+-=⇒-+=x x g x x x g 故F (x )=f(x)+g(x)是减函数,a a a F a F a F a F +>⇒+<⇒<--+12)1()2(0)1()2(所以1>a ,D 正确3、【答案】2【解析】函数)(x f 是奇函数,所以0)21()21(=+-f f ,令xx h 212)(+=,则22112212)21()21(=+++=-+h h ,所以g ⎪⎭⎫ ⎝⎛21+g ⎪⎭⎫ ⎝⎛21-=2 4、【答案】(1)奇函数(2)在R 上单调递增函数(3)),(34∞-【解析】略。
第49课时 抛物线【考点点知】知己知彼,百战不殆抛物线是圆锥曲线中一种比较重要的曲线,新课标要求:掌握抛物线的定义、几何图形、标准方程及简单性质.所以复习时文理应不同对待,文科主要注重对基本知识、基本题目的复习,而理科还应加深理解,作适当的加深训练.考点一: 抛物线1.平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.方程y 2=±2px ,x 2=±2py (p >0)叫做抛物线的标准方程,有四种形式.3.抛物线y 2=2px (p >0)的焦点坐标是)0,2(p ,它的准线方程是2px -=,它的开口方向向右.4.抛物线y 2=-2px (p >0)的焦点坐标是)0,2(p-,它的准线方程是2p x =,它的开口方向向左.5.抛物线x 2=2py (p >0)的焦点坐标是)2,0(p ,它的准线方程是2py -=,它的开口方向向上.6.抛物线x 2=-2py (p >0)的焦点坐标是)2,0(p -,它的准线方程是2py =,它的开口方向向下.7.抛物线y 2=2px (p >0)上的点M (x 0,y 0)与焦点F 的距离|MF |=02x p+. 8.抛物线y 2=-2px (p >0)上的点M (x 0,y 0)与焦点F 的距离|MF |=02x p-. 9.抛物线x 2=2py (p >0)上的点M (x 0,y 0)与焦点F 的距离|MF |=02y p+. 10.抛物线x 2=-2py (p >0)上的点M (x 0,y 0)与焦点F 的距离|MF |=02y p-.考点二: 抛物线的几何性质1.已知抛物线的标准方程y 2=2px (p >0),则抛物线上的点(x ,y )的横坐标x 的取值范围是 x ≥0.2.抛物线的对称轴叫做抛物线的轴.抛物线和它的轴的交点叫做抛物线的顶点.抛物线上的点与焦点的距离和它的准线的距离的比叫做抛物线的离心率,其值为1.3.在抛物线y 2=2px (p >0)中,通过焦点而垂直于x 轴的直线与抛物线两交点的坐标分别为),2(),,2(p pp p -,连结这两点的线段叫做抛物线的通径,它的长为2p .【小题热身】明确考点,自省反思1.(四川卷)抛物线28y x =的焦点到准线的距离是 .2.(山东卷)已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 .3.(辽宁卷)设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为PF = .【考题点评】分析原因,醍醐灌顶例1.在平面直角坐标系xOy 中,有一定点A (2,1),若线段OA 的垂直平分线过抛物线22(0)y px p =>的焦点,则该抛物线的准线方程是 .思路透析:抛物线22y px = (0p >)的焦点坐标为(,02p ).∵12OA k =, 线段OA 的中点坐标为(1, 12), 线段OA 的垂直平分线的斜率12OAk k =-=-, ∴线段OA 的垂直平分线方程为12(1)2y x -=--, 其与x 轴的交点坐标为5(,0)4, ∴524p =, 故抛物线的准线方程为524p x =-=-,即54x =-. 点评:本题考查了应用基本量法求抛物线的标准方程,考查了考生对圆锥曲线基础知识的基本方法的掌握.新高考圆锥曲线中档题的设置仍然集中于对圆锥曲线的标准方程的研究或对其简单的性质的探讨.部分考生将抛物线的焦点坐标设为(,0)p ,而使方程求解出现错误,属基础知识掌握不牢.对于圆锥曲线中的基本量、基本量的关系、特殊点的坐标要注意理解与记忆.例2.设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA与x 轴正向的夹角为60,则OA= .思路透析:如右图所示,过点A 作AA 1⊥l 于点A 1,则AA 1=AF,∴点A 的横坐标1||||22A p p x AA FA =-=-,又FA与x 轴正半轴夹角为600,∴点A 的横坐标0||||cos602A F p FA x x FA +=+=,∴||||22p p FA FA +-= ,解之得||2FA p =,则点A 的坐标为A 00(||cos 60,||sin 60)2p FA FA +, 即A(32p ),∴||OA p == .点评:不少考生将直线FA 的方程求出,代入抛物线方程,求得了两个交点A,忽视了对向量夹角位置关系的判断.处理抛物线焦半径时要注意抛物线定义的巧妙应用,从中几何图形中去挖掘几何量的定值与定点位置关系研究.例3.已知直线L 过坐标原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上,若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程..思路透析: 由题意设抛物线C 的方程为y 2=2px (p >0),且x 轴和y 轴不是所求直线,又L 过原点,因而可设L 的方程为y =kx (k ≠0),设A ′B ′分别是A 、B 关于L 的对称点.A ′(x ′,y ′)关于y =kx 对称于A (-1,0)则)12,11(22111222+-+-'⇒⎪⎪⎩⎪⎪⎨⎧'-=⋅-'-=+''k k k k A y k x k x y同理B ′[1)1(8,116222+-+k k k k ] 又A ′、B ′在抛物线C 上,所以(122+-k k )2=2p ·1122+-k k由此知k ≠1,即p =1242-k k , [1)1(842--k k ]2=2p ·1162+k k , 由此得p =k k k )1()1(2222+-,从而k k k k k )1()1(21222242+-=-,整理得k 2-k -1=0 所以251,25121-=+=k k , ⎪⎪⎩⎪⎪⎨⎧=+=5522511p k ⎪⎪⎩⎪⎪⎨⎧<-=-=)(05522512舍p k 所以直线l 方程为y =251+x ,抛物线方程为y 2=554x . 点评:本题考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想,考查了抛物线的概念和性质、曲线和方程的关系以及综合运用知识的能力.例4.在平面直角坐标系xOy 中,过定点C (0,p )作直线与抛物线x 2=2px (p >0)相交于A 、B 两点.(Ⅰ)若点N 是点C 关于坐标原点O 的对称点, 求△ANB 面积的最小值;(Ⅱ)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.思路透析:解法1:(Ⅰ)依题意,点N 的坐标为N (0,-p ),可设A (x 1,y 1),B (x 2,y 2),直线AB的方程为y =kx +p ,与x 2=2py 联立得⎩⎨⎧+==.22p kx y py x 消去y 得x 2-2pkx -2p 2=0.由韦达定理得x 1+x 2=2pk ,x 1x 2=-2p 2. 于是21221x x p S S S ACN BCN ABN -⋅=+=∆∆∆ =21221214)(x x x x p x x p -+=-=.228422222+=+k p p k p p222min 0p S k ABN ==∴∆)时,(当.(Ⅱ)假设满足条件的直线l 存在,其方程为y =a ,AC 的中点为为直与AC t O ,'径的圆相交于点P 、Q ,PQ 的中点为H ,则)点的坐标为(2,2,11py x O PQ H O +'⊥' 2121)(2121p y x AC P O -+==' =22121p y +. ,221211p y a p y a H O --=+-=' 222H O P O PH '-'=∴=21221)2(41)(41p y a p y ---+ =),()2(1a p a y pa -+-22)2(PH PQ =∴=.)()2(42⎥⎦⎤⎢⎣⎡-+-a p a y p a令02=-p a ,得p PQ pa ==此时,2为定值,故满足条件的直线l 存在,其方程为2p y =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得22222122122128414)(11p k p k x x x x k x x k AB +⋅+=-+⋅+=-+==.21222+⋅+k k p 又由点到直线的距离公式得212kp d +=.从而,,2212212212122222+=+⋅+⋅+⋅=⋅⋅=∆k p k pk k p AB d S ABN .22max 02p S k ABN ==∴∆)时,(当 得⎪⎩⎪⎨⎧=-+=+-.0tan 2222,0θaz y a x a ay ax (Ⅱ)假设满足条件的直线t 存在,其方程为y=a ,则以AC 为直径的圆的方程为,0))(())(0(11=-----y y p y x x x 将直线方程y=a 代入得).(1)2(4))((4,0))((121112a p a y p a y a p a x y a p a x x x -+⎥⎦⎤⎢⎣⎡-=---∆=----=则 设直线l 与以AC 为直径的圆的交点为P (x 2,y 2),Q (x 4,y 4),则有.)()2(2)()2(41143a p a y p a a p a y p a x x PQ -+-=⎥⎦⎤⎢⎣⎡-+-=-=令p PQ pa p a ===-此时得,2,02为定值,故满足条件的直线l 存在,其方程为2p y =. 即抛物线的通径所在的直线.点评:本题以直线与抛物线的位置关系为背景, 将解析几何中的各数学思想方法交汇在一起, 属于思想方法的交汇, 其解题方法的多样性是本题的一大特色, 其每一问均有超过三种以上的解法, 且每一问题在难度上逐渐递进, 从多方位多角度考察了考生分析问题解决问题的能力,解析过程中注意参数的合理转化, 简化了运算的过程及计算量,也体现了设而不求的解几思想.【即时测评】学以致用,小试牛刀1.在平面直角坐标系xOy 中,直线l 的方程为1-=x ,l AM ⊥,垂足为M ,若12AO AM =+,则点A 的轨迹是( )A. 圆B. 椭圆C. 双曲线D. 抛物线2.(重庆卷)已知过抛物线24y x =的焦点F 的直线交该抛物线于A 、B 两点,2AF =,则BF =( )A. 2B. 3C. 4D.63.(浙江卷)设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为( ) A. 2 B.C.D. 3 4. 抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A. 0 B. 1 C. 2 D.43【课后作业】学练结合,融会贯通一、填空题:1.(重庆卷)已知以F 为焦点的抛物线x y 42=上的两点B A 、满足3=,则弦AB 的中点到准线的距离为___________.2.在平面直角坐标系xOy 中,有一定点A (2,1),若线段OA 的垂直平分线过抛物线22(0)y px p =>的焦点,则该抛物线的准线方程是 .3.(全国Ⅱ卷)已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M直线与l 相交于点A ,与C 的一个交点为B .若AM MB =,则p = .4.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=.5.已知抛物线y 2=4x 的一条弦AB ,A(x 1, y 1), B(x 2, y 2), AB 所在直线与y 轴交点坐标为(0,2)则2111y y += . 6.已知点P 是抛物线2y = 2x 上的动点,点p 在y 轴上的射影是M ,点A 的坐标是⎪⎭⎫⎝⎛4,27A ,则PA + PM 的最小值是 . 二、解答题:7.在平面直角坐标系中,O 为坐标原点,点F T M P 、、、满足(1,0),(O F O T t ==- ,,,//FM MT PM FT PT OF =⊥(Ⅰ)当t 变化时,求点P 的轨迹C 的方程(Ⅱ)若过点F 的直线交曲线C 于A B 、两点,求证:直线TA TF TB 、、的斜率依次成等差数列8(浙江卷)已知m 是非零实数,抛物线C :y 2=2px (p >0)的焦点F 在直线:l x my--22m =0上.(Ⅰ)若2m =,求抛物线C 的方程;(Ⅱ)设直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线C 的准线的垂直,垂足为A 1,B 1,△AA 1F ,△BB 1F 的重心分别为G ,H.求证:对任意非零实数m ,抛物线C 的准线与x 轴的交点在以线段GH 为直径的圆外.第49课时 抛物线参考答案【小题热身】1. 42. 1x =-3. 8【即时测评】1.D2. A3. C4. D【课后作业】一、填空题: 1.83 2. 54x =- 3. 2 4. 6 5. 12 6. 29 二、解答题:7. 解析:(I )设点P 的坐标为(,)x y ,由FM MT = ,得点M 是线段FT 的中点,则(0,)2t M ,(,)2tPM x y =-- ,又(2,),FT OT OF t =-=-(1,)PT x t y =---,由PM FT ⊥ ,得2()02tx t y +-=, ①由//PT OF,得(1)0()10,x t y t y --⨯+-⨯=∴= ②由①②消去t ,得24y x =即为所求点P 的轨迹C 的方程(II )证明:设直线,,TA TF TB 的斜率依次为12,,k k k ,并记11(,)A x y ,22(,)B x y ,则2tk =- 设直线AB 方程为1x my =+241y x x my ⎧=⎨=+⎩,得2440y my --=, 12124,4y y m y y +=⎧∴⎨⋅=-⎩ 2222121212()2168y y y y y y m ∴+=+-=+,1212121y t y t k k x t x --∴+=+++2221122212()(1)()(1)44(1)(1)44y y y t y t y y -++-+=++ 2212121212222212124()4()16()324()16y y y y t y y y y t y y y y +-+++-=+++2t k =-= 12,,k k k ∴成等差数列8. 解析:(Ⅰ)因为焦点F (2p ,0)在直线l 上,得2p m =, 又2m =,故4p =.所以抛物线C 的方程为y 2=8x. (Ⅱ)证明:因为抛物线C 的焦点F 在直线l 上,所以2p m =,所以抛物线C 的方程为y 2=2m 2x. 设A (x 1,y 1),B (x 2,y 2),由222,22,m x my y m x ⎧=+⎪⎨⎪=⎩消去x 得23420y m y m --=, 由于0m ≠,故∆=64440m m +>, 且有y 1+y 2=2m 3,y 1y 2=4m -, 设12,M M 分别为线段11,AA BB 的中点,由于212,2,M C CF M H HF == 可知G (112,33x y ),H (222,33x y ),所以2421212(),6636x x m y y m m m +++==+ 312222,63y y m += 所以GH 的中点M 2222,363m m m ⎛⎫+ ⎪⎝⎭. 设R 是以线段GH 为直径的圆的半径, 则2R =14219GH =422(1)(4)m m m ++. 设抛物线的准线与x 轴交点N (-22m ,0),则2MN =2242322363m m m m ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭44242224222111(84)[(1)(4)3](1)(4)999m m m m m m m m m m R =++=+++>++= 故点N 在以线段GH 为直径的圆外.。
课时作业49 椭圆一、选择题(每小题5分,共40分) 1.椭圆x 216+y 28=1的离心率为( ) A.13 B.12 C.33D.22解析:e =224=22. 答案:D2.设0≤α<2π,若方程x 2sin α-y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是( )A.⎝⎛⎭⎪⎫0,3π4∪⎝⎛⎭⎪⎫7π4,2πB.⎣⎢⎡⎭⎪⎫π2,3π4 C.⎝ ⎛⎭⎪⎫π2,3π4 D.⎝ ⎛⎭⎪⎫3π4,3π2 解析:化为x 21sin α+y 2-1cos α=1,∴-1cos α>1sin α>0,故选C. 答案:C3.(2021·新课标Ⅰ理,10)已知椭圆E :x 2a 2+y2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点,若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y236=1B.x 236+y227=1C.x 227+y 218=1 D.x 218+y 29=1解析:设A 点坐标为(x 1,y 1),B 点坐标为(x 2,y 2),∴⎩⎪⎨⎪⎧x 21a 2+y 21b 2=1x 22a 2+y 22b 2=1两式相减得,x 21-x 22a 2=y 22-y 21b 2,即(x 1-x 2)(x 1+x 2)a 2 =(y 2-y 1)(y 2+y 1)b 2, ∵x 1+x 2=2,y 1+y 2=-2, ∴k =y 2-y 1x 2-x 1=b 2a 2,又∵k =-1-01-3=12 ∴b 2a 2=12又∵c 2=a 2-b 2=2b 2-b 2=b 2,c 2=9, ∴b 2=9,a 2=18,即标准方程为x 218+y 29=1,故选D. 答案:D4.(2022·江西)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12D.5-2解析:由于A ,B 为左、右顶点,F 1,F 2为左、右焦点,所以|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c .又由于|AF 1|,|F 1F 2|,|F 1B |成等比数列, 所以(a -c )(a +c )=4c 2,即a 2=5c 2. 所以离心率e =c a =55,故选B. 答案:B5.(2022·兰州调研)“-3<m <5”是“方程x 25-m +y2m +3=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:要使方程x 25-m +y2m +3=1表示椭圆,应满足⎩⎪⎨⎪⎧5-m >0m +3>0,5-m ≠m +3解得-3<m <5且m ≠1,因此“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的必要不充分条件.答案:B6.(2021·莱芜期中)若点O 和点F 分别为椭圆x 29+y25=1的中心和左焦点,点P为椭圆上任意一点,则OP →·FP→的最小值为( ) A.114 B .3 C .8D .15解析:设P (3cos θ,5sin θ)(0≤θ<2π),∵F (-2,0),∴FP →=(3cos θ+2,5sin θ),OP →=(3cos θ,5sin θ).∴FP →·OP →=(3cos θ+2)×3cos θ+5sin 2θ=4(cos θ+34)2+114≥114.答案:A7.已知椭圆x 2+my 2=1的离心率e ∈(12,1),则实数m 的取值范围是( )A .(0,34)B .(43,+∞) C .(0,34)∪(43,+∞)D .(34,1)∪(1,43)解析:椭圆标准方程为x 2+y 21m=1.当m >1时,e 2=1-1m ∈(14,1),解得m >43;当0<m <1时,e 2=1m -11m =1-m ∈(14,1),解得0<m <34,故实数m 的取值范围是(0,34)∪(43,+∞).答案:C8.(2021·大纲理,8)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( )A .[12,34]B .[38,34]。
高三数学第一轮复习讲义第一章:函数与方程1.1 函数的概念与性质1.1.1 函数的定义函数是一种将一个集合的元素映射到另一个集合的元素的规则。
在数学中,我们通常用自变量和因变量来描述一个函数。
自变量是输入值,而因变量是输出值。
1.1.2 函数的性质1.定义域和值域:函数的定义域是自变量的取值范围,而值域是因变量的取值范围。
2.单调性:函数的单调性指的是函数在定义域内是否单调递增或单调递减。
3.奇偶性:函数的奇偶性指的是函数在定义域内是否关于原点对称。
4.最值与极值:函数的最值是函数取得的最大值或最小值,而极值则是函数在某一特定区间内取得的最大值或最小值。
1.2 一次函数与二次函数1.2.1 一次函数的性质与图像一次函数是指函数的最高次幂为一的函数,其一般形式为 y = kx + b,其中 k 和 b 是常数。
一次函数的性质与图像包括: - 斜率:斜率表示了函数图像在平面上的倾斜程度,可以通过斜率的正负来判断函数的单调性。
- 截距:截距表示了函数图像与 y 轴的交点位置。
1.2.2 二次函数的性质与图像二次函数是指函数的最高次幂为二的函数,其一般形式为 y = ax^2 + bx + c,其中 a,b 和 c 是常数,且a ≠ 0 。
二次函数的性质与图像包括: - 开口方向:二次函数的开口方向由二次项的系数 a 决定。
- 判别式:判别式可以用来判断二次函数的图像与 x 轴的交点情况。
-顶点坐标:二次函数图像的顶点坐标可以通过解方程组求得。
第二章:不等式与数列2.1 不等式2.1.1 不等式的基本性质不等式是一种表示两个数之间大小关系的数学式子。
在解不等式时,需要注意以下基本性质: - 加减变换:对不等式两边同时加减某个数不改变不等关系的方向。
- 乘除变换:对不等式两边同时乘除某个非零数不改变不等关系的方向。
需要注意,当乘除以负数时,不等关系的方向会发生变化。
2.1.2 一元一次不等式一元一次不等式是指只含有一个未知数的一次不等式,其一般形式为 ax + b >0(或 < 0)。
2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第01练集合(精练)1.了解集合的含义,体会元素与集合的属于关系,能用自然语言、图形语言、集合语言列举法或描述法描述不同的具体问题.2.理解集合间包含与相等的含义,能识别给定集合的子集.在具体情境中,了解全集与空集的含义.3.理解两个集合的并集、交集与补集的含义,会求两个简单集合的并集、交集与补集.能使用Venn 图表示集合间的基本关系及集合的基本运算.一、单选题1.(2023·全国·高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A .{}0,2,4,6,8B .{}0,1,4,6,8C .{}1,2,4,6,8D .U2.(2023·全国·高考真题)已知集合{}2,1,0,1,2M =--,260N x x x =--≥,则M N ⋂=()A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出.-3.(2023·全国·高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A .2B .1C .23D .1-4.(2023·全国·高考真题)设全集Z U =,集合{31,},{32,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,()U M N ⋃=ð()A .{|3,}x x k k =∈Z B .{31,}xx k k Z =-∈∣C .{32,}xx k k Z =-∈∣D .∅【答案】A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z =,所以,(){}|3,U M N x x k k ==∈Z ð.故选:A .5.(2023·全国·高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .126.(2022·全国·高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M ∈C .4M ∉D .5M∉【答案】A【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A7.(2022·全国·高考真题)若集合{4},{31}M x N x x ==≥∣,则M N ⋂=()8.(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【A 级基础巩固练】一、单选题1.(2024·北京丰台·一模)已知集合{}220A x x x =-≤,{}10B x x =->,则A B ⋃=()A .{}0x x ≥B .{}01x x ≤<C .{}1x x >D .{}12x x <≤2.(2024·北京顺义·二模)设集合24U x x =∈≤Z ,{}1,2A =,则U A =ð()A .[]2,0-B .{}0C .{}2,1--D .{}2,1,0--【答案】DA .(]0,2B .31,2⎛⎤ ⎥C .()0,2D .30,2⎛⎤4.(23-24高三下·四川成都·阶段练习)已知集合{}{}1,2,2,3A B ==,则集合{},,C z z x y x A y B ==+∈∈的子集个数为()A .5B .6C .7D .85.(2024·陕西安康·模拟预测)已知集合{}{}3N 0log 2,21,Z A x x B x x k k =∈<<==+∈∣∣,则A B = ()A .{}1,3,5,7B .{}5,6,7C .{}3,5D .{}3,5,7【答案】D【分析】先求出集合A ,再根据交集的定义即可得解.【详解】{}{}{}3N0log 2N192,3,4,5,6,7,8A x x x x =∈<<=∈<<=∣∣,所以{}3,5,7A B = .故选:D.6.(23-24高三下·四川雅安·阶段练习)若集合{}2,1,4,8A =-,{}2,B x y x A y A =-∈∈∣,则B 中元素的最大值为()A .4B .5C .7D .10【答案】C【分析】根据B 中元素的特征,只需满足()2max minx y-即可得解.【详解】由题意,()()222max maxmin817x y x y -=-=-=.故选:C7.(2024·四川成都·三模)设全集{}1,2,3,4,5U =,若集合M 满足{}1,4U M ⊆ð,则()A .4M ÎB .1M ∉C .2M ∈D .3M∉8.(2024·河北沧州·模拟预测)已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B =⋂,则集合P 的子集共有()A .2个B .3个C .4个D .8个9.(2024·全国·模拟预测)若集合{}()(){}28,158A x x B x x x =∈<=+->-Z ,则()A B ⋂=R ð()A .{}0,1,2B .{0x x ≤<C .{1x x ≤≤D .{}1,210.(2024·四川泸州·三模)已知集合2230A x x x =--<,{}0,B a =,若A B ⋂中有且仅有一个元素,则实数a 的取值范围为()A .()1,3-B .(][),13,-∞-+∞C .()3,1-D .(][),31,-∞-⋃+∞11.(2024·北京东城·一模)如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是()A .AB ⋂B .A B⋃C .()U A B ⋂ðD .()U A B ⋃ð【答案】D【分析】由给定的韦恩图分析出阴影部分所表示的集合中元素满足的条件,再根据集合运算的定义即可得解.【详解】由韦恩图可知阴影部分所表示的集合是()U A B ð.二、多选题12.(2024·甘肃定西·一模)设集合{}{}26,,A x x x B xy x A y A =-≤=∈∈∣∣,则()A .AB B= B .Z B ⋂的元素个数为16C .A B B⋃=D .A Z I 的子集个数为64取值可能是()A .3-B .1C .1-D .014.(2024·广西·二模)若集合M 和N 关系的Venn 图如图所示,则,M N 可能是()A .{}{}0,2,4,6,4M N ==B .{}21,{1}M xx N x x =<=>-∣∣C .{}{}lg ,e 5x M xy x N y y ====+∣∣D .(){}(){}22,,,M x y x y N x y y x ====∣∣三、填空题15.(2024高一上·全国·专题练习)已知集合{}22,4,10A a a a =-+,且3A -∈,则=a .【答案】3-【分析】根据题意,列出方程,求得a 的值,结合集合元素的互异性,即可求解.【详解】因为3A -∈,所以23a -=-或243a a +=-,解得1a =-或3a =-,当1a =-时,23a -=,243a a +=-,集合A 不满足元素的互异性,所以1a =-舍去;当3a =-时,经检验,符合题意,所以3a =-.故答案为:3-.16.(2024高三下·全国·专题练习)集合(){}22,2,,x y x y x y +<∈∈Z Z 的真子集的个数是.17.(23-24高一上·辽宁大连·期中)设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为.18.(2024·安徽合肥·一模)已知集合{}{}24,11A x x B x a x a =≤=-≤≤+∣∣,若A B ⋂=∅,则a 的取值范围是.【答案】()(),33,-∞-+∞ 【分析】利用一元二次不等式的解法及交集的定义即可求解.【详解】由24x ≤,得()()220x x -+≤,解得22x -≤≤,所以{}22A xx =-≤≤∣.因为A B ⋂=∅,所以12a +<-或12a ->,解得3a <-或3a >,所以a 的取值范围是()(),33,-∞-+∞ .故答案为:()(),33,-∞-+∞ .19.(2024高三·全国·专题练习)设集合(){}2|1A x x a =-<,且2A ∈,3A ∉,则实数a 的取值范围为.【答案】(]1,2【分析】首先解一元二次不等式求出集合A ,再根据2A ∈且3A ∉得到不等式组,解得即可.【详解】由()21x a -<,即11x a -<-<,解得11a x a -<<+,即(){}{}2|11|1A x x a x a x a =-<=-<<+,因为2A ∈且3A ∉,所以121213a a a -<⎧⎪+>⎨⎪+≤⎩,解得12a <≤,即实数a 的取值范围为(]1,2.故答案为:(]1,2四、解答题20.(23-24高一上·广东湛江·期末)已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.21.(2024高三·全国·专题练习)设M 是由直线0Ax By C ++=上所有点构成的集合,即{}(,)0M x y Ax By C =++=,在点集M 上定义运算“⊗”:对任意()11,,x y M ∈()22,,x y M ∈则()()11221212,,x y x y x x y y ⊗=+.(1)若M 是直线230x y -+=上所有点的集合,计算()()1,52,1⊗--的值.(2)对(1)中的点集M ,能否确定(3,)(,5)a b ⊗(其中,a b ∈R )的值?(3)对(1)中的点集M ,若(3,)(,)0a b c ⊗<,请你写出实数a ,b ,c 可能的值.【B 级能力提升练】一、单选题1.(2024·全国·模拟预测)已知集合{}{}2210,2log 10M x x P x x =->=-<,则M P ⋂=()A .12x x ⎧<<⎨⎩B .142x x ⎧⎫<<⎨⎬⎩⎭C .{}4x <<D .{}24x x <<2.(2024·宁夏银川·一模)设全集{0,1,2,3,4,5,6},{1,2,3,4,5},{Z 2}U A B x ===∈<,则集合{4,5}=()A .()U AB ⋂ðB .()U A B ⋂ðC .()U A B ∩ðD .()()U U A B ⋂痧所以{}{}Z |041,2,3B x x =∈<<=,所以{}0,4,5,6U B =ð,所以(){}4,5U A B Ç=ð,故ABD 错误,故C 正确;故选:C3.(23-24高三上·内蒙古赤峰·阶段练习)已知集合{}24xA x =>,集合{}B x x a =<∣,若A B ⋃=R ,则实数a 的取值范围为()A .(],2-∞B .[)2,+∞C .(),2-∞D .()2,+∞【答案】D【分析】先求出集合A ,然后根据A B ⋃=R ,即可求解.【详解】由24x >,得2x >,所以()2,A =+∞,因为(),B a =-∞,A B ⋃=R ,所以2a >,故D 正确.故选:D.4.(23-24高一上·全国·期末)已知m ∈R ,n ∈R ,若集合{}2,,1,,0n m m m n m ⎧⎫=+⎨⎬⎩⎭,则20232023m n +的值为()A .2-B .1-C .1D .25.(23-24高三下·湖南长沙·阶段练习)已知全集{}N |010U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B ⋂=ð,则集合B 的元素个数为()A .6B .7C .8D .不确定【答案】B【分析】由已知求出全集,再由(){}U 1,3,5,7A B ⋂=ð可知A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,从而可求出B 中的元素.【详解】因为全集{}{}N |0100,1,2,3,4,5,6,7,8,9,10U A B x x =⋃=∈≤≤=,(){}1,3,5,7U A B ⋂=ð,所以A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,A 和B 中都有可能有0,2,4,6,8,9,10,且除了1,3,5,7,A 中有的其他数字,B 中也一定会有,A 中没有的数字,B 中也一定会有,所以{}0,2,4,6,8,9,10B =,故选:B6.(23-24高三下·甘肃·阶段练习)如果集合U 存在一组两两不交(两个集合交集为空集时,称为不交)的非空子集()*122,,,,k A A A k k ≥∈N ,且满足12k A A A U =U U L U ,那么称子集组12,,,k A A A 构成集合U 的一个k 划分.若集合I 中含有4个元素,则集合I 的所有划分的个数为()A .7个B .9个C .10个D .14个二、多选题7.(2024·江苏泰州·模拟预测)对任意,A B ⊆R ,记{},A B x x A B x A B ⊕=∈⋃∉⋂,并称A B ⊕为集合,A B的对称差.例如:若{}{}1,2,3,2,3,4A B ==,则{}1,4A B ⊕=.下列命题中,为真命题的是()A .若,AB ⊆R 且A B B ⊕=,则A =∅B .若,A B ⊆R 且A B ⊕=∅,则A B =C .若,A B ⊆R 且A B A ⊕⊆,则A B ⊆D .存在,A B ⊆R ,使得A B A B⊕≠⊕R R痧三、填空题8.(2024·浙江绍兴·二模)已知集合{}20A x x mx =+≤,1,13B m ⎧⎫=--⎨⎬⎩⎭,且A B ⋂有4个子集,则实数m 的最小值是.9.(2024·湖南·二模)对于非空集合P ,定义函数()1,,P f x x P ⎧=⎨∈⎩已知集合{01},{2}A x x B x t x t=<<=<<∣∣,若存在x ∈R ,使得()()0A B f x f x +>,则实数t 的取值范围为.【C 级拓广探索练】一、单选题1.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【详解】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.二、多选题2.(2024·浙江宁波·二模)指示函数是一个重要的数学函数,通常用来表示某个条件的成立情况.已知U 为全集且元素个数有限,对于U 的任意一个子集S ,定义集合S 的指示函数()()U 1,1,10,S S x Sx x x S∈⎧=⎨∈⎩ð若,,A B C U ⊆,则()注:()x Mf x ∈∑表示M 中所有元素x 所对应的函数值()f x 之和(其中M 是()f x 定义域的子集).A .1()1()A A x Ax Ux x ∈∈<∑∑B .1()1()1()A B A A B x x x ⋂⋃≤≤C .()1()1()1()1()1()A B A B A B x Ux Ux x x x x ⋃∈∈=+-∑∑D .()()()11()11()11()1()1()A B C U A B C x Ux Ux Ux x x x x ⋃⋃∈∈∈---=-∑∑∑【答案】BCD【分析】根据()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð,即可结合选项逐一求解.【详解】对于A ,由于A U ⊆,所以1()1()1()1(),uA A A A x U x A x A x Ax x x x ∈∈∈∈=+=∑∑∑∑ð故1()1()A A x Ax Ux x ∈∈=∑∑,故A 错误,对于B ,若x A B ∈ ,则1()1,1()1,1()1A B A A B x x x ⋂⋃===,此时满足1()1()1()A B A A B x x x ⋂⋃≤≤,若x A ∈且x B ∉时,1()0,1()1,1()1A B A A B x x x ⋂⋃===,若x B ∈且x A ∉时,1()0,1()0,1()1A B A A B x x x ⋂⋃===,若x A ∉且x B ∉时,1()0,1()0,1()0A B A A B x x x ⋂⋃===,综上可得1()1()1()A B A A B x x x ⋂⋃≤≤,故B 正确,对于C ,()()()()()1()1()1()1()1()1()1()1()1()1()1()1()U UAB A B AB A B AB A B x Ux A B x B A x x x x x x x x x x x x ∈∈⋂∈⋂+-=+-++-∑∑∑痧()()()()1()1()1()1()1()1()1()1()U ABABABABx A B x A Bx x x x x x x x ∈⋂∈⋃++-++-∑∑ð()()()()()()()1()1()1()1()1()1()1()1()1()1()1()1()0U U U ABABABABABABx A B x A B x A B x B A x x x x x x x x x x x x ∈⋂∈⋃∈⋂∈⋂=+-++-++-+∑∑∑∑ð痧()()1()1()1()1()ABABx A B x x x x ∈⋃=+-∑而()1()1()1()1()U A B A BA B A Bx Ux A Bx A Bx A Bx x x x ⋃⋃⋃⋃∈∈⋃∈⋃∈⋃=+=∑∑∑∑ð,由于()()()U 1,10,A B x A Bx x A B ⋃∈⋃⎧=⎨∈⋃⎩ð,所以1()1()1()1()1()A B A B A B x x x x x ⋃+-=故()1()1()1()1()1()A B AB A B x U x Ux x x x x ⋃∈∈=+-∑∑,C 正确,()1()1()1()U UA B C U x Ux Ux A B C x x x ⋃⋃∈∈∈⋃⋃-=∑∑∑ð,当x A B C ∈⋃⋃时,此时()()()1,1,1A B C x x x 中至少一个为1,所以()()()11()11()11()0A B C x x x ---=,当()x A B C ∉⋃⋃时,此时()()()1,1,1A B C x x x 均为0,所以()()()11()11()11()1A B C x x x ---=,故()()()()()()()()11()11()11()11()11()11()1()UU A B C A B C A B C U x U x x A B C x x x x x x x ⋃⋃∈∈∈⋃⋃---=---=∑∑∑痧,故D 正确,故选:BCD【点睛】关键点点睛:充分利用()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð以及()x M f x ∈∑的定义,由此可得()x A B C ∉⋃⋃时,此时1(),1(),I ()A B C x x x 均为0,x A B C ∈⋃⋃时,此时1(),1(),I ()A B C x x x 中至少一个为1,结合()1S x 的定义化简求解.三、填空题3.(23-24高三上·江西·期末)定义:有限集合{}++,,N ,N i A x x a i n i n ==≤∈∈,12n S a a a =+++ 则称S 为集合A 的“元素和”,记为A .若集合(){}+12,,N ,N i P x x i i n i n +==+≤∈∈,集合P 的所有非空子集分别为1P ,2P ,…,k P ,则12k P P P +++=.四、解答题4.(2024·浙江台州·二模)设A ,B 是两个非空集合,如果对于集合A 中的任意一个元素x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的元素y 和它对应,并且不同的x 对应不同的y ;同时B 中的每一个元素y ,都有一个A 中的元素x 与它对应,则称f :A B →为从集合A 到集合B 的一一对应,并称集合A 与B 等势,记作A B =.若集合A 与B 之间不存在一一对应关系,则称A 与B 不等势,记作A B ≠.例如:对于集合*N A =,{}*2N B n n =∈,存在一一对应关系()2,y x x A y B =∈∈,因此A B =.(1)已知集合(){}22,1C x y x y =+=,()22,|143x y D x y ⎧⎫=+=⎨⎬⎩⎭,试判断C D =是否成立?请说明理由;(2)证明:①()()0,1,=-∞+∞;②{}**N N x x ≠⊆.【答案】(1)成立,理由见解析(2)①证明见解析;②证明见解析5.(2024·北京延庆·一模)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.若正整数()221t h k =+,其中*N,N t k ∈∈,则当1221t k +>+时,由等差数列的性质可得:()()()()()()()22122...2221...21221...212t t t t t t t t t t t h k k k k k =+=+++=-+-+++-++++++-++,此时结论成立,当1221t k +<+时,由等差数列的性质可得:()()()()()()()()2121...2121...112...2t t h k k k k k k k k k =++++++=-+++-++++++++,此时结论成立,对于数列n a n =,此问题等价于数列1,2,3,...n 其相应集合T 中满足2024m b ≤有多少项,由前面证明可知正整数1,2,4,8,16,32,64,128,256,512,1024不是T 中的项,所以m 的最大值为2013.。
高三数学第一轮复习专题 垂直系统专题第一部分 直线与平面垂直的判定及性质一。
线面垂直的定义:l l αα若直线与平面内的任意一条直线都垂直,则称直线与平面垂直.记作:l α⊥。
l 直线叫做α平面的垂线,α平面叫做l 直线的垂面。
(★★★)线面垂直的定义可以作为线面垂直的性质定理使用: 若l 直线与α平面垂直,则l 直线与α平面内任意一条直线都垂直。
,l a l a αα⊥⊂⇒⊥ ⇒线面垂直线线垂直二。
线面垂直的判定定理:1。
判定定理1:若一条直线和一个平面内的两条相交直线都垂直,则该直线与这个平面垂直。
(★★★)⇒线线垂直线面垂直,,,,a b a b P l a l b l ααα⊂⊂⋂=⊥⊥⇒⊥两个核心条件:,l a l b ⊥⊥2。
判定定理2:若两平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面。
(★★)a ∥b ,a α⊥b α⇒⊥三。
线面垂直的性质定理:1。
性质定理1:垂直于同一平面的两直线平行。
a α⊥,b α⊥a ⇒∥bα2。
性质定理2:垂直于同一直线的两平面平行。
l α⊥,l β⊥⇒α∥β题型一:线线垂直与线面垂直的互相证明 ★★★★★判定定义线线垂直线面垂直这两个定理(定义)构成了一个很重要的小循环:⇒⇒⇒⇒⋅⋅⋅⋅⋅⋅线线垂直线面垂直线线垂直线面垂直例1。
P 为ABC 所在平面外一点,PA ABC ⊥平面,090ABC ∠=,AE PB E ⊥于,AF PC F ⊥于。
求证:PC AEF ⊥平面。
(★★)规律:常用线面垂直来证明两直线“异面垂直”。
已知的是相交垂直,要证的是异面垂直。
分析:从后往前分析。
要证()PC AF PC AEF PC AE AE PBC ⎧⊥⎪⊥⇐⎨⊥⇐⊥⎪⎩已知平面平面 α()090AE PB BC AB ABC AE BC BC PAB BC PA PA ABC ⎧⊥⎪⎪⇐⎨⎧⊥⇐∠=⎪⊥⇐⊥⇐⎨⎪⊥⇐⊥⎩⎩已知平面平面 但写证明过程时要从前往后写。
高三数学第一轮复习讲义(49)
直线与圆的位置关系
一.复习目标:
1.掌握圆的标准方程及一般式方程,理解圆的参数方程及参数θ的意义,能根据圆的方程熟练地求出圆的圆心和半径;能熟练地对圆的方程的各种形式进行相互转化。
2.掌握直线与圆的位置关系,会求圆的切线方程,公共弦方程及等有关直线与圆的问题。
3.渗透数形结合的数学思想方法,充分利用圆的几何性质优化解题过程。
二.主要知识:
1.圆的标准方程: ;
圆的一般方程: ;
圆的参数方程: 。
2.直线与圆的位置关系判断的两种方法:
代数方法: ;几何方法: ;
3.弦长的计算方法:代数方法: ;几何方法: ;
三.基础训练:
1.方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 ( )
()A 2a <- ()B 203a -<< ()C 20a -<< ()D 223
a -<< 2.直线y x m =-+与圆221x y +=在第一象限内有两个不同交点,则m 的取值范围是 ( )
()A 0m << ()B 1m < ()C 1m ≤≤ ()D m <<3.圆22
2690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( ) ()A 22(7)(1)1x y +++= ()B 22(7)(2)1x y +++=
()C 22(6)(2)1x y +++= ()D 22(6)(2)1x y ++-=
4.设M 是圆22
(5)(3)9x y -+-=上的点,则M 点到直线3420x y +-=的最短距离是 。
5.若曲线1y =(22)x -≤≤与直线(2)4y k x =-+有两个交点时,则实数k 的取值范围是____ __。
四.例题分析:
例1.求满足下列各条件圆的方程:
(1)以)9,4(A ,)3,6(B 为直径的圆; (2)与,x y 轴均相切且过点(1,8)的圆;
(3)求经过)2,5(A ,)2,3(-B 两点,圆心在直线32=-y x 上的圆的方程。
例2.已知直线:2830L mx y m ---=和圆22:612200C x y x y +-++=;
(1)m R ∈时,证明L 与C 总相交。
(2)m 取何值时,L 被C 截得弦长最短,求此弦长。
例3.已知圆221:2280C x y x y +++-= 与222:210240C x y x y +-+-= 相交于
,A B 两点,
(1)求公共弦AB 所在的直线方程; (2)求圆心在直线y x =-上,且经过,A B 两点的圆的方程;
(3)求经过,A B 两点且面积最小的圆的方程。
五.课后作业: 班级 学号 姓名
1.已知曲线22220(40)x y Dx Ey F D E F +-+-=++>关于直线0x y +=对称,则( )
()A 0D E -= ()B 0D E += ()C 0D F += ()D 0D E F ++=
2.两圆为:2222(2)16;(1)(4)1x y x y -+=++-=,
则 ( ) ()A 两圆的公共弦所在的直线方程为34140x y -+=
()B 两圆的内公切线方程为34140x y -+=
()C 两圆的外公切线方程为34140x y -+=
()D 以上都不对
3.已知点(,)(0)M a b ab ≠是圆222:C x y r +=内一点,直线l 是以M 为中点的弦所在的直线,直线m 的方程是2ax by r +=,那么 ( )
()A //l m 且m 与圆C 相切 ()B l m ⊥且m 与圆C 相切
()C //l m 且m 与圆C 相离 ()D l m ⊥且m 与圆C 相离
4.若半径为1的动圆与圆22
4x y +=相切,则动圆圆心的轨迹方程是 。
5.圆222430x y x y +++-=上到直线10x y ++=的点共有 个。
6.已知曲线22:2(410)10200C x y kx k y k ++++++=,其中1k ≠-;
(1)求证:曲线C 都是圆,并且圆心在同一条直线上;
(2)证明:曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值;
7.设圆上的点(2,3)A 关于直线20x y +=的对称点仍在圆上,且与直线0x y y -+=相
交的弦长为
8.过点(2,3)P --作圆22:(4)(2)9C x y -+-=的两条切线,切点分别为,A B ;求:
(1)经过圆心C ,切点,A B 这三点圆的方程;(2)直线AB 的方程;(3)线段AB 的长。