位似图形及其性质
- 格式:docx
- 大小:414.18 KB
- 文档页数:7
初中数学什么是位似位似是初中数学中的一个重要概念,它是指由两个图形通过平移、旋转、翻转或者这些变换的组合而得到的相似图形。
在本文中,我们将详细介绍位似的定义、性质以及一些例子来帮助理解这个概念。
首先,让我们来定义位似。
如果有两个图形,它们的形状和大小是相似的,但位置可能不同,那么我们可以说这两个图形是位似的。
换句话说,位似是指通过平移、旋转、翻转或者这些变换的组合,将一个图形变换为另一个图形。
接下来,我们来讨论位似的性质。
位似具有以下性质:1. 形状相似:位似图形的形状是相似的,即它们的对应角相等,对应边的比例相等。
2. 大小相似:位似图形的大小是相似的,即它们的对应边的比例是相等的。
3. 位置可能不同:位似图形的位置可能不同,它们可以通过平移、旋转、翻转或者这些变换的组合来得到。
4. 变换保持相似性:位似图形之间的变换(如平移、旋转、翻转)保持它们的相似性,即变换前后仍然是位似图形。
让我们来看一些例子来帮助理解位似。
例子1:考虑两个三角形ABC和DEF,其中∠A = ∠D,∠B = ∠E,∠C = ∠F。
如果我们通过将三角形ABC沿顺时针方向旋转90度,并将它平移到DEF的位置,那么我们可以说三角形ABC和DEF是位似的。
它们具有相似的形状和大小,但位置可能不同。
例子2:考虑一个正方形和一个矩形,它们的边长比例是相等的,但是它们的形状和位置不同。
通过将正方形进行翻转或者旋转,我们可以得到一个与原正方形位似但位置不同的矩形。
例子3:考虑一个正三角形和一个等腰梯形,它们的形状和位置都不同,但是它们的对应边的比例相等。
通过将正三角形进行翻转或者旋转,我们可以得到一个与原正三角形位似但位置不同的等腰梯形。
通过这些例子,我们可以看到位似的性质和应用。
位似可以帮助我们在研究图形的形状和大小时,通过变换来得到相似的图形,从而简化问题的求解。
此外,位似也可以帮助我们理解和应用其他几何概念,如相似三角形、比例关系等。
第15讲位似图形目标导航课程标准1.了解位似图形、位似中心的概念,掌握位似图形的性质,理解位似变换是特殊的相似变换。
2.会画位似图形,能够利用位似把一个图形放大或缩小。
3.掌握位似图形坐标的变化规律,会利用这个规律求某些特殊点的坐标。
知识精讲知识点01 位似多边形的有关概念一般地,如果两个相似多边形任意一组对应顶点A,A 所在的直线都,且有,那么这样的两个多边形叫做位似多边形,点O叫做。
实际上,k就是这两个相似多边形的相似比。
注意:位似图形与相似图形的区别位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形。
知识点02 位似图形的性质(1)位似图形上任意一对对应点到的距离之比等于相似比;(2) 位似图形上的每组和在同一条直线上;(3)位似图形的对应线段。
(4)位似图形是特殊的相似图形,因此位似图形具有。
知识点03 位似图形的画法1.位似变换利用位似图形的性质将一个图形进行或叫做位似变换。
2.画位似图形的一般步骤(1)确定位似中心。
(2)确定原图形的,通常是多边形的顶点。
(3)分别原图形中的和,并延长(或截取)。
(4)根据已知的相似比,确定所画位似图形 的位置。
(5) 各点,得到放大或缩小后的图形。
3.实例知识点04 平面直角坐标系中的位似变换1.位似多边形对应点的坐标的变化规律在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数)0( k k ,则所对应的图形与原图形位似,位似中心是 ,它们的相似比为 。
2.平移、轴对称、旋转与位似变换的坐标变化规律 名称 变换规律变换方式平移对应点的横坐标(或纵坐标)加上(或减去)平移的单位长度全等变换轴对称 若以x 轴为对称轴,则对应点的横坐标相等,纵坐标互为相反数;若以y 轴为对称轴,则对应点的纵坐标相等,横坐标互为相反数。
旋转若一个图形绕原点旋转180,则旋转前后两个图形对应点的横坐标与纵坐标均互为相反数。
位似当以原点为位似中心时,变换前后两个图形对应点的横坐标、纵坐标之比的绝对值均等于相似比。
位似图形的定义及性质什么是位似图形?位似图形(IsomorphicGraphs)是由同一类图形组成的图,它们的全部节点及边都相同,但是它们的外形可能不太一样。
位似图形的定义主要指的是一种同构的连通图,它们之间的节点和边都是相似的。
准确来说,这些图形之间的数量和结构是相同的,只是它们的外形不同。
位似图形的研究可以追溯到1890年,当时首先由荷兰数学家安德森威尔金斯提出。
它是一种独特的结构,可以通过某种形式从一个图中转换到另一个图,而且,只要这两个图是位似图形,它就能够完全保持它们之间的联系。
从数学上来看,位似图形可以被表示为一对有向图。
它们中可能包含一个或多个节点和一个或多个边,这些边可以有不同的方向。
两个位似图形的关系可以用一个分析函数来表示,这个函数的输入是一对图,而输出是一个布尔值,如果给定的两个图形是位似图形,它就会返回一个真值,反之亦然。
位似图形的性质是相当有用的,特别是在研究图论的早期,位似图形的研究有助于数学家们理解图论中的基本概念以及图结构之间的联系。
它也帮助人们发现更多有关任意给定图结构的细节,例如有关它的节点数量、边数量、节点之间的关系等等。
位似图形的研究也是一个重要的工具,它帮助数学家们研究不同图论结构之间的关系。
例如,研究人员可以比较两个不同的图形,看看它们之间有何不同,从而发现它们之间的联系,从而给出更深入的结论。
另外,位似图形在算法和机器学习方面也有很多应用,它们可以帮助计算机程序发现图形之间的关系,并找出有用的特征以及对它们进行分类。
有时,它们甚至可以帮助计算机解决复杂的问题,比如解决最短路径问题。
总的来说,位似图形的定义和性质有助于数学家们更好地理解图结构之间的联系,从而发现更多有用的信息。
它们也有许多应用,例如在计算机程序,机器学习,以及算法研究方面。
《图形的位似》日期:目录•位似图形概述•位似图形的判定•位似图形的性质推论•位似图形的作图方法•位似图形的应用实例•位似图形的拓展与展望位似图形概述如果两个图形以原点为旋转中心旋转某个角度后能够重合,则称这两个图形关于这个旋转中心位似。
位似图形位似图形旋转的中心点称为位似中心。
位似中心位似图形旋转后的长度与原长度之比称为位似比。
位似比位似图形是相似图形的一种特殊形式,因此具有相似图形的所有性质。
相似图形的性质旋转对称性变换可逆性位似图形关于位似中心的旋转对称性是其重要性质之一。
位似图形的变换是可逆的,即可以通过逆变换恢复原来的图形。
030201位似图形在艺术和设计中有着广泛的应用,如旋转对称的图案、分形艺术等。
艺术和设计计算机图形学中经常使用位似图形来创建复杂的图像和动画效果。
计算机图形学物理学中,位似图形可以用来描述波的传播、振动等现象。
物理学位似图形的判定位似图形的定义如果两个图形以某一点为基准,使得每个图形上任意一点到该基准点的距离之比都等于两个图形的相似比,那么这两个图形被称为位似图形。
如何判定根据位似图形的定义,我们可以从以下三个方面进行判定:相似比、位似中心和对应线段。
通过定义判定位似图形相似比的定义相似比是指两个相似图形的对应线段之比,这个比例通常用一个分数来表示。
如何判定如果两个图形具有相同的相似比,那么它们就是位似图形。
例如,如果两个三角形的对应边之比为2:1,那么它们就是位似图形。
通过相似比判定位似图形位似中心是指两个位似图形围绕的共同中心点,这个中心点也是两个图形上任意一点到该点的距离之比相等的点。
位似中心的定义如果两个图形具有相同的位似中心,那么它们就是位似图形。
例如,如果两个圆心重合,那么它们就是位似图形。
如何判定通过位似中心判定位似图形位似图形的性质推论位似中心与相似中心的关系位似中心是位似图形的特殊点,相似中心是相似图形的特殊点。
它们都是图形中的特殊位置。
位似中心和相似中心都与图形的形状和大小无关,只与图形的位置和形状有关。
图形的位似要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k (k ≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k |.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k 或-k.一、典型例题类型一、位似多边形1. 下列每组的两个图形不是位似图形的是( ).A. B. C. D.举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( ).A. 3倍B.21 C.31 D.不知AB 的长度,无法判断2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.举一反三【变式】在已知三角形内求作内接正方形.类型二、坐标系中的位似图形3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.4.如图△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为.举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?二、巩固练习一. 选择题1.下面给出了相似的一些命题:(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似;其中正确的有().A.2个 B.3个 C.4个 D.5个2.下列说法错误的是().A.位似图形一定是相似图形.B.相似图形不一定是位似图形.C.位似图形上任意一对对应点到位似中心的距离之比等于相似比.D.位似图形中每组对应点所在的直线必相互平行.3.下列说法正确的是() .A.分别在ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则ADE是ABC放大后的图形.B.两位似图形的面积之比等于相似比.C.位似多边形中对应对角线之比等于相似比.D.位似图形的周长之比等于相似比的平方.4.如图,在平面直角坐标系中,已知点A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)5. 下列命题:①两个正方形是位似图形;②两个等边三角形是位似图形;③两个同心圆是位似图形;④平行于三角形一边的直线截这个三角形的两边,所得的三角形与原三角形是位似图形.其中正确的有( ).A.1个B.2个C.3个D.4个6.如果点C为线段AB的黄金分割点,且AC>BC,则下列各式不正确的是().A. AB:AC=AC:BCB. AC=512AB-C.AB=512AC+D.BC≈0.618AB7.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=().A. 512-B.512+C.3D.2二.填空题8. 如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形周长为30cm,则较大图形周长为__________.9.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=.10.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A B C D E''''',已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A B C D E'''''的周长的比值是__________.11. △ABC中,D、E分别在AB、AC上,DE∥BC,△ADE是△ABC缩小后的图形.若DE把△ABC的面积分成相等的两部分,则AD:AB=________.12. 把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为____________________.13.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第,三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OA n B n C n的边长为正方形OABC边长的倒数,则n=.14. 如图,△ABC中,AB=AC=4,∠BAC=36°,∠ABC的平分线与AC边的交点D为边AC的黄金分割点(AD>DC),则BC=______________.三.综合题15.如图,D、E分别AB、AC上的点.(1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?(2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?16.如图,F在BD上,BC、AD相交于点E,且AB∥CD∥EF,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB=2,CD=3,求EF的长.17. 如图1,矩形ODEF的一边落在矩形ABCO的一边上,并且矩形ODEF∽矩形ABCO,其相似比为1:4,矩形ABCO的边AB=4,BC=43.(1)求矩形ODEF的面积;(2)将图1中的矩形ODEF绕点O逆时针旋转一周,连接EC、EA,△ACE的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.。
位似图形的定义及性质
位似图形是一种强大的几何图形,由它可以刻画出许多几何概念,从而使得几何知识更加容易理解和运用。
它已经被广泛应用于许多领域,如研究物理学,以及一些工程领域。
那么,位似图形究竟是什么?以及位似图形的性质有哪些?
一、位似图形的定义
位似图形是一种可以用来描述几何形状的图形。
它被称为位似图形,是因为它由一系列的位置感知的图案组成,它们几乎可以完全重叠,而不会改变它们的形状,大小以及位置。
例如,圆形是一个最常见的位似图形,它是一个由很多小的圆点组成,而这些小圆点几乎可以重叠并且完全相同。
二、位似图形的性质
1、符号化:位似图形能将复杂的空间状态用简单的符号来表示,从而使得几何知识更加容易理解和运用。
2、视觉感知:位似图形的形状和大小可以在视觉上进行感知,
可以更加直观地感受几何状态。
3、精确度高:位似图形可以很好地反映几何形状的精确度,它
可以准确地反映几何的形状和大小,使得几何知识更加有效。
4、信息量大:位似图形能够精确表达出几何形状的详细信息,
能够体现出几何形状的复杂性并反映出它在特定空间位置的信息。
由以上性质可知,位似图形是一种获取几何信息的有效工具,能够较为准确地描述出几何形状的精细细节。
它既适用于描述几何图形,
也可以用来描述物理、空间等属性。
位似图形性质的学习,可以帮助我们更好地理解几何知识,更好地应用几何知识。
综上所述,位似图形是一种具有符号化、视觉感知、精确度高、信息量大等性质的一种几何图形。
它为学习和应用几何知识提供了一个良好的视角,可以让我们更加清晰地感受到几何形状的变化,辅助我们更好地理解和应用几何知识。
九年级位似图形知识点归纳九年级位似图形是数学中的一个重要内容,它涉及到平面几何中的相似性质以及相似图形的相关知识。
在这篇文章中,我将对九年级位似图形的知识点进行归纳总结。
1. 什么是位似图形位似图形指的是具有相同形状但是大小不同的图形。
在位似图形中,图形的内部角度是相等的,各边的对应长度按比例关系成立。
2. 相似比位似图形中,相似比是一个重要的概念。
相似比指的是两个位似图形的相应边长度之比。
在位似图形中,相似比相等,即对应边长度的比例相等。
3. 判断位似图形判断位似图形时,需要考虑以下几个条件:- 内部角度相等:对应角度相等,即对应顶点的角度相等。
- 对应边按比例关系成立:对应边之间的比例相等。
4. 位似图形的性质位似图形具有一些特点和性质,主要包括:- 边比相等:在位似图形中,对应边的长度比例相等。
- 面积比相等:在位似图形中,对应面积之比等于边比的平方。
- 周长比相等:在位似图形中,对应边长之比等于周长比。
5. 图形变换对位似图形进行变换是学习位似图形的重要环节之一。
常见的图形变换包括:- 平移:图形在平面上的位置保持不变,只改变其位置。
- 旋转:图形按照一定的角度绕着某个固定点进行旋转。
- 缩放:图形按照一定的比例进行放大或缩小。
6. 练习题为了加深对位似图形知识点的理解和掌握,我们可以进行一些练习题。
以下是一些例题:例题1:已知两个三角形ABC和DEF,且∠A=∠D,AB:DE=3:5,BC:EF=4:7,AC:DF=2:3。
判断两个三角形是否位似,并说明理由。
解答:根据给定条件,可以发现两个三角形的内部角度相等,且对应边的比例关系成立。
因此,根据位似图形的判断条件,可以判断两个三角形是位似的。
例题2:已知两个矩形ABCD和EFGH,且AB:EF=2:3,BC:FG=3:5,CD:GH=4:7。
计算两个矩形的面积比。
解答:根据给定的边比关系,可以算出两个矩形的边长比例分别为2:3和3:5。
位似的性质
能量储备
位似图形的性质
(1)位似图形上的任意一对对应点到位似中心的距离之比等于相似比.
(2)位似图形对应点连线或延长线交于一点.
(3)位似图形对应线段平行(或在同一条直线上)且成比例.
(4)位似图形是特殊的相似图形,因此位似图形具有相似图形的一切性质. 通关宝典
★ 基础方法点
方法点1:位似图形是一种特殊的相似图形,图形上任意一对对应点到位似中心的距离之比都等于相似比,可利用相似三角形的性质解决有关问题.
例:如图所示,△ABC 与△A′B′C′关于点O 位似,BO =3,B′O =6.
(1)若AC =5,求A′C′的长;
(2)若△ABC 的面积为7,求△A′B′C′的面积.
解:(1)因为△ABC 与△A′B′C′是位似图形,相似比为OB ∶OB′=3∶6=1∶2, 所以△ABC ∽△A′B′C′,且相似比为12,即AC A ′C ′=12, 即5
A ′C ′=12
,所以A′C′=10. (2)根据题意,得S ∆ABC
S ∆A ′B ′C ′=(AC A ′C ′)2=14,即7S ∆A ′B ′C ′=14, 所以S △A′B′C′=7×4=28.
★★易混易误点
蓄势待发
考前攻略
考查位似图形的性质的应用,多以选择题和填空题的形式出现,解题时运用相似图形的性质解决.
完胜关卡。
位似图形的定义及性质
位似图形的定义:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
位似图形的性质:
1、位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等与相似比。
2、位似多边形的对应边平行或共线。
3、位似的作用利用:位似可以将一个图形放大或缩小。
4、位似中心的落点:位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。
根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
九年级数学知识点归纳:位似图形.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.3.难点的冲破方式(1)位似图形:若是两个多边形不仅相似,而且对应极点的连线相交于一点,那么如此的两个图形叫做位似图形,那个点叫做位似中心,这时的相似比又称为位似比.(2)把握位似图形概念,需注意:①位似是一种具有位置关系的相似,因此两个图形是位似图形,必然是相似图形,而相似图形不必然是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的双侧,也可能位于位似中心的一侧;④位似比确实是相似比.利用位似图形的概念可判定两个图形是不是位似.(3)位似图形第一是相似图形,因此它具有相似图形的一切性质.位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比).(4)两个位似图形的要紧特点是:每对位似对应点与位似中心共线;不通过位似中心的对应线段平行.()利用位似,能够将一个图形放大或缩小,其步骤见下面例题.作图时要注意:①第一确信位似中心,位似中心的位置可随意选择;②确信原图形的关键点,如四边形有四个关键点,即它的四个极点;③确信位似比,依照位似比的取值,能够判定是将一个图形放大仍是缩小;④符合要求的图形不惟一,因为所作的图形与所确信的位似中心的位置有关,而且同一个位似中心的双侧各有一个符合要求的图形.一、选择题.以下说法正确的选项是().A.相似的两个五边形必然是位似图形B.两个大小不同的正三角形必然是位似图形.两个位似图形必然是相似图形D.所有的正方形都是位似图形考查目的:考查位似图形的概念.答案:.解析:位似图形是相似图形的特例,相似图形不必然是位似图形,故答案应选择.2.两个位似多边形一对对应极点到位似中心的距离比为1∶2,且它们面积和为80,那么较小的多边形的面积是()A.16B.32.48D.64考查目的:考查位似图形的概念和性质.答案:A.解析:位似图形必然相似,具有相似形的性质,其相似比等于一对对应极点到位似中心的距离比.相似比为1∶2,那么面积比为1∶4,由面积和为80,取得它们的面积别离为16,64.故答案应选择A.3.如图,以点A为位似中心,将△ADE放大2倍后,得位似图形△AB,假设S1表示△ADE的面积,S2表示四边形DBE的面积,那么S1∶S2=()A.1∶2B.1∶3.1∶4D.2∶3考查目的:考查位似图形的性质和画法.答案:B.解析:位似图形必然相似,具有相似形的性质,△ADE 与△AB相似比为1∶2,那么面积比为1∶4,因此△ADE与四边形DBE的面积比为1∶3,故答案应选择B.二、填空题4.如图,五边形ABDE与五边形A′B′′D′E′是位似图形,且位似比为1:2.假设五边形ABDE的面积为172,周长为20,那么五边形A′B′′D′E′的面积为________2,周长为________.考查目的:考查位似图形的概念和性质.答案:68;40.解析:位似图形必然相似,相似比是1∶2,那么面积比是1∶4,故五边形A′B′′D′E′的面积应是682;周长是40..若是两个位似图形的对应线段长别离为3和,且较小图形周长为30,那么较大图形周长为________.考查目的:考查位似图形的概念和性质.答案:0.解析:位似图形必然是相似图形,具有相似图形的性质,其相似比等于一组对应边的比,相似比是3∶,那么周长比是3∶,故答案应是0.三、解答题6.利用位似的方式把以下图缩小到原先的一半,要求所作的图形在原图内部.考查目的:考查位似图形的画法.答案:解析:利用位似的方式作图,要求所作图要位于原图内部,关键是确信位似中心,此题的位似中心取在原图内部,(1)在五边形ABDE内部任取一点.(2)以点为端点作射线A、B、、D、E.(3)别离在射线A、B、、D、E上取点A′、B′、′、D′,使A∶A′=B∶B′=∶′=D∶D′=E∶E′=2∶1.(4)连接A′B′、B′′、′D′、D′E′、E′A′.取得所要画的多边形A′B′′D′E′.7.如图,小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,现在他距离该塔18,已知小明的身高是1.6,他的影长是2.(1)图中△AB与△ADE是不是位似?什么缘故?(2)求古塔的高度.考查目的:考查位似图形的概念和性质.答案:△AB与△ADE位似;古塔的高度为16.解析:依照位似图形的概念,△AB与△ADE中,B与DE 平行,两个三角形相似,且对应极点的连线相交于一点,因此△AB与△ADE位似.利用相似三角形对应边成比例,可求出DE的长,故古塔的高度是16.。
平面几何中的相似比定理与位似在平面几何中,相似比定理与位似是两个重要的概念。
它们对于解决几何问题以及在实际生活中的应用都具有重要的意义。
本文将详细介绍相似比定理与位似的概念、性质以及应用案例。
一、相似比定理相似比定理是在几何形状相似的情况下,两个相似图形的对应边的长度之间的比值是相等的。
设有两个相似的三角形ABC和DEF,其中BC与EF对应,AC与DF对应,AB与DE对应。
那么有以下相似比定理成立:1. 侧边比定理:AB/DE=BC/EF;2. 高度比定理:h_a/h_d=BC/EF;3. 面积比定理:S_△ABC/S_△DEF=(BC/EF)^2。
相似比定理在解决几何问题时非常有用。
通过利用相似比定理,我们可以在已知图形的一部分信息的情况下,推导出其余部分的信息。
例如,如果我们知道一个三角形的底边长度和高度之间的比例,利用相似比定理可以求得其他边的长度、面积等信息。
二、位似的概念与性质位似是指在平面上,两个图形虽然形状不同,但是它们的对应边相互平行且长度之比相等。
位似的关键在于保持对应边的比例不变。
在位似的情况下,两个图形之间存在以下性质:1. 对应边平行:位似的图形中,对应边是平行的;2. 对应角相等:位似的图形中,对应角是相等的;3. 边长比相等:位似的图形中,对应边之间的长度比例是相等的。
位似在实际生活中的应用非常广泛。
例如在地图上,两个不同比例尺的地图是位似的,通过位似关系,我们可以在不同比例尺的地图上进行距离和角度的换算。
三、相似比定理与位似的应用案例相似比定理与位似在日常生活和工作中有着广泛的应用,下面将介绍几个典型的应用案例。
1. 地理测量:地理测量中常用的仪器如测绘仪、全站仪等,其数据处理过程中用到了相似比定理。
通过测量不同位置上的三角形边长比例关系,我们可以计算出高度、距离等信息。
2. 建筑设计:在建筑设计中,相似比定理与位似常被运用于平面设计、线条设计等。
通过调整不同形状的图形的比例关系,实现建筑设计的美观与和谐。