当前位置:文档之家› 高中数学必修五全部学案

高中数学必修五全部学案

高中数学必修五全部学案
高中数学必修五全部学案

【高二数学学案】

§1.1 正弦定理和余弦定理 第一课时 正弦定理

一、1、基础知识 设?ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,R 是?ABC 的外接圆半径。 (1)正弦定理: = = =2R 。 (2)正弦定理的三种变形形式: ①==b A R a ,sin 2 ,c= 。

②==

B R

a

A sin ,2sin ,=C sin 。 ③=c b a :: 。

(3)三角形中常见结论:

①A+B+C= 。②a

sin B

A += ,=+)sin(

B A ,)(2sin B A += 。 2、课堂小练

(1)在ABC ?中,若A sin >B sin ,则有( ) A 、a b D 、a ,b 的大小无法确定

(2)在ABC ?中,A=30°,C=105°,b=8,则a 等于( )

A 、4

B 、24

C 、34

D 、54 (3)已知ABC ?的三边分别为c b a ,,,且a b B A :cos :cos =,则ABC ?是 三角形。 二、例题 例1、根据下列条件,解ABC ?: (1)已知ο

30,7,5.3===B c b ,求C 、A 、a ; (2)已知B=30°,2=b ,c=2,求C 、A 、a ; (3)已知b=6,c=9,B=45°,求C 、A 、a 。

例2、在ABC ?中,C

B C

B A cos cos sin sin sin ++=

,试判断ABC ?的形状。

三、练习 1、在ABC ?中,若B b A a cos cos =,求证:ABC ?是等腰三角形或直角三角形。

2、在ABC ?中,5:3:1::=c b a ,求

C

B

A sin sin sin 2-的值。

四、课后练习 1、在ABC ?中,下列等式总能成立的是( ) A 、A c C a cos cos =

B 、A c

C b sin sin = C 、B bc C ab sin sin =

D 、A c C a sin sin =

2、在ABC ?中,ο

120,3,5===C b a ,则B A sin :sin 的值是( )

A 、

35 B 、53 C 、73 D 、7

5 3、在ABC ?中,已知ο

60,8==B a ,C=75°,则b 等于( )

A 、24

B 、34

C 、64

D 、3

32

4、在ABC ?中,A=60°,24,34==b a ,则角B 等于( )

A 、45°或135°

B 、135°

C 、45°

D 、以上答案都不对 5、根据下列条件,判断三角形解的情况,其中正确的是( ) A 、ο

30,16,8===A b a ,有两解 B 、ο

60,20,18===B c b ,有一解

C 、ο

90,2,5===A b a ,无解

D 、ο

150,25,30===A b a ,有一解

6、已知ABC ?中,ο

ο

45,60,10===C B a ,则c 等于( )

A 、310+

B 、)13(10-

C 、)13(10+

D 、310

7、在ABC ?中,已知A b B a tan tan 2

2

=,则此三角形是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、直角或等腰三角形

8、在ABC ?中,C=2B ,则B

B

sin 3sin 等于( )

A 、a b

B 、b a

C 、c a

D 、a

c

9、在ABC ?中,已知ο

45,2,===B cm b xcm a ,如果利用正弦定理,三角形有两解,则x 的取值

范围是( ) A 、2

B 、x >22

C 、2

D 、0

10、三角形两边之差为2,夹角的余弦值为5

3

。该三角形的面积为14,则这两边分别为( ) A 、3和5

B 、4和6

C 、5和7

D 、6和8

11、在ABC ?中,若ο

60,32,2=∠==B b a ,则c= ,=∠C 。

12、在ABC ?中,已知6:5:4)(:)(:)(=+++b a a c c b ,则C B A sin :sin :sin 等于

13、在ABC ?中,ο

30,1,3===B b a ,则三角形的面积等于 。 14、若ABC ?三个角A 、B 、C 成等差数列,且最大边为最小边的2倍,则三内角之比为 。 15、已知ABC ?中,c AB a BC ==,,且

b

b

c B A

-=2tan tan ,求A 。 16、已知在ABC ?中,A=45°,2,6==BC AB ,求其他边和角。

17、在ABC ?中若C=3B ,求

b

c

的取值范围。

18、已知方程0cos )cos (2

=+-B a x A b x 的两根之积等于两根之和,且a 、b 为ABC ?的两边,A 、B 为a 、b 的对角,试判定此三角形的形状。

五、课后反思

1.12 余弦定理 时间:

一、基础填空

1、余弦定理:三角形中任何一边的 等于其他两边的 的 减去这两边与

它们的 的 的 的 倍,即 a 2= ,b 2= ,c 2= 。 2、余弦定理的推论:

=A cos ,=B cos ,=C cos 。

3、运用余弦定理可以解决两类解三角形问题:、 (1)已知三边,求 ;

(2)已知 和它们的 ,求第三边和其他两个角。

4、ABC S ?= = = 。

二、典型例题 例1、ABC ?中,已知ο

30,33,3===B c b ,求角A 、角C 和边a 。

练习1:已知ABC ?中,)13(:6:2::+=c b a ,求 ABC ?的各角度数。

例2、在ABC ?中,已知ab c b a c b a 3))((=-+++,且C B A sin sin cos 2=?,确定ABC ?的

形状。

练习2、在ABC ?中,B a A b cos cos =,试判断三角形的形状。

三、课堂练习 1、在ABC ?中,已知B=30°,150,350==c b ,那么这个三角形是( ) A 、等边三角形 B 、直角三角形

C 、等腰三角形

D 、等腰三角形或直角三角形

2、在ABC ?中,A 、B 、C 的对边分别为a ,b ,c ,若ab

b a

c 22

22-->0,则ABC ?( )

A 、一定是锐角三角形

B 、一定是直角三角形

C 、一定是钝角三角形

D 、是锐角或直角三角形

3、在ABC ?中,7:5:3::=c b a ,则ABC ?的最大角是( ) A 、30° B 、60° C 、90° D 、120°

4、在ABC ?中,13,34,7===c b a ,则ABC ?的最小角为( ) A 、

3

π

B 、

6

π

C 、

4

π D 、

12

π

5、在ABC ?中,若ac c a b ++=2

2

2

,则B ∠为( )

A 、60°

B 、45°或135°

C 、120°

D 、30°

6、在ABC ?中,已知)(22

2

2

4

4

4

b a

c c b a +=++,则C 等于( )

A 、30°

B 、60°

C 、45°或135°

D 、120°

7、在ABC ?中,已知a 比b 长2,b 比c 长2,且最大角的正弦值是

2

3

,则ABC ?的面积是( )

A 、

3415

B 、415

C 、4

3

21 D 、4335

8、若ABC ?为三条边长分别是3,4,6,则它的较大的锐角的平分线分三角形所成的两个三角形的

面积比是( ) A 、1:1 B 、1:2

C 、1:4

D 、3:4

9、已知ABC ?中,1,3==AC AB ,且ο30=B ,则ABC ?的面积等于( )

A 、

2

3

B 、

43 C 、23或3 D 、43或2

3 10、在ABC ?中,13

5

cos ,53sin ==B A ,则cosC=( )

A 、6516

B 、6556

C 、6516或65

56 D 、以上皆对

11、在ABC ?中,若B=30°,AB=2,32=AC ,则ABC ?的面积S 是

12、已知三角形的两边分别为4和5,它们夹角的余弦是方程02322

=-+x x 的根,则第三边长

是 。

13、ABC ?中三边分别为a 、b 、c ,且4

2

22c b a S -+=?,那么角C=

14、在ABC ?中,三边的长为连续自然数,且最大角是钝角,这个三角形三边的长分别为 。

15、三角形的两边分别为3cm ,5cm ,它们所夹角的余弦为方程06752

=--x x 的根,则这个三角

形的面积为

16、在ABC ?中,已知b c a b a 2,4=+=-,且最大角为120°,则这个三角形的最大边等

于 。 17、如图所示,在ABC ?中,AB=5,AC=3,D 为BC 的中点,且AD=4,求BC 边的长。

18、已知圆O 的半径为R ,它的内接三角形ABC 中2R B b a C A sin )2()sin (sin 2

2-=-成立,求

ABC ?面积S 的最大值。

19、已知三角形的一个角为60°,面积为2

310cm ,周长为20cm ,求此三角形的各边长。

20、在ABC ?中,ο

60=∠A ,b=1,3=

?S 。

求(1)

C

B A c

b a sin sin sin ++++的值;

(2)ABC ?的内切圆的半径长。

四、课后练习 1、在ABC ?中,下列等式总能成立的是( ) A 、A c C a cos cos = B 、A c C b sin sin = C 、B bc C ab sin sin = D 、A c C a sin sin = 2、在ABC ?中,ο

120,3,5===C b a ,则B A sin :sin 的值是( )

A 、

35 B 、53 C 、73 D 、7

5 3、在ABC ?中,已知ο

ο75,60,8===C B a ,则b 等于( )

A 、24

B 、34

C 、64

D 、3

32

4、在ABC ?中,24,34,60===b a A ο

,则角B 等于( )

A 、45°或135°

B 、135°

C 、45°

D 、以上答案都不对 5、根据下列条件,判断三角形的情况,其中正确的是( ) A 、ο

30,16,8===A b a ,有两解

B 、ο60,20,18===B c b ,有一解

C 、ο

90,2,5===A b a ,无解 D 、ο

150,25,30===A b a ,有一解

6、已知ABC ?中,ο

ο

45,60,10===C B a ,则c 等于( )

A 、310+

B 、)13(10-

C 、)13(10+

D 、310

7、在ABC ?中,已知A b B a tan tan 2

2

=,则此三角形是( ) A 、锐角三角形 B 、直角三角形

C 、钝角三角形

D 、直角或等腰三角形

8、在ABC ?中,C=2B ,则B B

sin 3sin 等于( ) A 、

a

b

B 、b a

C 、c

a

D 、

a

c

9、在ABC ?中,已知ο

45,2,===B cm b xcm a ,如果利用正弦定理,三角形的两解,则x 的取值

范围是( ) A 、2

B 、x >22

C 、2

D 、0

10、三角形两边之差为2,夹角的余弦值为5

3

,该三角形的面为14,则这两边分别为( ) A 、3和5

B 、4和6

C 、5和7

D 、6和8

11、在ABC ?中,若ο

60,32,2=∠==B b a ,则=c ,=∠C 。

12、在ABC ?中,已知6:5:4)(:)(:)(=+++b a a c c b ,则C B A sin :sin :sin 等于

13、在ABC ?中,ο30,1,3===

B b a ,则三角形的面积等于 。

14、若ABC ?三个角A 、B 、C 成等差数列,且最大边为最小边的2倍,则三内角之比为 。 15、已知ABC ?中,c BC a BC ==,,且

b

b

c B A

-=2tan tan ,求A 。 16、已知在ABC ?中,A=45°,2,6==BC AB ,求其他边和角。

17、在ABC ?中,若C=3B ,求

b

c

的取值范围。

18、已知方程0cos )cos (2

=+-B a x A b x 的两根之积等于两根之和,且a 、b 为ABC ?的两边,A 、

B 为a 、b 的对角,试判定此三角形的形状。

【高二数学学案】

§1.1 正弦定理和余弦定理

第三课时 正弦定理和余弦定理综合问题

一、①基本知识 1、利用正、余弦定理可判断三角形的形状,其途径通常有两种: (1)将已知条件统一化成 的关系,用代数方法求解; (2)将已知条件统一化成 的关系,用三角方法求解。 2、三角形中常用面积公式:

(1)a a h ah S (21

=

表示 ); (2)==C ab S sin 2

1

= 。

3、解斜三角形通常有下列四种情形:

(1)已知“一边和二角(如C B a ,,)”,则可由A+B+C=180°,求角A ,再由 定理求出b

与c 。 此时B ac S sin 2

1

=

?在有解时只有 解。

(2)已知“两边及夹角(如),,C b a ”,则可由 定理求第三边c ,再由 定理求出小

边所对的角,再由A+B+C=180°求出另一角。 其中C ab S sin 2

1

=

?在有解时只有 解。 (3)已知“三边(如),,c b a ”,可用 定理求出角A ,B ,再利用 求出角C 。 其中C ab S sin 2

1

=

?在有解时只有 解。

(4)已知“两边和其中一边的对角(如),,A b a ”,可由 定理求出角B ,由A+B+C=180°,

求出角C 再利用 定理求出边c 。

其中C ab S sin 2

1

=

?可有 解、 解或 解。 ②课堂小练 1、已知ABC ?中,26,22,32+===c b a ,则ABC ?的形状为( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、不能确定 2、在ABC ?中,若三内角满足C C B B A 2

2

2

sin sin sin sin sin +?+=,则角A 等于( ) A 、30° B 、60° C 、120° D 、150° 3、在ABC ?中,若C c B b A a cos cos cos =+,则这个三角形一定是( ) A 、锐角三角形或钝角三角形 B 、以a 或b 为斜边的直角三角形 C 、以c 为斜边的直角三角形 D 、等边三角形

5、已知ABC ?的周长为20,面积为ο

60,310=A ,则BC 的长为 。

二、例题 例1、在ABC ?中,若A b B a tan tan 2

2

=,求证ABC ?是等腰三角形。

例2、在ABC ?中,a 、b 、c 分别是角A 、B 、C 的对边,已知ac b =2

,且bc ac c a -=-2

2

求A ∠的大小及c

B

b sin 的值。

例3、已知在ABC ?中,锐角B 所对的边b=7,外接圆半径R=

3

3

7,三角形面积310=,求三角形其他两边的长。

三、课堂练习 1、已知ABC ?中,16

247

sin ,3,8=

==A c b ,求a 的值,并判断三角形的形状。

北师大版高中数学必修五教学案

数列 1.1数列的概念 预习课本P3~6,思考并完成以下问题 (1)什么是数列?数列的项指什么? (2)数列的一般表示形式是什么? (3)按项数的多少,数列可分为哪两类? (4)数列的通项公式是什么?数列的通项公式与函数解析式有什么关系? [新知初探] 1.数列的概念 (1)定义:按一定次序排列的一列数叫作数列. (2)项:数列中的每一个数叫作这个数列的项. (3)数列的表示:数列的一般形式可以写成a1,a2,a3,…,a n…,简记为数列{a n}.数列的第1项a1,也称首项;a n是数列的第n项,也叫数列的通项. [点睛] (1)数列的定义中要把握两个关键词:“一定次序”与“一列数”.也就是说构成数列的元素是“数”,并且这些数是按照“一定次序”排列的,即确定的数在确定的位置. (2)项a n与序号n是不同的,数列的项是这个数列中的一个确定的数,而序号是指项在数列中的位次. (3){a n}与a n是不同概念:{a n}表示数列a1,a2,a3,…,a n,…;而a n表示数列{a n}中的第n 项. 2.数列的分类 项数有限的数列叫作有穷数列,项数无限的数列叫作无穷数列.

3.数列的通项公式 如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子表示成a n =f (n ),那么这个式子叫作数列{a n }的通项公式. [点睛] (1)数列的通项公式实际上是一个以正整数集N +或它的有限子集{1,2,3,…,n }为定义域的函数解析式. (2)同所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式. 4.数列的表示方法 数列的表示方法一般有三种:列表法、图像法、解析法. [小试身手] 1.判断下列结论是否正确.(正确的打“√”,错误的打“×”) (1)同一数列的任意两项均不可能相同.( ) (2)数列-1,0,1与数列1,0,-1是同一个数列.( ) (3)数列中的每一项都与它的序号有关.( ) 答案:(1)× (2)× (3)√ 2.已知数列{a n }的通项公式为a n =1-(-1)n +1 2,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1 C.12,0,1 2 ,0 D .2,0,2,0 解析:选B 把n =1,2,3,4分别代入a n =1-(-1)n + 12中,依次得到0,1,0,1. 3.已知数列{a n }中,a n =2n +1,那么a 2n =( ) A .2n +1 B .4n -1 C .4n +1 D .4n 解析:选C ∵a n =2n +1,∴a 2n =2(2n )+1=4n +1. 4.数列1,3,6,10,x,21,…中,x 的值是( ) A .12 B .13 C .15 D .16 解析:选C ∵3-1=2,6-3=3,10-6=4, ∴? ???? x -10=5,21-x =6,∴x =15. [典例] (1){0,1,2,3,4};(2)0,1,2,3;(3)0,1,2,3,4,…; (4)1,-1,1,-1,1,-1,…;(5)6,6,6,6,6. [解] (1)是集合,不是数列;

【2020最新】人教版高中数学必修三学案:1

教学资料范本 【2020最新】人教版高中数学必修三学案:1 编辑:__________________ 时间:__________________

【学习目标】 ①知识目标:理解书中介绍的中国古代的三个问题的算法。 ②能力目标:通过算法的Scilab 程序,使学生初步具备编程能力的思想。 ③情感目标:通过阅读教材和了解算法思想,体验中国古代数学的伟大,培养学生的爱国之情。 【自主学习】 1、 求两个数的最大公约数的方法有两种,分别是_________________和_______________。 2、 所谓“割圆术”,是用____________________去无限逼近圆周并以此求___________的方法。 3、 阅读教材p36页《我国古代数学家秦九韶》,理解秦九韶算法的步骤。 【典例分析】 例1 求132与143的最大公约数。 跟踪练习 求下列两个数的最大公约数:(1)8251,6105 (2)1480,480 例 2 用秦九韶算法求多项式在x=2时的函数值。 143)(2367+-+-=x x x x x f 【快乐体验】 一、选择题 1.用秦九韶算法求多项式在=-1.3的值时,令;; …;时,的值 为( ) 654322.5666.38.135.02)(x x x x x x x f +-+-++=x 60a v =501a x v v +=056a x v v +=5v A.-9.8205 B.14.25 C.-22.445 D.30.9785 2.数4557、1953、5115的最大公约数是( )

A.31 B.93 C.217 D.651 二、解答题 3.用等值算法求下列各数的最大公约数. (1)63,84; (2)351,513. 4.用辗转相除法求下列各数的最大公约数. (1)5207,8323; (2)5671, 10759. 5.求三个数779,209,589的最大公约数. 6.用秦九韶算法求多项式在时的值. 5365127)(2345-+--+=x x x x x x f 7=x 【反思回顾】 总结今天这节课的内容,你收获了哪些思想方法?

人教版高中数学必修五教学设计 [整书][全套]

1.1.1正弦定理 教学目标: 1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题. 2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力. 3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣. 4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一. 教学重点与难点 教学重点:正弦定理的发现与证明;正弦定理的简单应用. 教学难点:正弦定理的猜想提出过程. 教学准备:制作多媒体课件,学生准备计算器,直尺,量角器. 教学过程: (一)结合实例,激发动机 师生活动: 每天我们都在科技楼里学习,对科技楼熟悉吗?那大家知道科技楼有多高吗?给大家一个皮尺和测角仪,你能测出楼的高度吗? 学生思考片刻,教师引导. 生1:在楼的旁边取一个观测点C ,再用一个标杆,利用三角形相似. 师:方法可行吗? 生2:B 点位置在楼内不确定,故BC 长度无法测量,一次测量不行. 师:你有什么想法? 生2:可以再取一个观测点D . 师:多次测量取得数据,为了能与上次数据联系,我们应把D 点取在什么位置? 生2:向前或向后 师:好,模型如图(2):我们设60∠=?ACB ,45∠=?ADB ,CD =10m,那么我们能计算出AB 吗? 生3:由tan45tan3010AB AB ο ο -=求出AB . 师:很好,我们可否换个角度,在Rt ABD ?中,能求出AD ,也就求出了AB .在?ACD 中,已知两角,也就相当于知道了三个角,和其中一个角的对边,要求出AD ,就需要我们来研究三角形中的边角关系.

高中数学必修五知识点总结及例题学习资料

高中数学必修5知识点 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径, 则有 2sin sin sin a b c R A B C ===. 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;(边化角) ②sin 2a A R =,sin 2b B R =,sin 2c C R =;(角化边) ③::sin :sin :sin a b c A B C =; ④sin sin sin sin sin sin a b c a b c A B C A B C ++=== ++. 3、三角形面积公式:111 sin sin sin 222 C S bc A ab C ac B ?AB ===. 4、余弦定理:在C ?AB 中,有2 2 2 2cos a b c bc A =+-, 2222cos b a c ac B =+-, 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. 6、设a 、b 、c 是C ?AB 的角A 、B 、C 的对边, 则:①若222 a b c +=,则90C =;(.C A B C ?? 为直角为直角三角形) ②若2 2 2 a b c +>,则90C <;(.C A B C ??为锐角不一定是锐角三角形) ③若2 2 2 a b c +<,则90C >.(.C A B C ?? 为钝角为钝角三角形) 注:在C ?AB 中,则有 (1)A B C π++=,sin 0,sin 0,sin 0A B C >>>(正弦值都大于0) (2),,.a b c a c b b c a +>+>+>(两边之和大于第三边) (3)sin sin A B A B a b >?>?>(大角对大边,大边对大角) 7、递增数列:从第2项起,每一项都不小于它的前一项的数列.10n n a a +-> 8、递减数列:从第2项起,每一项都不大于它的前一项的数列.10n n a a +-< 9、常数列:各项相等的数列.11,.n n a a S na == 10、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式. 11、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 12、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.11()n n n n a a d a a d -+-=-= 13、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2 a c b += ,则

高中数学必修五导学案 解三角形答案

必修五解三角形测试题答案 一、选择题:共8小题,每小题5分,共计40分 二、填空题:本大题共6小题,每小题5分,满分30分. 9.______________14/5___________ 10._2___ 11. __________2_ 12._______ 90_______ 13. ___________ 120 14.__不用做___)),(),((321_____ 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.解:(1)在ABC ?中,由 cos A =,可得sin A =,又由s i n s i n a c A C =及 2a =,c =可得sin C = 由2 2 2 2 2cos 20a b c bc A b b =+-?+-=,因为0b >,故解得1b =. 所以sin 1C b = = (2)由cos 4A =- sin 4 A =, 得2 3cos 22cos 14A A =-=- ,sin 2sin cos A A A == 所以3cos(2)cos 2cos sin 2sin 3 3 3 8 A A A π π π -+ =-= 16.解:(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=, sin sin()sin sin B A C A C +=,则2sin sin sin B A C =, 再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.

(II)若1,2a c ==,则2 2b ac ==,∴2223 cos 24 a c b B a c +-==, sin C == , ∴△ABC 的面积11sin 1222S ac B = =??=. 17. 【解析】(Ⅰ),,(0,)sin()sin 0A C B A B A C B ππ+=-∈?+=> 2sin cos sin cos cos sin sin()sin B A A C A C A C B =+=+= 1cos 23 A A π?= ?= (II)2 2 2 2 2 2 2cos 2 a b c bc A a b a c B π =+-?==+?= 在Rt ABD ?中,AD = == 18. 【解析】 解:(1)证明:由 sin( )sin()44 b C c B a π π +-+=及正弦定理得: sin sin()sin sin()sin 44 B C C B A ππ +-+=, 即sin )sin )B C C C B B -+= 整理得:sin cos cos sin 1B C B C -=,所以sin()1B C -=,又30,4 B C π << 所以2 B C π -= (2) 由(1)及34B C π+=可得5,88B C ππ= =,又,4 A a π ==所以sin 5sin 2sin ,2sin sin 8sin 8 a B a C b c A A ππ = ===, 所以三角形ABC 的面积 151 sin sin cos 2888842 bc A πππππ===== 19.考点分析:本题考察三角恒等变化,三角函数的图像与性质. 解析:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+?+ cos22x x ωωλ=-+π 2sin(2)6 x ωλ=-+.

高中数学必修五全部学案

【高二数学学案】 §1.1 正弦定理和余弦定理 第一课时 正弦定理 一、1、基础知识 设?ABC 的三个角A 、B 、C 的对边分别为a 、b 、c ,R 是?ABC 的外接圆半径。 (1)正弦定理: = = =2R 。 (2)正弦定理的三种变形形式: ①==b A R a ,sin 2 ,c= 。 ②== B R a A sin ,2sin ,=C sin 。 ③=c b a :: 。 (3)三角形中常见结论: ①A+B+C= 。②a B sin ,则有( ) A 、a b D 、a ,b 的大小无法确定 (2)在ABC ?中,A=30°,C=105°,b=8,则a 等于( ) A 、4 B 、24 C 、34 D 、54 (3)已知ABC ?的三边分别为c b a ,,,且a b B A :cos :cos =,则ABC ?是 三角形。 二、例题 例1、根据下列条件,解ABC ?: (1)已知 30,7,5.3===B c b ,求C 、A 、a ; (2)已知B=30°,2=b ,c=2,求C 、A 、a ; (3)已知b=6,c=9,B=45°,求C 、A 、a 。 例2、在ABC ?中,C B C B A cos cos sin sin sin ++= ,试判断ABC ?的形状。

三、练习 1、在ABC ?中,若B b A a cos cos =,求证:ABC ?是等腰三角形或直角三角形。 2、在ABC ?中,5:3:1::=c b a ,求 C B A sin sin sin 2-的值。 四、课后练习 1、在ABC ?中,下列等式总能成立的是( ) A 、A c C a cos cos = B 、A c C b sin sin = C 、B bc C ab sin sin = D 、A c C a sin sin = 2、在ABC ?中, 120,3,5===C b a ,则B A sin :sin 的值是( ) A 、 35 B 、53 C 、73 D 、7 5 3、在ABC ?中,已知 60,8==B a ,C=75°,则b 等于( ) A 、24 B 、34 C 、64 D 、3 32 4、在ABC ?中,A=60°,24,34==b a ,则角B 等于( ) A 、45°或135° B 、135° C 、45° D 、以上答案都不对 5、根据下列条件,判断三角形解的情况,其中正确的是( )

高中数学 必修三 导学案:3.3

§3.3 几何概型 课前预习案 教材助读 预习教材P135-P136,完成以下问题。 几何概型的两个特点:(1)________________性,(2)_________________性. 课内探究案 一、新课导学 1.模拟方法:通常借助____________来估计某些随机事件发生的概率。用模拟方法可以在短时间内完成大量的重复试验,对于某些无法确切知道概率的问题,模拟方法能帮助我们得到其概率的近似值。 2.几何概型: (1)向平面上有限区域(集合)G内随机地投掷点M,若点M落在的概率与G1的成正比,而与G的、无关,即P(点M落在G1) = ,则称这种模型为几何概型。 (2)几何概型中G也可以是或的有限区域,相应的概率是或 。 二、合作探究 探究1:飞镖游戏:如图所示,规定射中红色区域表示中奖。 问题1:各个圆盘的中奖概率各是多少? 问题2:在区间[0,9]上任取一个整数,恰好取在区间[0,3]上的概率为多少? 问题3:在区间[0,9]上任取一个实数,恰好取在区间[0,3]上的概率为多少? 新知1:几何概型:如果每个事件发生的概率只与构成该事件区域的______________,____________或______________,则称这样的概率模型为几何概率模型,简称几何概型。几何概型的两个特点:(1)_______________性,(2)_________________性. 几何概型概率计算公式:

P(A)=____________________________________ ※ 典型例题 例1某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待的时间不多于10分钟的概率. 例2 如图,假设你在每个图形上随机撒一粒黄豆,则图1、图2落到阴影部分的概率分别为 ___________,__________. 例2、(选讲)在区间[-1,1]上任取两个数,则 (1)求这两个数的平方和不大于1的概率; (2)求这两个数的差的绝对值不大于1的概率。 例3 取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都大于1米的概率是_______. 三、当堂检测 1、平面上画了一些彼此相距a 2的平行线,把一枚半径为)(a r r 的硬币任意掷在这平面上

高中数学必修五全套教案(非常好的)

(第1课时) 课题 §2.1数列的概念与简单表示法 ●教学目标 知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。 过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。 ●教学重点 数列及其有关概念,通项公式及其应用 ●教学难点 根据一些数列的前几项抽象、归纳数列的通项公式 ●教学过程 Ⅰ.课题导入 三角形数:1,3,6,10,… 正方形数:1,4,9,16,25,… Ⅱ.讲授新课 ⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项. ⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“ 3 1 ”是这个数列的第“3”项,等等 下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系: 项 1 51 413121 ↓ ↓ ↓ ↓ ↓ 序号 1 2 3 4 5 这个数的第一项与这一项的序号可用一个公式:n a n 1 = 来表示其对应关系 即:只要依次用1,2,3…代替公式中的n ,就可以求出该数列相应的各项 结合上述其他例子,练习找其对应关系

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

2017年最新高中数学必修5全册导学案及章节检测含答案

2016-2017学年高中数学必修五 全册导学案及章节检测 目 录 1.1.1 正弦定理(一) ............................................................................................................. 1 1.1.1 正弦定理(二) ................................................................................................................ 5 1.1.2 余弦定理(一) ............................................................................................................. 9 1.1.2 余弦定理(二) ........................................................................................................... 13 1.2 应用举例(一) ................................................................................................................. 18 1.2 应用举例(二) ................................................................................................................. 24 第一章 解三角形章末复习课 ............................................................................................... 30 第一章 解三角形章末检测(A ) ........................................................................................ 35 第一章 解三角形章末检测(B ) ........................................................................................ 42 2.1 数列的概念与简单表示法(一) ................................................................................... 50 2.1 数列的概念与简单表示法(二) ................................................................................... 54 2.2 等差数列(一) ............................................................................................................... 59 2.2 等差数列(二) ............................................................................................................... 63 2.3 等差数列的前n 项和(一) ........................................................................................... 67 2.4 等比数列(一) ............................................................................................................... 76 2.4 等比数列(二) ............................................................................................................... 80 2.5 等比数列的前n 项和(二) ........................................................................................... 88 数列复习课检测试题 ............................................................................................................. 93 数列习题课(1)检测试题 ................................................................................................... 98 数列习题课(2)新人教A 版必修5 .................................................................................. 102 数列章末检测(A )新人教A 版必修5 .............................................................................. 106 数列章末检测(B )新人教A 版必修5 .............................................................................. 112 第二章 数 列 章末检测(B) 答案 ............................................................................. 115 3.1 不等关系与不等式 ...................................................................................................... 120 3.2 一元二次不等式及其解法(一) ................................................................................... 125 3.2 一元二次不等式及其解法(二) ................................................................................... 130 3.3.1 二元一次不等式(组)与平面区域 ......................................................................... 134 3.3.2 简单的线性规划问题(一) . (140) 3.3.2 简单的线性规划问题(二) (146) 3.4 ≤a +b 2(二) (157) 第三章 不等式复习课 ......................................................................................................... 161 第三章 不等式章末检测(A ) .......................................................................................... 167 第三章 不等式章末检测(B ) (174)

新人教版高中数学必修5知识点总结(详细)

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

高中数学必修五基本不等式学案

高中数学必修五基本不等式:ab≤a+b 2(学案) 学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点). [自主预习·探新知] 1.重要不等式 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”). 思考:如果a>0,b>0,用a,b分别代替不等式a2+b2≥2ab中的a,b,可得到怎样的不等式? [提示]a+b≥2ab. 2.基本不等式:ab≤a+b 2 (1)基本不等式成立的条件:a,b均为正实数; (2)等号成立的条件:当且仅当a=b时取等号. 思考:不等式a2+b2≥2ab与ab≤a+b 2成立的条件相同吗?如果不同各是 什么? [提示]不同,a2+b2≥2ab成立的条件是a,b∈R;ab≤a+b 2成立的条件 是a,b均为正实数. 3.算术平均数与几何平均数 (1)设a>0,b>0,则a,b的算术平均数为a+b 2,几何平均数为 (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 思考:a+b 2≥ab与? ? ? ? ? a+b 2 2 ≥ab是等价的吗? [提示]不等价,前者条件是a>0,b>0,后者是a,b∈R. 4.用基本不等式求最值的结论 (1)设x,y为正实数,若x+y=s(和s为定值),则当x=y=s 2时,积xy有最

小值为2xy . (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为(x +y )2 4. 5.基本不等式求最值的条件 (1)x ,y 必须是正数. (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值? [提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值. [基础自测] 1.思考辨析 (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2 +2 x 2+1 的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√ 2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________. 400 [因为x ,y 都是正数, 且x +y =40,所以xy ≤? ???? x +y 22 =400,当且仅当x =y =20时取等号.] 3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤? ???? x +8-x 22 =16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]

高中数学必修4全套学案

第一章三角函数 [基础自学] 一、角的概念 1.角的概念 (1)角可以看成是一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形. (2)角的表示 顶点:用O表示; 始边:用OA表示,用语言可表示为角的始边; 终边:用OB表示,用语言可表示为角的终边. 2.角的分类 按旋转方向可将角分为如下三类:

1.象限角:若角的顶点在原点,角的始边与x轴非负半轴重合,则角的终边在第几象限,就称这个角是第几象限角. 2.轴线角:若角的终边在坐标轴上,则这个角不属于任何象限. 三、终边相同的角 设α表示任意角,所有与角α终边相同的角,包括α本身构成一个集合,这个集合可记为{β|β=α+k·360°,k∈Z}.[自我小测] 1.判断(正确的打“√”,错误的打“×”) (1)研究终边相同的角的前提条件是角的顶点在坐标原点.() (2)锐角是第一象限的角,但第一象限的角不一定是锐角.() (3)象限角与终边落在坐标轴上的角表示形式是唯一的.() 提示:(1)×(2)√(3)× 2.做一做 (1)下列各组角中,终边不相同的是() A.60°与-300°B.230°与950° C.1050°与-300°D.-1000°与80° 答案 C (2)将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是________. 答案195°+(-3)×360°

课堂合作探究KETANGHEZUOTANJIU 1 终边相同的角之间有什么关系? 提示:与α终边相同的角,可表示为β=k·360°+α(k∈Z),即两角相差360°的整数倍. 2 如何表示终边在坐标轴上的角和象限角? 提示:终边在x轴非负半轴上的角:α=k·360°(k∈Z); 终边在y轴上的角:α=90°+k·180°(k∈Z); 第二象限角:90°+k·360°<α<180°+k·360°(k∈Z). 题型一正确理解角的概念 例1下列结论: ①锐角都是第一象限角; ②第一象限角一定不是负角; ③第二象限角是钝角; ④小于180°的角是钝角、直角或锐角. 其中正确的序号为________(把正确结论的序号都写上). [解析]①锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以①正确; ②-330°角是第一象限角,但它是负角,所以②不正确; ③480°角是第二象限角,但它不是钝角,所以③不正确; ④0°角小于180°,但它既不是钝角,也不是直角或锐角,故④不正确. [答案]① 角的概念的理解 正确解答角的概念问题,关键在于正确理解象限角与锐角、直角、

[高中数学必修三知识点总结]高中数学必修5知识点总结

[高中数学必修三知识点总结]高中数学必修5知识点总结 【--高中生入党申请书】 数学是高中生学习的最重要科目之一,数学的学习对于学生而言至关重要,数学成绩的好坏直接决定着你的总成绩的排名。下面就让给大家分享一些高中数学必修5知识点总结吧,希望能对你有帮助! 高中数学必修5知识点总结篇一 高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学**两本书。

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角 这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分 2、直线方程:高考时不单独命题,易和圆锥曲线结合命题 3、圆方程: 必修三:1、算法初步:高考必考内容,5分(选择或填

空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分 必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查 2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分 必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。 高中数学必修5知识点总结篇二 1.函数思想:把某变化过程中的一些相互制约的变量用

相关主题
文本预览
相关文档 最新文档