当前位置:文档之家› 人口指数增长模型和Logistic模型

人口指数增长模型和Logistic模型

人口指数增长模型和Logistic模型
人口指数增长模型和Logistic模型

根据美国人口从1790年到1990年间的人口数据(如下表),确定人口指数增长模型和Logistic 模型中的待定参数,估计出美国2010年的人口,同时画出拟合效果的图形。

1860 1870 1880 1890 1900 1910 1930 1940 1950 1960 1970 1980 指数增长模型:rt

e x t x 0

)(=

Logistic 模型:()011m

rt

m x x t x e x -=

??

+- ???

解:模型一:指数增长模型。Malthus 模型的基本假设下,人口的增长率为常数,记为r ,记时刻t 的人口为 )(t x ,(即)(t x 为模型的状态变量)且初始时刻的人

口为0x ,因为?????==0

)0(x x rx

dt dx

由假设可知0()rt x t x e = 经拟合得到:

}2

12

0010120

()ln ()ln ,ln (),,ln rt a y a t a x t x e x t x rt r a x e

y x t a r a x =+=?=+?

===== 程序:

t=1790:10:1980;

x(t)=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5

123.2 131.7 150.7 179.3 204.0 226.5 ]; y=log(x(t));a=polyfit(t,y,1) r=a(1),x0=exp(a(2)) x1=x0.*exp(r.*t);

plot(t,x(t),'r',t,x1,'b') 结果:a = 0.0214 -36.6198

r= 0.0214

x0= 1.2480e-016 所以得到人口关于时间的函数为:0.02140()t x t x e =,其中x0 = 1.2480e-016, 输入:t=2010;

x0 = 1.2480e-016; x(t)=x0*exp(0.0214*t)

得到x(t)= 598.3529。即在此模型下到2010年人口大约为598.3529 610?。

1780

1800182018401860188019001920194019601980

050

100

150

200

250

300

350

模型二:阻滞增长模型(或 Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为 x 的减函数,如设)/1()(m x x r x r -=,其中 r 为固有增长率 (x 很小时 ) ,m x 为人口容量(资源、环境能容纳的最大数量), 于是得到如下微分方程:

??

?

??=-=0)0()1(x

x x x rx dt

dx

m 建立函数文件curvefit_fun2.m

function f=curvefit_fun2 (a,t)

f=a(1)./(1+(a(1)/3.9-1)*exp(-a(2)*(t-1790))); 在命令文件main.m 中调用函数文件curvefit_fun2.m % 定义向量(数组) x=1790:10:1990;

y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76 ... 92 106.5 123.2 131.7 150.7 179.3 204 226.5 251.4]; plot(x,y,'*',x,y); % 画点,并且画一直线把各点连起来 hold on;

a0=[0.001,1]; % 初值

% 最重要的函数,第1个参数是函数名(一个同名的m 文件定义),第2个参数是初值,第3、4个参数是已知数据点 a=lsqcurvefit('curvefit_fun2',a0,x,y); disp(['a=' num2str(a)]); % 显示结果 % 画图检验结果 xi=1790:5:2020;

yi=curvefit_fun2(a,xi); plot(xi,yi,'r'); % 预测2010年的数据 x1=2010;

y1=curvefit_fun2(a,x1) hold off 运行结果:

a=311.9531 0.02798178 y1 =267.1947

其中a(1)、a(2)分别表示()011m

rt

m x x t x e x -=

??+- ???

中的m x 和r ,y1则是对美国美

国2010年的人口的估计。

1750

180018501900195020002050

050

100

150

200

250

300

第二题:

问题重述:

一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给与鼓励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量

的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):

问题分析:

鲈鱼的体重主要与鱼的身长、胸围有关系。一般来说,鲈鱼的胸围越大,鱼

的体重会越重,身长越长,体重也越重。但鱼的胸围与身长之间又有些必然的联

系,共同影响鱼的体重。建模的目的是寻求鲈鱼体重与身长、胸围之间的数量规

模型假设:

1、鲈鱼的身长越长体重越重,体重与身长存在正相关关系;

2、鲈鱼的胸围越大体重也越重,体重与胸围存在正相关的关系;

3、鲈鱼的胸围、身长互相影响,共同作用鲈鱼的体重;

4、鲈鱼的形态近似为与胸围等周长与身长等高的圆柱体。

符号说明:

模型的建立及求解:

(一)、鲈鱼体重与身长模型的确立

为了研究鲈鱼身长与体重的关系,我们利用已测量的数据,取出身长及体重的数据,利用MATLAB软件画出散点图,如下:

30

32

34

36

3840

42

44

46

身长

体重

身长与体重散点图

从图形上看,鲈鱼的体重与身长可能是二次函数关系,我们利用多项式拟合的方法,得到:

21.6247*L -59.3124*L +709.7392W

(1)

根据拟合的函数,我们画出拟合图:

200

400600800100012001400160018002000身长与体重拟合图

从拟合图上看,大部分原始数据在拟合函数附近,说明用二次函数拟合的效果较好,下面利用得出的函数对鱼的体重进行估计,用相对误差检验拟合度,得到下表:

表一、鲈鱼体重实际值与估计值对比及误差表

从表中的数据,我们可以得出鲈鱼体重的实际值与估计值的相对误差不大,说明用二次函数拟合鲈鱼身长与体重的关系式可行的。 (二)、鲈鱼体重与胸围的模型确立

仅仅考虑鲈鱼胸围对体重的影响,我们采用与模型一相同的方法,先画出鲈鱼体重与胸围的散点图:

20

22

24

2628

30

32

胸围

体重

胸围与体重散点图

从图形上看,鲈鱼体重与胸围可能成线性关系,利用多项式拟合的方法,我们得到鲈鱼体重与胸围的函数表达式:

92*C-1497.5W (2) 根据拟合函数(2),画出胸围与体重关系的拟合图:

胸围与体重拟合图

利用拟合函数及实际数据,求出实际值与拟合值得相对误差表:

从鲈鱼胸围与体重的拟合图,及表二中的数据,我们可以得出用线性函数拟合胸围与体重的关系拟合程度高,鲈鱼体重的实际值与估计值的相对误差不大,说明用线性函数拟合鲈鱼身长与体重的关系式可行的。 (三)、建立体重与身长、胸围相互影响的模型

实际情况下,鲈鱼的体重不可能只由身长、胸围单方面影响,因此考虑建立身长、胸围共同作用体重的模型。

此模型的建立是基于假设⑶,(4),即:鲈鱼的体态用与胸围等周长,与身长等高的圆柱形来近似。因为圆柱体的体积等于底面积乘高,底面积可以用周长

表示:π

42C

.因此可以分析得出2LC W ∝.又物体质量等于密度与体积的乘积,因

此只需根据数据求出密度即可。于是身长、胸围与体重的关系可以表示为:

2LC W α=,问题转化为对系数α的求解。根据已知数据,利用MATLAB 软件求解,

得到:

α≈0.0327 (3)因此,

2

.0LC

W=

0327

(4)

利用得出的函数对鱼的体重进行估测并列如下表:

根据表三的数据,可以知道模型三的拟合程度也较好,相对于模型一、二,此模型充分考虑到了身长、胸围对体重的相互影响,用此模型估计鲈鱼的体重可能会更符合实际。

人口增长模型的确定

题目:人口增长模型的确定 摘要 人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。 关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测

一、问题重述 1.1 问题背景 1790-1980年间美国每隔10年的人口记录如下表所示。 表1 人口记录表 1.2 问题提出 我们需要解决以下问题: 1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。 3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。 二、问题分析 首先,我们运用Matlab 软件绘制出1790到1980年的美国人口数据图,如图1。 17801800182018401860188019001920194019601980 050 100 150 200 250

图1 1790到1980年的美国人口数据图 从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想到建立指数模型。因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。 三、问题假设 为简化问题,我们做出如下假设: (1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响; (2)所给出的数据具有代表性,能够反映普遍情况; (3)一段时间内我国人口死亡率不发生大的波动; (4)在查阅的资料与文献中,所得数据可信; (5)假设人口净增长率为常数。 四、变量说明 在此,对本文所使用的符号进行定义。 表2 变量说明 符号符号说明 N(0)起始年人口容纳量 N(t)t年后人口容纳量 t年份 r增长率 五、模型建立 5.1 问题一:马尔萨斯(Malthus)人口指数增长模型 设:t表示年份(起始年份t=0),r表示人口增长率,N(t)表示t年后的人口数量。 当考察一个国家或一个很大地区的人口时,N(t)是很大的整数。为了利用微积分这一数学工具,将N(t)视为连续、可微函数。记初始时刻(t=0)的人口为N(0),人口增长率为r,r是单位时间内N(t)的增量与N(t)的比例系数。根据r是常数的基本假设,于是N(t)满足如下的微分方程: dN(t)/dt=r*N(t) (5-1) 由这个线性常系数微分方程容易解出: N(t)=N(0)e rt(5-2) 表明人口将按指数规律无限增长(r>0)。将以t年为单位,上式表明,人口以e r为公

数学模型课程设计-中国人口增长预测

中国人口增长预测 摘要: 中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。对此,我们建立了短期与长期两种预测人口增长的模型,并对附录中城镇乡的人口演变趋势做拟合与分析。 本文的建模过程选用了1996年到2005年的人口数据。短期人口预测用曲线的直接拟合,分析出人口的增长趋势。人口的出生率与死亡率均符合指数函数bt =+,利 y ae c 用logistic模型求出人口最大上限 x,据此拟合人口增长的指数函数x(t),预测 m 2006-2011年的人口数量。长期预测中,建立灰色动态模型GM(1,1)预测中国人口长期增长趋势。在解系数的过程中运用了最小二乘法,得出预测人口数据的方程)0(?x,并预测2011年到2015年的人口数量。在对中国总人口进行短期和中长期的总体预测后,我们从附件中提取出城、镇、乡三地人口、男女出生性别比、老龄人口比率等相关数据,对中国未来城、镇、乡三地人口比例、男女出生性别比、妇女生育率、老龄人口比率等影响人口发展的主要因素做趋势预测,从而达到了对中国人口全方位的预测。 关键词: 曲线拟合、灰色动态模型、最小二乘法、自然增长率

一、问题的重述 中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。 近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。2007年初发布的《国家人口发展战略研究报告》还做出了进一步的分析。 关于中国人口问题已有多方面的研究,并积累了大量数据资料。附录2就是从《中国人口统计年鉴》上收集到的部分数据。 试从中国的实际情况和人口增长的上述特点出发,建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测。 二、符号说明 nianfen 年份 chusheng 出生率 bata0 估计的参数值 nlinfit 非线性拟合函数 1 y出生率函数 2 y死亡率函数 m x人口上限 t 时间 x(t)人口增长函数 X(0)中国各年人口总数 X(1) X(0)的一次累加序列 Z(1) X(1)的紧邻均值生成数列 -a 发展系数 b 灰色作用量 )0(?x人口预测值 c 均方差 k ?相对误差 三、模型的假设 1.假设人口迁入迁出对问题产生的影响可以忽略; 2.忽略社会环境、自然、经济、文化水平的对人口的影响; 3.长期预测中,不考虑出生率、死亡率等因素的影响。 四、模型的建立与求解 4.1中国人口短期预测的模型建立与求解 根据查找资料得到,人口死亡率,出生率与人口增长符合指数增长的模型bt y ae c =+。模型选取了1996年到2005年的全国人口进行nlinfit拟合。(代码见附录一) 处理人口增长函数时,考虑到人口数量受资源等因素的约束,中国人口将有一个上限。定义函数时,用“人口上限与指数函数相减”模式。死亡率、出生率等客观因素很大程度上影响着中国人口的变化趋势。而且随着环境等的因素,中国的总人口最终会趋 向一个固定值,即最大容纳量x m,由logistic模型求出。假设x m 在短时间内不会改变, 则可利用逐年的历史数据来计算出人口增长率的变化情况。 设x(t)为第t年中国总人口数,r为人口的增长率,x m 为中国人口的最大容纳量。

数学建模人口模型

摘要 以2010年11月1日零时为标准时点,中国大陆31个省、自治区、直辖市和现役军人的人口共13.397亿。13亿是一个忧虑的数字。13亿人要吃饭、要穿衣、要上学、要就业、要住房……,消费的需求乘以13亿,就是一个庞大的数目,而我国的耕地、水资源、森林以及矿产资源本来就稀缺,再除以13亿,就少得可怜。平均每人耕地面积只有1.4亩,水资源只相当于世界人均水平的1/4…….、 中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。当前中国的人口存在着最为明显的三大特点:(1)人口基数大,人口数量的控制难度仍很大。(2)人口整体素质不高,特别是县域及以下农村人口素质普遍偏低。(3)人口结构不合理,城乡差别、地区差别和人口素质差别很大。 人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。 我国是世界第一人口大国,地球上每九个人中就有二个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表: 有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。 长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。 我国人口问题已积重难返,对我国人口进行准确的预测是制定合理的社会经济发展规划

人口预测的最小二乘模型

实验24 人口预测的最小二乘模型 据统计,上世纪六十年代世界人口数据如下: 表24-1 世界人口数据(单位:亿) 年1960 1961 1962 1963 1964 1965 1966 1967 1968 人口29.72 30.61 31.51 32.13 32.34 32.85 33.56 34.20 34.83 的方法就是数据拟合方法。 一、问题分析 据人口增长的统计资料和人口理论,当人口总数N 不是很大时,在不长的时期内,人口增长率与人口数N成正比,这就是著名的马尔萨斯人口模型,用微分方程描述为 dN =(24.1) bN dt 其中,b为人口增长系数。用分离变量法解常微分方程,得ln N = b t + a,即 =(24.2) ()a bt N t e+ 由此可知,马尔萨斯模型是人口数量按指数函数递增的模型。由于指数函数表达式中a和b均未知,需要用人口数据来确定。即用指数函数对数据进行拟合,确定指数函数中参数使指数函数与人口数据偏差(残差平方和)尽可能小。下图是经数所拟合后的指数函数图形与原始数据散点图的对比,残差平方和为3.6974×10- 4 图24-1指数函数图形与原始数据散点图 为了计算方便,将上式两边同取对数,还原为ln N = a + b t,令 y = ln N或N = e y

- 160 - 第三章 综合实验 160 变换后的拟合函数为 y (t ) = a + b t (24-3) 由人口数据取对数(y = ln N )计算,得下表 表24-2 世界人口数据(单位:亿) 二、求解超定方程组的数学原理 根据表中数据及等式a + b t k = y k ( k = 1,2,……,9)可列出关于两个未知数a 、b 的9个方程的线性方程组 ????? ??? ?? ?? ???=+=+=+=+=+=+=+=+=+5505 .319685322.319675133.319664920.319654763.319644698.319634503.319624213.319613918.31960b a b a b a b a b a b a b a b a b a (24-4) 由于这一问题中方程数目多于未知数个数,被称为超定方程组,用矩阵形式表示 为 AU = f (24-5) 显然A 矩阵的行数大于列数。求解这一类方程组的数学原理是将等式左、右同时乘以A 的转置矩阵,得新的线性方程组 A T AU =A T f (24-6) 令G =A T A , b = A T f 。得系数矩阵为方阵的线性方程组。 GU=b 求解得原方程组的最小二乘解(广义解)。由于原方程组一般无解,将最小二乘解代入下式计算 R = f – A U (24-7) 通常会得非零向量,这一向量称为残差。残差的内积可以用来度量最小二乘解的逼近程度。

人口预测模型经典

中国人口预测模型 摘要 本文对人口预测的数学模型进行了研究。首先,建立一次线性回归模型,灰色序列预测模型和逻辑斯蒂模型。考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下: 其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为 负指数函数,并给出了反映城乡人口迁移的人口转移向量。 最后我们BP神经网络模型检验以上模型的正确性 关键字:一次线性回归灰色序列预测逻辑斯蒂模型Leslie人口模型BP神经网络

一、问题重述 1. 背景 人口增长预测是随着社会经济发展而提出来的。由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。而人口增长预测是对未来进行预测的各环节中的一个重要方面。准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。 2. 问题 人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。例如,中国人口预期寿命约为70岁左右,因此,长期人口预测最好预测到70年以后,中期40—50年,短期可以是5年、10年或20年。根据2007年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。 二、问题的基本假设及符号说明 问题假设 1. 假设本问题所使用的数据均真实有效,具有统计分析价值。 2. 假设本问题所研究的是一个封闭系统,也就是说不考虑我国与其它国家的人口迁移问题。 3. 不考虑战争 瘟疫等突发事件的影响 4. 在对人口进行分段处理时,假设同一年龄段的人死亡率相同,同一年龄段的育龄妇女生育率相同。 5. 假设各年龄段的育龄妇女生育率呈正态分布 6.人类的生育观念不发生太大改变,如没有集体不愿生小孩的想法。 7.中国各地各民族的人口政策相同。 符号说明 ()i a t --------------------第t 时间区间内第i 个年龄段人口总数 ()i c t --------------------第t 时间区间内第i 个年龄段人口总数占总人口的比例 ()k i c t --------------------第t 时间区间内第i 个年龄段中第k 年龄值人口总数占总人口 的比例 ()A t --------------------第t 时间区间内各年龄段人口总数的向量 ()P t --------------------第t 时间区间各年龄段人口总数向量转移矩阵

数学建模logistic人口增长模型

数学建模l o g i s t i c人口 增长模型 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

Logistic 人口发展模型 一、题目描述 建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。分析那个时间段数据预测的效果好并结合中国实情分析原因。 二、建立模型 阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: 0)0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2)

设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再 增长,即增长率0)(=m x r ,代入(2)式得 m x r s = ,于是(2)式为 )1()(m x x r x r -= (3) 将(3)代入方程(1)得: ?? ? ??=-=0 )0()1(x x x x rx dt dx m (4) 解得: rt m m e x x x t x --+= )1( 1)(0 (5) 三、模型求解 用Matlab 求解,程序如下: t=1954:1:2005; x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988]; x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; dx=(x2-x1)./x2; a=polyfit(x2,dx,1); r=a(2),xm=-r/a(1)%求出xm 和r x0=61.5; f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b'); title('1954-2005年实际人口与理论值的比较')

马尔萨斯定律与人口增长模型

马尔萨斯生物定律与人口增长模型 马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数)(t N 的变化率与生物总数成正比,其数学模型为 ?????==0 0)()()(N t N t rN dt t dN (1) 其中r 为常数. 方程(1)的解为 )(00)(t t r e N t N -=(2) 因此,遵循马尔萨斯生物总数增长定律得任何生物都是随时间按指数方式增长,在此意义下,马尔萨斯方程(1)又称指数增长模型。人作为特殊的生物总群,人口的增长也应满足马尔萨斯生物总数增长定律,此时的(1)式称为马尔萨斯人口方程。 英国人口学家马尔萨斯根据百余年的人口统计资料,于1798年提出了人口指数增长模型。根据国家统计局1990年10月30日发布的公告,1990年7月1日我国人口总数为11.3368亿,今年的人口平均增长率为14.8‰. 假设人口的增长率保持不变,那么2000年我国的人口数量将达到13.45亿。 事实上,将 0148.0,2000,19900===r t t 代入到(2)式得 45.133368.11)()19902000(0148.0==-e t N (亿) 显然根据马尔萨斯人口方程预测2000年我国人口数量与全国第五次人口普查公报公布的12.9533亿,相差较大。造成误差过大的主要原因是人口的增长率r 不是常数,它是随时间而变化的,很多试验和事实也证明r 是时变的。为此修改马尔萨斯人口方程为 ?????=--=0 00)()())(()(N t N t N t t B A dt t dN (3) 其中)()(0t t B A t r r --==为时变人口增长率,B A ,为定常参数。求解微分方程 (3),得其特解为 2 00)(21)(0)(t t B t t A e N t N ---=(4)

中国人口增长趋势预测

中国人口增长趋势预测 摘要 人口总数的预测对未来资源分配,划分有着重要的意义,本文根据人口预测模型结合所给数据进行人口预测,并进行模型改进结合最小二乘法拟合出较理想的人口变化趋势。 第一问中,采用Logistic模型描述了人口的增长规律,通过简要的假设设置相应的预测系数 第二问中,根据表中所给的数据,运用Matlab以及Excel得出人口随时间变化的曲线 第三问中,通过运用非线性最小二乘法拟合,Matlab编程得到相关的系数x =r 万人,并判断模型的可用性。 .0 248205= 0253 m 第四问中,根据所得的模型,带入相关数值得到2030年人口数量将达到144210万人 第五问中,通过改进求解拟合参数的方法,将非线性最小二乘法改为线性最小二乘法估计模型参数,通过分析可知2030年可能会达到我国人口数量的峰值近似为145168万人,与国家人口预测结果基本相符合。 关键词:Logistic模型;最小二乘估计;Matlab;线性拟合

一. 问题提出 中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。关于中国人口问题已有多方面的研究,并积累了大量数据资料,对于表中所给出的数据,研究人口增长的规律。 问题一,作出适当的简化假设,在此基础上建立中国大陆人口群体增长的数学模型。 问题二,对表中所给出的数据,画出1949~2017年中国大陆人口总数随时间变化的曲线; 问题三,对第1问模型中的参数进行估计 问题四,预测2030年中国大陆的人口总数。 问题五,模型的评价与改进。 二.问题分析 由于人口的增长受到自然资源,环境条件等因素的影响,因此第一问的模型选取应该选用能够反映阻滞作用对人口增长率的影响,使增长率r能够随着人口数量的增长而下降,基于此选择了典型的人口增长模型logistic函数,并对相应的参数进行设置。 第二问中由Matlab能够得到表中数据的变化趋势。 第三问中对于大数据处理要得到模型中的相应参数需要用最小二乘法进行系数估计,通过分析曲线的特点评价模型的可用性。 在第四问,根据模型带入相应的时间预测对应的人口总数。 第五问中,由分析可知,线性最小二乘法估计参数要比非线性最小二乘法估计参数的精度要更高,因此通过观察人口增长率的曲线可以近似拟合成一次函数的现象,将估计参数的方法改为线性最小二乘法估计参数,并结合数据实际曲线,确定相应的模型参数。 三.模型的基本假设 (1)生育模式相对不变 (2)所用数据真实可靠 (3)不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对人口变化的影 (4)较短的时期内的死亡率是稳定的

数学建模logistic人口增长模型

Logistic 人口发展模型 一、题目描述 建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。分析那个时间段数据预测 表1 各年份全国总人口数(单位:千万) 二、建立模型 阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: )0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2) 设自然资源和环境条件所能容纳的最大人口数量m x ,当 m x x =时人口不再增长,即增 长率 )(=m x r ,代入(2)式得 m x r s = ,于是(2)式为

)1()(m x x r x r -= (3) 将(3)代入方程(1)得: ?? ???=-=0 )0() 1(x x x x rx dt dx m (4) 解得: rt m m e x x x t x --+= )1( 1)(0 (5) 三、模型求解 用Matlab 求解,程序如下: t=1954:1:2005; x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988]; x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; dx=(x2-x1)./x2; a=polyfit(x2,dx,1); r=a(2),xm=-r/a(1)%求出xm 和r x0=61.5; f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b'); title('1954-2005年实际人口与理论值的比较')

人口指数模型(完整资料).doc

指数函数的数据拟合 世界人口预测问题 下表给出了本世纪六十年代世界人口的统计数据(单位:亿) 有人根据表中数据,预测公元2000年世界人口会超过60亿。这一结论在六十年代末令人难以置信,但现在已成为事实。试建立数学模型并根据表中数据推算出2000年世界人口的数量。 根据马尔萨斯人口理论,人口数量按指数递增的规律发展 人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据。早在1798年,英国经济学家马尔萨(T.R.Malthus,1766-1834)就提出了自然状态下的人口增长模型: 精品文档,下载后可编辑

精品文档,下载后可编辑 rt e y y 0= 其中t 表示经过的时间, 0y 表示t =0时的人口数,r 表示人口的年平均增长率。 表3是1950~1959年我国的人口数据资料: (1)如果以各年人口增长平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期具体人口增长模型,并检验所得模型与实际人口数据是否相符; 解:设1951~1959年的人口增长率分别为 于是, 1951~1959年期间,我国人口的年均增长率为 129r ,r ,......,r .155196(1)56300,1951, r +=≈≈≈≈≈≈≈≈≈1 2 34 5 678 9 可得年的人口增长率r 0.0200.同理可得r 0.0210,r 0.0229,r 0.0250,r 0.0197,r 0.0223,r 0.0276,r 0.0222,r 0.0184. 55196,1950~1959y =令则我国在年期间的人口增长模型为

数学建模 人口模型 人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究 【摘要】 本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。 对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。 首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历 史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。 然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。 对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。并做出了拟合函数 0.0419775(1)17255.816531.2t X t e ?+=?-。 对于新政策的实施,我们做出了两个假设。在假设只有出生率改变的情况,人口呈现一次函数线性增加。并拟合出一次函数0.032735617965.017372.5t Y e ?=?-;在假设人口增长率增长20%时,做出了预测如果单独二胎政策实施,到2021年,深圳市常住人口数将会到达1137.98千万人。 关键词:GM(1,1)灰色模型 Logistic 阻滞增长模型 线性拟合 非线性拟合

考虑年龄结构的人口模型

考虑年龄结构的人口模型(Leslie 模型) 对Logistic 模型的批评意见除了实际统计时常采用离散变化的时间变量外,另一种看法是种群增长不应当只和种群总量有关,也应当和种群的年龄结构有关。不同年龄的个体具有不同的生育能力和死亡率,这一重要特征没有在Logistic 模型中反映出来。基于这一事实,Leslie 在20世纪40年代建立了一个考虑种群年龄结构的离散模型。 由于男、女性人口(或雌、雄性个体)通常有一定的比例,为了简便起见,建模时可以只考虑女性人数,人口总量可以按比例折算出来。将女性按年龄划分成m +1个组,即0,1,…,m 组,例如,可5岁(或10岁)一组划分。将时间也离散成间隔相同的一个个时段,即5年(或10年)为一个时段。记j 时段年龄在i 组中的女性人数为N (i ,j ),b i 为i 组每一妇女在一个时段中生育女孩的平均数,i p 为i 组女性存活一时段到下一时段升入i +1组的人数所占的比例(即死亡率d i =1-i p )同时假设没有人能活到超过m 组的年龄。实际上可以这样来理解这一假设,少量活到超过m 组的妇女(老寿星)人数可以忽略不计,她们早已超过了生育期,对人口总量的影响是微小的而且是暂时性的,对今后人口的增长和人口的年龄结构不产生任何影响,假设b i 、i p 不随时段的变迁而改变,这一假设在稳定状况下是合理的。如果研究的时间跨度不过于大,人们的生活水平、整个社会的医疗条件及周围的生活环境没有过于巨大的变化,b i 、i p 事实上差不多是不变的,其值可通过统计资料估算出来。 根据以上假设可以得出以下j +1时段各组人数与j 时段各组人数之间的转换关系: ?????? ?-=+=++++=+-) ,1()1,(),0()1,1(),(),0(),0()1,0(10 10j m N p j m N j N p j N j m N b j N b j N b j N m m 显然,0,≥i j p b 。 简记??????????=),(),0(j m N j N N j , ?? ?? ? ?????++=+)1,()1,0(1j m N j N N j 并引入矩阵 ??????? ?????????=--00 000 00 01 101 10 m m m p p p b b b b A 则方程组(4.28)可简写成

2007全国数学建模中国人口增长预测

2007全国数学建模中国人口增长预测 摘要: 针对题目所提要求,我们建立了两个中国人口预测模型,分别用于对中国人口的发展趋势做短期和中长期的预测。 为了对中国人口发展做短期的预测,考虑到题目所给的数据资料的不全面,我们由马尔萨斯的人口指数增长模型得到启发,针对中国人口发展的特点,把出生率和死亡率函数这两大对人口增长起主要作用的因素作为建模的关键参数,在附件中没有给出中国近年总人口数的情况下,建立了短期内预测中国人口增长的微分方程模型。在该模型中,为了得到出生率和死亡率函数这两个重要参数,我们通过分析题目所给数据,提取出有效信息,计算归纳出2001年到2005年的出生率和死亡率,并在此基础上引入灰色模型,用于对出生率和死亡率进行预测,得出了出生率和死亡率关于时间的函数。较准确的估计出了人口增长的关键参数,使得建立的人口增长短期预测模型不仅符合中国人口的发展特点,而且简单易用,能在未知总人口数的情况下预测人口的相对发展变化,这一优点使得可以方便且准确的用于预测中国人口短期内的发展趋势。 为了对中国人口发展做中长期的预测,考虑到短期模型在预测人口中长期发展中的局限性以及影响人口发展的众多因素的不确定性和它们之间关系的复杂性,我们利用灰色动态模型的特点,从《中国统计年鉴》中查到了中国近年的人口总数(见附表一),把人口数做为灰色量,对原始各年人口序列进行分段建模,对各分段模型进行定性分析比较,根据各阶段宏观指标的相关确定一组适当的权数,进行预测模型的最优组合,以确定最优预测模型,从而建立了中长期预测中国人口增长的灰色动态系统人口模型,对中国人口进行了中长期的预测。 在对中国总人口进行短期和中长期的总体预测后,我们从附件中提取出城、镇、乡三地人口、男女出生性别比、妇女生育率、老龄人口比率等相关数据,对中国未来城、镇、乡三地人口比例、男女出生性别比、妇女生育率、老龄人口比率等影响人口发展的主要因素做趋势预测,从而达到了对中国人口全方位的预测。 关键词:出生率、死亡率、指数增长模型、灰色动态模型、性别比、老龄化、生育率。

人口指数增长模型

《数学模型》实验报告 实验名称:如何预报人口的增长成绩:___________ 实验日期: 2009 年 4 月 22 日 实验报告日期: 2009 年 4 月 26 日 一、实验目的 预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。 二、实验内容 根据统计资料得出的人口增长率不变的假设,建立人口指数增长模型。利用微积分数学工具视x(t)为连续可微函数,记t=0时人口为x0,人口增长率为常数r, 变有dx/dt=rx,x(0)=x0,解出x(t)=x0*exp(rt)。 三、实验环境 MATLAB6.5 四、实验步骤 为了用数据进行线形最小二乘法的计算,故将x(t)=x0*exp(rt)两边取对数可得lnx(t)=lnx0*exp(rt), lnx(t)=lnx0+rt,另y=lnx(t),a= lnx0,所以可得y= rt+a。 根据所提供的数据用MATLAB函数p=polyfit(t,x,1)拟合一次多项式,然后用画图函数plot(t,x,’+’,t,x0*exp(rt),’-’),画出实际数据与计算结果 之间的图形,看结果如何。 利用1790-1900年的数据进行试验,程序如下: t=linspace(0,11,12); x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0]; p=polyfit(t,log(x),1); r=p(1) x0=exp(p(2))

plot(t,x,'+',t,x0*exp(r*t),'-') 利用1790-2000年的数据进行试验,程序如下: t=linspace(0,21,22); x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,106 .5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4]; p=polyfit(t,log(x),1); r=p(1) x0=exp(p(2)) plot(t,x,'+',t,x0*exp(r*t),'-') 五、实验结果 以1790年至1900年的数据拟合y= rt+a,用软件计算可得r=0.2743/10年,x0=4.1884,下图为拟合的图象: 以1790年至2000年的数据拟合y= rt+a,用软件计算可得r=0.2022/10年,x0=6.0450,下图为拟合的图象:

人口增长数学模型

软件学院 人口增长模型数学建模报告 专业:软件工程 班级:卓越131班 学号:201370044120 学生姓名:郭俊成 指导教师:于志云 2015 年11 月12 日 题目:计划生育政策调整对人口数量、结构及其影响的研究

摘要 本论文针对2007年国家人口发展战略研究课题组发布的《国家人口发展战略研究报告》中关于“计划生育实施以来,全国少生了4亿多人,使世界60亿人口日推迟4年”的论述做了研究。论文根据计划生育实施之前1949-1980年的人口普查数据,使用最小二乘法拟合并建立灰色预测模型,利用数学软件,预测出了如果未实行计划生育现今中国人口的数量,从而对研究报告中“少生4亿”的结论产生质疑。 同时,本论文针对2006年全国老龄工作委员会发布的《中国人口老龄化发展趋势预测研究报告》中关于“2051年,中国老年人口规模将达到峰值4.37亿,老龄化水平基本稳定在31%左右”的论述做了研究,根据近几年的人口老龄化程度、老龄人口比重、老龄人口数量、死亡率的变化等诸多因素,建立阻滞增长模型(Logistic模型),预测40年到70年的老龄人口数量和老龄化率,验证了报告中的关于老龄人口数目持续增加、数目庞大、老龄化严重的预测。 论文基于近期的计划生育调整、“单独二孩”政策的逐步实施、城镇化所导致的人口迁移等现象,结合江苏省的实际情况,利用差分方程模型、LESLIE矩阵,分析新政策对江苏人口数量的影响。论文从出生率着手,重点研究了新政策对江苏省14岁以下儿童、60岁以上老人的影响,分析了儿童和老人数量的变化对人口结构、教育改革、养老的直接影响作用。 关键字 单独二孩、人口老龄化、Logistic 模型、差分方程模型、LESLIE模型 一、问题描述

数学建模 之 人口模型

数学建模 ———关于人口增长的模型

摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。首 先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。对两种模型的求解,我们引入了微分方程。其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。 一、 问题的提出: 人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百 模型一(指数增长模型) 1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。 附图A

2、基本假设:人口的增长率是常数 增长率——单位时间内人口增长率与当时人口之比。 故假设等价于:单位时间人口增长量与当时人口成正比。 设人口增长率为常数r 。时刻t 的人口为X(t),并设X(t)可微,X(0)=X O 由假设,对任意△t>0 ,有 )() ()(t rx t t x t t x =?-?+ 即:单位时间人口增长量=r ×当时人口数 当△t 趋向于0时,上式两边取极限,即: o t →?lim )() ()(t rx t t x t t x =?-?+ 引入微分方程: )1( )0()(0 ??? ??==x x t rx dt dx 3、模型求解: 从(1)得 rdt x dx = 两边求不定积分: c rt x +=ln ∵t=0时0x x =,∴C x =0 ln rt e x rt x x 00ln ln ln =+= ∴rt e x t x 0 )(= (2) 当r>0时.表明人口按指数变化规律增长. 备注; r 的确定方法: 要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33 .5==r ,359.1307.0=e ,则(2)式现为: t t x )359.1(9.3)(?= 4、结论:由上函数可预测得:2010的人口为x(22):

相关主题
文本预览
相关文档 最新文档