当前位置:文档之家› 两段式煤气发生炉16页

两段式煤气发生炉16页

两段式煤气发生炉16页
两段式煤气发生炉16页

两段式煤气发生炉

济南黄台煤气炉有限公司

济南泰山煤气工程公司

一、工程概述

根据本工程为金属煤提供煤气,40000-60000N m3/h,煤气热值按照大于6270 K J/ N m3(大于1500大卡/ N m3)计算,煤气炉数量为8台(七开一备),D3.2BZ-Q型两段式煤气发生炉及相配套的净化设备。

二、设备使用环境及条件:

1、厂址、年平均气温、极端温度、年平均降雨量、日最大降雨量、年平均气压、年平均风速、最大风速、年平均相对湿度、现场海拔高度等环境条件均按照当地的地理位置和现场的使用条件。

2、动力用电:低压动力用电:380V/50HZ/3相

煤气站总电力安装容量:1600KW

煤气站电力使用容量:1200KW

3、给水供应:

循环水用量:冷水1260t 热水420t

管网供应 0.3MPa生产用水。

4、煤气站技术要求

(1)两段式冷煤气煤气炉及净化设备,必须保证能安全稳定连续生产和有时减量稳定生产并能满足招标方大范围的用气波动需求,并确保最大限度节约能源,满足当地环保要求,污染物治理达到国家相应环保标准。

(2)煤气站出站煤气质量指标:

煤气产量: 40000-60000 Nm3/h

煤气热值:≥1550kcal/Nm3

煤气含尘量:≤25mg/Nm3

煤气含焦油量:≤20mg/Nm3

煤气温度: 35℃-45℃

出站压力:大于5KPa。

三、煤气站工艺介绍

1、汽化用合格煤由多都提升上煤机及水平皮带提升输送至储每个煤仓,再经自动加煤机加入炉内,煤受到来自气化段煤气的加热而干馏。干馏后的半焦下移到气化段与气化剂反应生成煤气(气化剂由空气、蒸汽组成)。气化段生成的煤气分为两部分:一部分从两段炉下段煤气出口出炉,进入旋风除尘器后再进急冷塔降温除尘,另一部分向上与干馏气混合从上段煤气出口出炉。上段出口的煤气先进入旋风除焦油器再进Ⅰ级电除焦油器除焦油后与下段煤气进入间冷器进一步降温、除尘,再经Ⅱ级电捕焦油器对煤气净化后进入加压机加压,加压后的煤气脱去煤气中的水分后送出煤气站。

蒸汽合格煤

(上段煤气)电捕焦油器

鼓风机发生炉(下段煤气)旋风除尘间接冷却器

酚水焚烧

炉渣电捕轻油器

出站脱水加压机

2、各系统设备说明

(1)上段煤气为干馏煤气,煤气温度为100-120℃,并伴有低温干馏产物,

为轻质焦油,由旋风除焦油器和Ⅰ级电除焦油器除掉的焦油后与下段煤气分别进入间冷器。上段煤气捕掉的焦油由焦油罐回收;

(2)下段煤气类似汽化无烟煤或焦碳的煤气基本不含焦油,含粉尘,温度为550-600℃,经旋风除尘重力除尘,再由急冷塔降进一步温除尘后与上段煤气分别进入间冷器进降温、除尘,因为下段煤气含粉尘不含焦油,急冷塔的水与煤气接触,循环水中基本不含焦油,可经沉淀灰尘后封闭循环使用。Ⅱ级蜂窝体电捕焦油器是将混合后的煤气的再一次除焦油和尘。

(3)两段炉的焦油,两段炉焦油是中、低温干馏产物,性质类似轻质柴油,产量约2-3%,可以外卖或作为燃料油使用。热值约10000大卡。

成分大约为:C H O N S

2.74 0.36 0.99 00 0.05

分别用Ⅰ级电除焦油器和Ⅱ级电捕焦油器除掉并回收。

(4)生产中的煤气压力及煤气量的变化

A鼓风机与煤气加压机连锁,当低压总管压力降低时,煤气加压机与鼓风机连锁,鼓风系统会提高鼓风压力,当低于设定值时煤气加压机会停止运行。

B在发生炉下段出口管道上安装钟罩阀,当煤气压力超过规定值时,钟罩阀打开放散。

C该煤气站共有6套煤气发生炉及相配套的净化设备,设有安全水封,可以安全的切断任何一套发生炉和净化设备;

D在鼓风空气总管的末端装放散管及爆破膜,在电滤器上及煤气低压总管上设有爆破阀。在万一遇到爆炸事故时起泄压的作用,以保护设备及管道系统。

E在发生炉底进风管上,安装止逆阀,防止突然停电时煤气倒入空气管内,形成混合气体引起爆炸。

3、电气仪表控制

本项目为两段式煤气发生炉8台套(七开一备)及配套净化设备的制气工艺配套的电气仪表控制,主控制室设有仪表控制柜及主要设备控制柜仪表盘上设有高精度仪表,对生产过程参数进行实时显示、越限报警、联锁控制等。

在煤气站操作运行层设置仪表控制室,内设PLC系统对整个工艺生产过程集中监控管理,完成模拟量控制,辅机顺序控制,数据采集和煤气炉安全监视功能,可满足各种运行工况的要求以确保煤气炉的安全、经济、稳定运行。

(1)集控部分:

本煤气发生站的生产运行控制要求采用PLC集散控制系统(煤气站煤气炉、净化系统、鼓风系统、加压系统配套PLC控制系统对整个工艺过程进行测量和控制、生产管理,其系统需实用、可行,具有先进性)。在集控室设立控制台,通过现场总线建立通讯。操作人员可在PLC操作台上对煤气炉及全站的运行进行干预。主要控制点有:灰盘传动电机、空气鼓风机、煤气加压机,空气鼓风机、煤气加压机采用变频集中控制。主要设备的开、关反馈信号和模拟量信号皆进入PLC系统,并在软件中实现设备故障判断等功能。

(2)计算机控制系统可以对每台煤气发生炉的汽包水位、炉底饱和温度等实现自动调节。当站内运行参数(电滤器进口压力、低压总管压力等)

超过规定值时,系统自动报警,并在必要时自动停止电滤器、煤气加压机的运行以确保安全生产;

集控室操纵人员采用鼠标、键盘和大屏幕彩色显示器作为控制主机的人机接口设备,完成控制方式的切换、生产流程的选择、起车预告信号的发出等全场集控操作。部分设就地控制。

通过对采集的工艺参数进行处理,自动形成各工艺参数的历史趋势曲线,可存储打印。

主要联锁、报警装置:

Ⅰ、Ⅱ级电滤器出口压力联锁、报警;低压总管与煤气加压机联锁;空气鼓风机与煤气加压机联锁;低压总管压力联锁、报警;Ⅰ、Ⅱ级电滤器缘子箱温度报警;主厂房操作运行层、上煤间及加压机间CO超标报警。

自动控制调节装置:

空气饱和温度自动调节;汽包水位自动报警、加水;煤气炉上段煤气温度自动调节;加煤自动控制;自动调节低压总管压力平衡(加压机进出口旁通管)。

(2)、电气部分:

①主要控制点有:加煤机、液压站;炉篦转动电机;上煤系统;Ⅰ、Ⅱ级电滤器;空气鼓风机;煤气加压机

保护和连锁功能:

煤气加压机的电动机与空气鼓风机的电动机进行联锁,其联锁方式符合下列规定:空气鼓风机启动后,方可启动煤气排送机;当空气鼓风机停

机时,方可自动停止煤气排送机。

鼓风机与煤气加压机前低压煤气总管的煤气压力传感装置进行联锁。当压力下降到允许值时,自动停止煤气排送机。

4、煤气站的安全及防爆系统

(1)煤气发生炉配带炉底鼓风的止逆阀防爆阀及阀门控制器。

(2)汽包配带安全阀,蒸汽压力高时自动放散,汽包水位自动报警及自动补充水系统;

(3)煤气炉出口管道带有钟罩阀起安全放散的作用;

(5)下段旋风除尘器带有湿式盘阀作为切断煤气及安全水封的作用;

(6)Ⅰ、Ⅱ级电滤器上、下部各配有安全防爆阀,电滤器绝缘子箱温度报警;电滤器出口压力报警;

(5)鼓风系统设有安全放散阀,

(6)上、下段旋风除尘器、急冷塔、间冷器、Ⅰ、Ⅱ级电滤器均设有安全水封、油封及清理灰尘、检修的装置;并设有相应的检修平台。

(7)各设备之间的备用及转换配有阀门和水封装置,起到安全切断的作用;(8)煤气站防爆区上煤和加压机的电机均为防爆电机;

(9)空气管路、煤气管路设有水平及垂直防爆阀、安全阀,各设备及管路均设计有安全放散系

5、煤气站的环境保护

煤气正常生产中,发生炉加煤时,加煤机贮煤箱内的煤气通过放散管排到室外,按每小时加煤4次计算,排放量为3m3/h,主要有害物CO约0.5kg,排放高度为30米。当发生炉点炉或热用炉恢复生产时,有一个短时的开工过

程,这时将丛放散管中排出烟气,其中主要成分为烟、水汽、飞灰及少量的CO,待CO含量上升后即送入系统中停止排放。在连续生产的条件下,这种情况很少发生。

煤气发生炉气化后的炉渣,其性质与锅炉房的炉渣相似,对环境无不良影响,可用于制砖或铺路。

煤气站产生较大噪音的地方,如空气鼓风机间,设计中安装了消声器及隔声罩以降低噪音,使噪音值符合国家有关规定。

两段炉煤气站,正常生产中上段煤气中的轻质焦油由旋风除

焦油器和I级电滤器除去后再进入间冷塔,下段煤气中基本不含焦油,与气化焦碳的煤气站循环水近似,无污水产生,对环境无影响。

(1)烟气中SO2排放浓度<900mg/Nm3。

(2)烟气黑度小于林格曼1级,烟尘排放浓度小于200mg/Nm3。

(3)煤气站作业环境室内CO浓度<30mg/m3。

(4)鼓风加压室内噪声达到85分贝以下。

6、消防:

煤气站的主厂房属于乙类生产厂房,其耐火等级不得低于二级。

煤气站主厂房的运煤层属于22区火灾危险环境。主厂房底层及操作层属于非爆炸危险环境。

主厂房内各设备的操作岗位处和控制室、通道处设有应急照明。

站区内生产、生活给水系统与消防给水系统采取分开设置的形式。室内消防给水有站区室外消防管网供给,供水压力≥0.45Mpa.

7、职业安全卫生:

发生炉煤气是易燃、易爆、有毒的气体燃料,因此,煤气站的净化设备布置在室外以保持通风良好。

煤气站配备便携式一氧化碳检测仪,可随时检测设备、管道的漏气情况。配备氧气呼吸器、自动苏生器等救护设备,即可在发生意外情况时救护,也可以在带气操作、抢修时用于安全防护。

煤气站配备安全员,安全员要做到了解发生炉煤气常识,会使用各种救护设备,懂得一般的急救常识。在煤气站及工厂安全部门的双重领导下负责煤气站的日常安全工作。

四、煤气站的设备介绍

1、根据招标书的技术要求,推荐D3.2BZ-3Q两段式煤气发生炉7套(1)主要技术参数

两段式煤气发生炉操作规程

两段式煤气发生炉操作规程 1.冷煤气站 煤 两段式煤气发生炉产生的煤气分为上段煤气和下段煤气。上段煤气先进入一级电捕焦油器脱除重质焦油及灰尘,其工作温度80-150℃之间,再进入间冷器,在间冷器内煤气冷却至35-45℃左右。下段煤气经旋风除尘器除尘,继而进入余热换热器,煤气温度降至200-230℃,再进入风冷器冷却,温度降至65-80℃,通过间冷器冷却至35-45℃。被间冷器冷却后的上、下段煤气进入二级电捕焦油器脱油、除尘,通过煤气加压机输送到用户。 二、发生炉及净化设备

要紧结构及工作原理: 两段式煤气发生炉由料仓、给煤机构、干馏段、气化段、出渣结构、汽包等六大部分组成。分离好的20-60mm煤块,通过输煤系统储存于料仓,料仓中的煤通过给煤机构,依照需要平均地加入干馏段与下部上升的制气进行热交换,温度逐步上升。煤中的机械水析出,以后是结晶水析出,随着煤块位置下降,煤块温度不断上升,煤块进行着复杂的热分解,析出不同馏分的挥发份,直到900℃以上差不多终止。残留的部分为固定碳 及灰份,与外部鼓入的水蒸汽与空气组成的气化剂反应,生成H 2、CO 2 、CO、CH 4 、N 2 等 气化反应产物,同时放出大量的热,除了满足吸热反应外,均表现为气体的闲热带入上部,残留的灰份由出灰机排出。 气化段上升的热煤气,在干馏段充分热交换以后,由炉顶出口引出,称为上段煤气。温度约80-120℃,约占煤气产量的40%。气化段生成的煤气除了一部分作为载热气流上升进入干馏段外,另一部分从炉内中心管砖壁及中心收集管引出,称为下段煤气,温度约400-600℃,约占煤气产量的60%。

要紧结构及工作原理: 电捕焦油器又称静电除尘器,要紧由筒体、电晕极、沉淀极、分气隔板、绝缘子箱

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

两段式煤气发生炉与单段式煤气发生炉应用特点详解

两段式煤气发生炉与单段式煤气发生炉应用特点详解工业煤气分为高炉煤气、水煤气、半水煤气、发生炉煤气、焦炉煤气等。发生炉煤气的生产装置又分为两段式煤气发生炉与单段式煤气发生炉,两种煤气发生炉的原理都是以块状煤为原料,用蒸汽与空气的混合气体作气化剂,生产以CO和H2为主要可燃成分的发生炉煤气。 一、两段式煤气发生炉 两段式煤气发生炉产生的煤气分为上段煤气和下段煤气。上段煤气先进入一级电捕焦油器脱除重质焦油及灰尘,其工作温度在80~150℃,再进入间冷器,在间冷器内煤气冷却至35~45℃左右。下段煤气经旋风除尘器除尘,继而进入余热换热器,煤气温度降至200~230℃,再进入风冷器冷却,温度降至65~80℃,通过间冷器冷却至35~45℃。被间冷器冷却后的上、下段煤气进入二级电捕焦油器脱油、除尘,通过煤气加压机输送到用户。 两段式煤气发生炉流程示意图 应用特点: 1、双段煤气发生炉生产煤气,气化效率高、热效率高、生产运行成本较低、自动化程度高、劳动强度低、操

作环境良好。煤气杂质含量少、发热值高而且产气量稳定。 2、下段煤气出口设旋风除尘器和余热换热器,使下段煤气先经除尘后再进余热换热器,煤气温度降到230℃左右,使煤气显热得到了充分回收利用,同时又副产0.294KPa的蒸汽,蒸汽可作为煤气炉探火汽封用或电捕焦油器绝缘子箱保温及焦油管道伴热用。 3、采用风冷间冷工艺,对煤气进行降温处理,避免了煤气与水直接接触产生的大量洗涤污水。 二、单段式煤气发生炉 单段式煤气发生炉料层较薄,只有气化段,没有明显的敢留短,煤炭在煤气炉进行气化反应,生成的煤气经除尘、冷却、脱硫等工艺处理,经过处理后的洁净煤气经加压输送系统供给客户。 单段式煤气发生炉流程示意图 应用优点: 1、建设投资少。主要体现在单段式煤气发生炉设备投资和土建投资较少等方面。 2、建设周期短。单段式煤气发生炉热煤气站无论是设备制造周期、设备安装调试周期还是厂房基础建设周期都要比其他炉型要缩短许多。 应用缺点: 1、煤气携灰较多,从而造成资源浪费,并造成煤气管道堵塞。 2、产生的焦油质量较差。单段式煤气发生炉干馏产生黏度较高、流动性较差的高温裂解焦油,这部分焦油不易处理和利用,而且,很容易和煤气携出的煤粉胶粘在一起,堵塞煤气管道。 3、煤气输送距离短。煤气中的焦油和煤粉在煤气管道中沉积,经常会堵塞管道,致使煤气输送阻力假发,煤气输送距离收到限制。 三、对比分析

50万吨年煤气化生产工艺

咸阳职业技术学院生化工程系毕业论文(设计) 50wt/年煤气化工艺设计 1.引言 煤是由古代植物转变而来的大分子有机化合物。我国煤炭储量丰富,分布面广,品种齐全。据中国第二次煤田预测资料,埋深在1000m以浅的煤炭总资源量为2.6万亿t。其中大别山—秦岭—昆仑山一线以北地区资源量约2.45万亿t,占全国总资源量的94%;其余的广大地区仅占6%左右。其中新疆、内蒙古、山西和陕西等四省区占全国资源总量的81.3%,东北三省占 1.6%,华东七省占2.8%,江南九省占1.6%。 煤气化是煤炭的一个热化学加工过程,它是以煤或煤焦原料,以氧气(空气或富氧)、水蒸气或氢气等作气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为可燃性的气体的过程。气化时所得的可燃性气体称为煤气,所用的设备称为煤气发生炉。 煤气化技术开发较早,在20世纪20年代,世界上就有了常压固定层煤气发生炉。20世纪30年代至50年代,用于煤气化的加压固定床鲁奇炉、常压温克勒沸腾炉和常压气流床K-T炉先后实现了工业化,这批煤气化炉型一般称为第一代煤气化技术。第二代煤气化技术开发始于20世纪60年代,由于当时国际上石油和天然气资源开采及利用于制取合成气技术进步很快,大大降低了制造合成

气的投资和生产成本,导致世界上制取合成气的原料转向了天然气和石油为主,使煤气化新技术开发的进程受阻,20世纪70年代全球出现石油危机后,又促进了煤气化新技术开发工作的进程,到20世纪80年代,开发的煤气化新技术,有的实现了工业化,有的完成了示范厂的试验,具有代表性的炉型有德士古加压水煤浆气化炉、熔渣鲁奇炉、高温温克勒炉(ETIW)及干粉煤加压气化炉等。 近年来国外煤气化技术的开发和发展,有倾向于以煤粉和水煤浆为原料、以高温高压操作的气流床和流化床炉型为主的趋势。 2.煤气化过程 2.1煤气化的定义 煤与氧气或(富氧空气)发生不完全燃烧反应,生成一氧化碳和氢气的过程称为煤气化。煤气化按气化剂可分为水蒸气气化、空气(富氧空气)气化、空气—水蒸气气化和氢气气化;按操作压力分为:常压气化和加压气化。由于加压气化具有生产强度高,对燃气输配和后续化学加工具有明显的经济性等优点。所以近代气化技术十分注重加压气化技术的开发。目前,将气化压力在P>2MPa 情况下的气化,统称为加压气化技术;按残渣排出形式可分为固态排渣和液态排渣。气化残渣以固体形态排出气化炉外的称固态排渣。气化残渣以液态方式排出经急冷后变成熔渣排出气化炉外的称液态排渣;按加热方式、原料粒度、汽化程度等还有多种分类方法。常用的是按气化炉内煤料与气化剂的接触方式区分,主要有固定床气化、流化床气化、气流床气化和熔浴床床气化。 2.2 主要反应 煤的气化包括煤的热解和煤的气化反应两部分。煤在加热时会发生一系列的物理变化和化学变化。气化炉中的气化反应,是一个十分复杂的体系,这里所讨论的气化反应主要是指煤中的碳与气化剂中的氧气、水蒸汽和氢气的反应,也包括碳与反应产物之间进行的反应。 习惯上将气化反应分为三种类型:碳—氧之间的反应、水蒸汽分解反应和甲烷生产反应。 2.2.1碳—氧间的反应 碳与氧之间的反应有: C+O2=CO2(1)

高炉炼铁工艺流程(经典)61411

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、 直接还原法、熔融还原法等,其 原理是矿石在特定的气氛中(还 原物质CO、H2、C;适宜温度 等)通过物化反应获取还原后的 生铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主 要方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧

化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

单段热煤气发生炉操作规程

单段热煤气发生炉操作规程

单段式煤气发生炉热站操作手册

一、煤气发生炉操作规程 1、动火前的准备工作 (1)在煤气设施上,动火前必须由动火单位提出动火申请,并经主管部门批准后方可进行,主管部门必须检查动火安全措施装备情况,并派人到现场监护。 (2)准备好急救工具和器具,如灭火器、黄泥、沙子、湿草袋子、石棉板等,有条件时,准备好蒸汽,清理周围场地。 2、停气动火 1、切断煤气来源,关闭阀门或封闭水封,加堵盲板,并需所属单位派人监护。 2、打开放散管及附近的人孔、清理孔。 3、用蒸汽吹扫,经化验CO含量合格后方可工作。 4、清理积存的焦油,防止焦油燃烧。 5、严禁在运行的设备上动火。 3、从事动火操作人员,必须持有压力容器焊接合格证,方可进行操作,其他任 何人不准操作。

二、煤气生产安全规程 1、安全生产的条件 (1)为确保煤气发生炉运行安全,煤气炉操作工必须严格按照有关技术操作规程操作。 (2)所有煤气设备与管道应保持良好的密封性,按规定定期进行维护保养,重要部位如:发生炉、旋风除尘器、鼓风机等在日常运行中应经常检查,发现问题,立即解决。 (3)煤气站工作人员必须经过煤气安全教育,了解并掌握各种安全规程,了解煤气的性质特点,掌握维护常识并经考核合格后,方可进行操作。 (4)煤气炉操作间,一定要保证通风良好,操作间上边窗口应敞开通风。 (5)为防止煤气中毒,工作场所的空气应定时化验分析,一氧化碳含量不得超过0.03毫克/升。否则必须设法消除,凡在一氧化碳含量超过0.03毫克/升以上的设备或管道内工作时,一律要戴氧气呼吸器。 (6)煤气生产现场不准堆放易燃易爆物品,严禁吸烟和明火。 (7)有煤气中毒的危险区域,应挂有警告牌,防止闲杂人员进入危险区造成事故,外单位人员进入煤气站必须按规定办理手续并由专人陪同,方可进站,不允许非工作人员在站内游动或乱动设备。 8、煤气管道及附属设备应定期检查,发现问题要及时处理。煤气管道设施不得乱动,不得作为吊架和电焊时的接地线。 2、安全注意事项 (1)在煤气生产过程中要保持煤气压力的正常和稳定,严禁造成负压。

两段式煤气发生炉项目报告

前言 我们国家是一个能源消耗大国,单位GDP能源成本是发达国家的十几倍。人均能源占有量却十分有限。随着国民经济的快速发展,我国的能源结构正面临着严峻的挑战。原油供求矛盾已十分突出,价格脱缰上扬。影响了耗能品的竞争力,寻求一种价格低廉,供应充足的新型环保替代能源是众多燃油企业的当务之急。 煤炭是我国的第一能源品种,储量相当丰富,每年都大量出口国外,价格与燃油比要稳定的多,国家发改委明文要求推广煤代油技术。煤炭直接利用存在着效率低、污染重、不易传输等缺点,应用领域受到了很大制约。煤转油和煤转气是开发煤炭用途的基本方向。煤转油处于研发中试阶段,尚不实用,煤转气是一种十分成熟的技术,已有几十年的使用历史,被广泛应用于化工、建材、冶金等行业。 煤气发生炉是一种把煤转换成燃气的热工设备,目前市场上存在着多种形式的发生炉,但根据气化的过程原理可分为单段与双段两种结构形式。单段炉结构比较简单,投资也比较省。但其最大的缺点是用水直接冷却洗涤煤气,造成了严重的水体污染,同时自动化程度也比较低,越来越不适合现代化工业生产的要求,逐渐被节能环保、自动化程度高的两段炉所替代。吉尼斯陶瓷发展有限公司现租用南昌灯泡厂一座一段式煤气发生炉。根据中华人民共和国国家发展和改革委员会《产业结构调整指导目录(2005年本)》第40号令,一段式固定煤气发生炉属于限制类,将被淘汰。因此,公司决定投资300万在公司内新建两段式煤气发生炉作为辊道干燥窑和烧成窑供应燃料。两段式煤气发生炉是我国八十年代发展起来的一种新型的煤气生产设备。该设备集焦化、气化于一身,所产煤气质量好、热值高。特别适用于需高热值煤气的工业窑炉如陶瓷业的辊动窑、玻璃业的池窑以及其它加热炉等,也适合用作小型民用的城市煤气。另外,该设备具有热效率高,煤气成本低;煤气生产过程中因采用先进的工艺,无二次污染,能达到国家环保要求。 根据《中华人民共和国环境保护法》、《建设项目环境保护管理条例》和《江西省建设项目环境保护条例》的有关规定,南昌吉尼斯陶瓷发展有限公司委托南昌大学环境工程研究所对两段式煤气发生炉项目进行环境影响评价工作。

煤气发生炉安全评价

1 概述 评价目的 为贯彻“安全第一,预防为主”的方针,加强对危险化学品的管理,保证生产装置在劳动安全卫生方面符合国家的有关法律、法规、标准和规定,确保企业生产运行安全。 找出该单位煤气站装置中存在的主要危险、有害因素及其产生危险、危害后果的主要条件。找出煤气站存在的主要安全隐患,提出消除、预防或降低装置危险性、提高装置安全运行等级的安全对策与措施,为装置的生产运行以及日常管理提供依据,并为上级主管部门实行安全监察管理提供依据。 评价依据 国家、地方有关法规、文件 1)《中华人民共和国安全生产法》[中华人民共和国主席令(2002)第70号]; 2)《危险化学品安全管理条例》[中华人民共和国国务院令(2002)第344号]; 3)《中华人民共和国消防法》(中华人民共和国主席令第4号);4)《压力容器安全技术监察规程》[劳锅字8号(1990)]; 5)《建设项目(工程)劳动安全卫生监察规定》[原劳动部(1996)3号令]; 6)《关于建设项目(工程)劳动安全卫生综合评价有关问题的通知》

[山东省安全生产监督管理局鲁安监发(2002)28号]; 7)《山东省安全生产监督管理规定》(山东省人民政府令141号);8)《××市消防管理条例》; 9)××市人民政府办公厅关于开展工业企业煤气安全专项整治活动的通知[淄政办发电(2004)19号]; 10)《关于印发〈安全评价通则〉的通知》[安监管规划字(2003)37号]。 本项目有关技术文件、资料 1)《××峰霞陶瓷有限公司专项安全评价技术服务合同书》; 2)××峰霞陶瓷有限公司煤气站项目其他有关技术资料。 评价标准、规范、规程 1)《建筑设计防火规范》(GBJ16-87,2001修订版); 2)《工业企业总平面设计规范》(GB50187-93); 3)《发生炉煤气站设计规范》(GB50195-94); 4)《工业企业煤气安全规程》(GB6222-86); 5)《建筑抗震设计规范》(GB50011-2001); 6)《建筑物防雷设计规范》(GB50057-94,2000版); 7)《爆炸和火灾危险环境电力装置设计规范》(GB50058-92);8)《工业企业噪声控制设计规范》(GBJ87-85); 9)《噪声作业分级》(LD80-1995); 10)《有毒作业分级》(GB12331-90); 11)《职业性接触有毒物程度分级》(GB5044-85);

生产工艺流程示意图和工艺说明

AHF生产工艺流程示意图和工艺说明 干燥的萤石粉经螺旋机进入斗式提升机、卸入萤石粉储仓,再由储仓定时加入萤石计量斗,经电子秤,变频调节螺旋输送机将萤石粉定量送入反应器。 来自硫酸储槽的98%硫酸经电磁流量计、调节阀调节流量送至H2SO4吸收塔吸收尾气中的HF,而后进入洗涤塔洗涤反应气体夹带的粉尘及其夹带的重组分,然后进入混酸槽。发烟硫酸经电磁流量计、调节阀调节流量与98%硫酸配比计量后一并送至混酸槽。在混酸槽中经过混合,使SO3与98%硫酸中的水分及副反应水分充分反应,达到进料酸中水含量为零,而后进入反应器。进入反应器的萤石和硫酸严格控制配比,在加热的条件下氟化钙和硫酸进行反应。反应所需热量由通过转炉夹套的烟道气提供。烟道气来自燃烧炉由煤气燃烧产生。煤气发生炉产生的煤气经管道输送至燃烧炉。离开回转反应炉夹套的烟道气经烟道气循环风机大部分循环回燃烧炉,少量烟道气经烟囱排空。反应系统为微负压操作,炉渣干法处理。 反应生成的粗氟化氢气体,首先进入洗涤塔除去水分、硫酸和粉尘。洗涤塔出来的气体经粗冷器将其大部分水分、硫酸冷凝回洗涤塔。粗冷后的气体经HF水冷、一级冷凝器和二级冷凝器将大部分HF 冷凝,冷凝液流入粗氟化氢中间储槽;未凝气为SO2、CO2、SiF4、惰性气体及少量HF进入H2SO4吸收塔,用硫酸吸收大部分HF后进入尾气处理系统。粗HF凝液自粗HF中间储槽定量进入精馏塔,塔底为重组分物料,返回洗涤酸循环系统,塔顶HF经冷凝后进入脱气塔,从脱气塔底部得到无水氟化氢经成品冷却器冷却后进入AHF检验槽,分

析合格后进入AHF 储槽,后送至充装工序灌装槽车或钢瓶出售。从脱气塔顶排出的低沸物和部分未凝HF 气一起进入H 2SO 4吸收塔,在此大部分HF 被硫酸吸收。工艺尾气经水洗、碱洗后,除去尾气中的SiF 4及微量HF ,生成氟硅酸,废气经洗涤处理后达标排放。生产装置采用DCS 集散控制系统。 其化学反应过程如下: CaF 2+H 2SO 4?→? 2HF ↑+CaSO 4 (1) SiO 2+4HF ?→? SiF 4+2H 2O (2) SiF 4+2HF ?→ ?H 2SiF 6 (3) CaCO 3+H 2SO 4 ?→ ?CaSO 4+H 2O +CO 2 (4) ·生产采取的工艺技术主要包括7个生产装置 萤石干燥单元 萤石给料计量单元 酸给料计量单元 反应单元 精制单元 尾气回收单元 石膏处理单元 附:生产工艺流程示意图 ↓ ↓

高炉煤气烟气处理

一、烟气除尘——高炉煤气干法布袋除尘 高炉煤气净化分为湿法除尘和干法除尘两类,目前我国500m3级及以下高炉的煤气净化基本上全部采用干式布袋除尘,而1000m3级及以上高炉的煤气净化采用干法布袋除尘技术的较少。 高炉煤气干法布袋除尘技术是钢铁行业重要的综合节能环保技术之一,以其煤气净化质量高、节水、节电、投资省、运行费用低、环境污染小等优点,优于传统的湿法洗涤除尘工艺, 属于环保节能项目,位于国家钢铁行业当前首要推广的“三干一电”(高炉煤气干法除尘、转炉煤气干法除尘、干熄焦和高炉煤气余压发电)之首。是国家大力推广的清洁生产技术。 1、工艺流程与设备 1.1系统组成 1 干法除尘由布袋除尘器、卸、输灰装置(包括大灰仓)、荒净煤气管路、阀门及检修设施、综 合管路、自动化检测与控制系统及辅助部分组成。 2 炉顶温度长期偏高的高炉宜在布袋除尘之前增设降温装置,有热管换热器和管式换热器两类, 应优先选用热管式换热器。 1.2过滤面积 1 根据煤气量(含煤气湿分,以下同)和所确定的滤速计算过滤面积 计算公式: V 60Q F = 其中 F ——有效过滤面积 m 2 Q ——煤气流量m 3/h (工况状态) V ——工况滤速 m/min 2 工况流量。 在一定温度和压力下的实际煤气流量称为工况流量。以标准状态流量乘以工况系数即为工况流量。 3工况系数 工况体积(或流量)和标况体积(或流量)之比称为工况系数,用η表示。 计算公式: ()()0 000P P P T t T Q Q ++==η 其中 η——工况系数 Q 0——标准状态煤气流量m 3/h Q ——工况状态煤气流量m 3/h T 0——标准状态0℃时的绝对温度273K t —— 布袋除尘的煤气温度℃ P —— 煤气压力(表压)MPa P 0——标准状态一个工程大气压,为0.1 MPa

单段煤气发生炉安全操作规程(完整版)

邯郸市友发钢管有限公司煤气发生炉 安 全 操 作 规

程 2012年4月5日 目录 一、煤气发生炉点火前得检查工作???????????????????????????????????????????3 二、点火前得准备工作?????????????????????????????????????????????????????????3 三、铺炉及点火??????????????????????????????????????????????????????????????????3 四、煤气得输送??????????????????????????????????????????????????????????????????4 五、随时检查气化指标?????????????????????????????????????????????????????????4 六、生产操作要点???????????????????????????????????????????????????????????????4 七、停炉???????????????????????????????????????????????????????????????????????????5 八、热备炉第二次开炉及煤层情况??????????????????????????????????????????6 九、停电应急措施及安全保护????????????????????????????????????????????????6 十、安全操作及保养注意事项????????????????????????????????????????????????6十一、常见故障及处理方法???????????????????????????????????????????????????7 煤气发生炉安全操作规程 一、煤气发生炉点火前得检查工作 1、检查各管道就是否畅通,各阀门就是否灵活,各种零件就是否齐全,位

两段式煤气发生炉产气原理

http: 两段式煤气发生炉产气原理 两段式煤气发生炉分上段和下段煤气出口,首先煤从炉顶煤仓经两组下煤阀进入炉内,煤在干馏段经过充分的干燥和干馏,逐渐形成半焦,进入气化段,炽热的半焦在气化段与炉底鼓入的气化剂充分反应,经过炉内还原层、氧化层进行汽化,由炉栅驱动从灰盆自动排出灰渣,煤在干馏的过程中,将挥发分析出生成上段干馏煤气,约占总煤气量的40%,其热值较高(7400KJ/NM),温度较底(120℃),并含有大量的焦油.这种焦油为低温干馏产物,其流动性较好,可采用静电除尘器捕集起来,作为化工原料和燃料.在气化段,炽热的半焦和汽化剂经过氧化、还原等一系列化学反应生成的煤气,称为下段煤气,约占总煤气量的60%,其热值相对较低 (6000KJ/NM),温度较高(450℃),因煤在干馏段低温干馏时间充足,进入气化段的煤已变成半焦,因而生成的煤气基本不含焦油.底部煤气经旋风除尘器、风冷器等设备进行除尘降温进入间冷器,与上段煤气汇合进入电捕轻油器得到进一步净化,保证了净化煤气的质量,满足了用户生产的需要。 (风冷)两段式煤气发生炉是由干馏段和气化段组成的煤气化设备。它以40-60mm的烟煤为原料,在煤气炉上段中进行干馏,干馏生成的半焦进入两段炉的下段进行气化反应,煤的干馏和氧化集中在同一气化炉内完成,对生成的干馏煤气和氧化煤气经优化配置的后处理设备分别进行除尘、除油、冷却、脱硫等工艺处理。经过处理后的洁净煤气经加压输送系统供给工业窑炉作为燃料使用。根据不同窑炉对煤气质量的要求分别有两段式热脱焦油煤气、两段式冷净式煤气工艺。整个系统包括煤提升系统、供煤系统、供风系统、轻焦油捕集及回收系统、酚水处理及酚水焚烧系统、自动控制系统、煤气贮存及加压输出系统。 本公司两段炉系英国FWH公司在几十年的实验基础上设计出来,并经工业性应用后多次改进定型的一种先进煤制气设备,其显著特点如下: (1)底部煤气由36个耐火通道提取,并有6个底部煤气调节阀来调节整个炉膛面的燃烧平衡。 (2)底部煤气另设一路中心管提取,其作用为:

高炉工艺流程

高炉工艺流程 炼铁是在高炉内进行还原反应过程,炉料-矿石、燃料和熔剂从无料钟炉顶装入炉内,从鼓风机来的冷风经热风炉后,形成热风从高炉风口鼓入,随着焦炭燃烧,产生热煤气流由下而上运动,而炉料则由上而下运动,互相接触,进行热交换,逐步还原,最后到炉子下部,还原成生铁,同时形成炉渣。积聚在炉缸的铁水和炉渣分别由出铁口和出渣口放出。 由铁的生产过程可知,高炉除了反应炉本体系统,还包括了热风炉、上料、炉顶、炉前、喷煤、冲渣、给排水、除尘系统等。其中各系统的工艺流程如下: 1.本体 高炉本体是利用铁矿石作原料生产铁水的主要设备,是生成铁反应的容器。高炉也是钢铁联合企业生产线中最重要的基础设备,铁水是转炉炼钢的主要原料,因此高炉生产的优劣直接关系到钢铁联合企业炼钢和钢材的生产,它主要包含了炉基,炉壁,炉喉冷却系统等,且都是利用循环水来冷却的。 2.热风炉 热风炉的作用是给高炉提供热风,是炉内反应的必备条件。1#高炉热风炉采用4个内燃式热风炉为高炉送热风、2个顶燃式热风炉作为预热炉加热助燃空气,同时高炉煤气和助燃空气还通过换热器进行预热。热风炉是用各种特殊材料建成,可以耐受很高的温度。炉内砌有许多格子砖,对热风炉的加热,也就是加热

这些格子砖。在加热期间,也被称为“燃烧”状态,高炉煤气和大量的助燃空气混合燃烧,热气到达炉顶,然后通过格子砖,使热风炉被加热,废气从热风炉烟道排出。当热风炉被加热到一定温度时(顶温1300-1350℃,烟道温度350-400℃),结束燃烧状态,然后准备向高炉提供热风,也就是准备换到“送风“状态。在送风期间,冷风通过格子砖反向吹进。砖的热量传递给流过的空气,被加热的空气也称作热风,通过环管送入高炉。正常生产时,4个热风炉循环送风,一般为2个同时送风,其余2个为燃烧或隔断状态,这样就能满足为高炉提供连续热风的要求。 3.上料 上料系统由料仓、输送、给料、排料、筛分、称量等设备组成。根据冶炼工艺要求,把矿、焦等原燃料配成一定重量和成分的“料批”,然后通过上料运输设备送至炉顶。1#高炉设计选择胶带机的上料方式。1#高炉上料系统设计遵循高效、紧凑、清洁、环保、节能、循环经济的技术思想,突破常规的上料模式,两座高炉共用一座联合料仓,焦、矿仓为并列布置。采用“无中继站”分散筛分和分散称量的直接上料工艺。采用烧结矿分级入炉技术,可以合理调整入炉原料粒度、控制炉内不同粒度原料的分布,从而提高煤气利用率和炉料的透气性,有利于高炉操作和控制炉墙温度,实现高炉长寿。5500m3高炉烧结矿选择在烧结厂分级。烧结矿、球团矿、块矿、杂矿、熔剂、焦炭等原、燃料通过供料系统的胶带机运送至供料转运站。高炉料仓仓上布置5条带卸料

两段式煤气发生炉说明书

双段煤气煤说明书 1. 煤气发生炉的简介 D3.0两段煤气发生炉是带有干馏段连续鼓风的煤气发生炉,采用液压程控自动加煤机,煤气发生炉有上下两个出口,煤从给料装置进入干馏 段,逐级到由下段上来的煤气直接接触和经隔墙间接接触加热而均匀干 馏,干馏出来的煤气和轻质焦油随下段上来的煤气合在一起从上段顶煤 气出口出炉,经过干馏的煤落入下段时已是焦炭或半焦,气化后的煤气如 上所述除一部分进入上段外,大部分经中间隔墙和环状隔墙由底煤气出 口出炉,这部分煤气不带焦油,上下段煤气的比例视用户需要可在1/3;2/3 左右调节,与普通煤气发生炉相比,煤气发热量约高420~630千焦/标立方 米(100~150千卡/标立方米)上段顶煤气所含焦油基本为低温焦油,带灰尘 少,流动性好,易于清除,下段底煤气中不含焦油。 采用两段煤气发生炉,如用作清洗煤气(冷煤气),水处理较为简单,且有两种不同发热量的煤气供选用,不需要两种发热量时经过清洗 系统后仍可合并供用户,如为热煤气,轻质焦油不易在管道内沉积,煤 气输送距离远,可减少繁重的管道清理工作。 两段煤气发生炉适用于机械,冶金,建材,轻工等业。 2.规格和性能 2.1主要技术规格 炉膛内径 3.0m 炉膛断面积 7.07㎡ 水套受热面积 16.5㎡ 水套压力 0.07Mpa 干馏段高度 5.75m

速 0.15—1.5r/h(无级变速) 发生炉总重 108t 其中耐火砖 59t 操作荷重 150t 2.2操作性能指标 选用燃料 不粘结煤,弱粘结煤,长焰煤,部分褐煤,自由膨胀指数<2.0,罗加指数<2.0 使用燃料粒度 20—40mm,25—50mm,30—60mm 燃料消耗量 2000-2670Kg/h 煤气产量(按煤的吕种而定) 顶煤气 7400--7800 Kj/N㎡ 底煤气 5500--6000 Kj/N㎡ 混合 6450—6900Kj/N㎡ 煤气出口温度:顶煤气 100--150℃ 底煤气 500--600℃ 煤气出口压力:顶煤气 1.47Kpa 底煤气 1.47Kpa 炉底最大鼓风压力 6.0Kpa 探火孔汽封压力 0.294Mpa 水套蒸汽压力 550Kg/h

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

两段式煤气发生炉工艺

二段式煤气发生炉煤气站工艺: 合格原料煤由皮带机输送提升至主厂房储煤仓,再经双滚筒液压加煤机加入炉内,煤受到来自气化段煤气的加热干馏,干馏后半焦状态下的煤炭在气化段与气化剂(空气,蒸汽)发生反应,气化段生成的煤气分为两部分,一部分从两段炉下段煤气出口经旋风除尘器出炉,另一部分向上经中心管与干馏煤气混合从上段煤气出口出炉。下段出口煤气经旋风除尘器降温除尘后进入强制风冷器,继续除尘降温,然后进入间冷器进一步降温。上段出口煤气进入电捕焦油器除焦后,直接进入间冷器,与下段煤气混合,在混合中完成降温,混合后煤气进入电捕轻油器,捕除轻油,煤气经加压风机加压后送往水雾捕滴器脱水送往用户。 两段式煤气发生炉自上而下由干馏段和气化段组成,首先煤从炉顶煤仓经两段下煤阀进入炉体,煤在干馏段经过充分的干燥和长时间的低温干馏,逐渐形成半焦,进入气化段,炽热的半焦在气化段与炉底鼓入的气化剂充分反应,经过炉内还原层,氧化层而形成灰渣,由炉栅驱动从灰盆自动排出。煤在低温干馏的过程中,以挥发分析出为主生成的煤气称为干馏煤气,组成两段炉的顶部煤气,约占总煤气量的 40% ,其热值较高( 6700KJ/nm3)温度较低(120°C ),并含有大量的焦油。这种焦油为低温干馏产物,其流动性较好,可采用静电除尘器捕集起来,作为化工原料和燃料。在气化段,炽热的半焦和气化及经过还原,氧化等一系列化学反应生成的煤气,称为气化煤气。组成两段炉的底部煤气,约占总煤气量的 60% ,其热值相对较低( 6400KJ/nm3),温度较高( 450°C 左右 ) 因煤在干馏段低温干馏时间充足,进入气化段的煤已变成半焦,因此生成的气化煤气不含焦油,又因距炉栅灰层较近,所以含有少量飞灰。底部煤气就可经旋风除尘器及风冷器等设备来处理,这样对于使用冷静化煤气的用户,便可不采用水洗法就能使用上冷静化煤气,从而避免了大量酚水无法处理的缺陷。 3.2m 两段式冷煤气站(厂房为钢结构) 2.6m 两段式冷煤气站(厂房为混凝土结构)2.0m 两段式冷煤气站 煤气站特点:

高炉、烧结、球团工艺流程

炼铁工艺是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例装入高炉,并由热风炉向高炉内鼓入热风助焦炭燃烧,原料、燃料随着炉内熔炼等过程的进行而下降。在炉料下降和煤气上升过程中,先后发生传热、还原、溶化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的溶剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气、炉渣两种副产品,高炉渣水淬后全部作为水泥生产原料。 高炉是用焦炭、铁矿石和熔剂炼铁的一种竖式的反应炉(如图2-3)。高炉是一个竖立的圆筒形炉子,其内部工作空间的形状称为高炉内型,即通过高炉中心线的剖面轮廓。现代高炉内型一般由圆柱体和截头圆锥体组成,由下而上分为炉缸、炉腹、炉腰、炉身和炉喉五段。由于高炉炼铁是在高温下进行的,所以它的工作空间是用耐火材料围砌而成,外面再用钢板作炉壳。 1-炉底耐火材料; 2-炉壳; 3-生产后炉内砖衬侵蚀线; 4-炉喉钢砖; 5-煤气导出管; 6-炉体夸衬; 7-带凸台镶砖冷却壁; 8-镶砖冷却壁; 9-炉底碳砖; 10-炉底水冷管;

11-光面冷却壁; 12-耐热基墩; 13-基座 l图2-3 高炉的结构 在高炉炉顶设有装料装置,通过它将冶炼用的炉料(由焦炭和矿石按一定比例组成)按批装入炉内。在高炉下部炉缸的上沿,沿圆周均匀地布置了若干个风口(100m3小高炉有 8-10个,4000m3以上的大高炉则有36-42 个)。加热到1000℃

以上的热风,经铜质水冷风口送入炉内,供焦炭燃烧形成高温煤气。在炉缸的底部设有铁口,可周期性或连续性地排放出液态生铁和炉渣。在风口和铁口之间还设有渣口以排放部分炉渣,减轻铁口负担。 l现代高炉采用优质耐火材料,例如炉底、炉缸部位用微碳孔碳砖,炉身下部和炉腰部位用铝碳砖或碳化硅砖,其它部位用优质高铝砖和高致密度的粘土砖等作炉衬。炉壳用含锰的高强度低合金钢制作,安装有性能好的含铬耐热铸铁、球墨铸铁或铜质立式冷却器,或铜质的卧式冷却器。 l4 工艺流程: 高炉冶炼过程是一个连续的生产过程,全过程是在炉料自上而下,煤气自下而上的相互接触过程中完成的。如图2-4所示。 l炉料从受料斗进入炉腔。在高炉底部的炉缸和炉腹中装满焦炭。炉腰和炉身中则是铁矿石、焦炭和石灰石,层层相间,一直装到炉喉。 l从风口鼓入的热风温度高达1000-1300℃,炉料中焦炭在风口前燃烧,迅速产生大量的热,使风口附近炉腔中心温度高达1800℃以上。 l由于底部焦炭很厚,燃烧不完全,因此,炉气中存在大量CO气体,在炉内造成了良好的还原性气氛,产生的CO气体在炉体中上升。同时,由于下部的焦炭燃烧产生空隙,上面的焦炭、矿石和熔剂在炉体内缓慢下降,速度大约为 0.5-1mm/s。炽热的CO气体在炉内上升过程中加热缓慢下降的炉料,并把铁矿石中铁氧化物还原为金属铁,铁矿石在570-1200℃之间受到CO气体和红热焦炭的还原,形成了海绵铁。海绵铁在1000-1100℃的高温下溶入大量的碳,因而铁的熔点下降,形成了生铁。生铁的熔点约为1200℃,以液体状态滴入炉缸。矿石中未被还原的物质形成熔渣,实现渣铁分离。最后调整铁液的成分和温度达到终点,定期从炉内排入炉渣和生铁。上升的高炉煤气流,由于将能量传给炉料而温度不断下降,最终形成高炉煤气从炉顶导出管排出。

延迟焦化工艺流程

延迟焦化 1. 延迟焦化工艺流程: 本装置的原料为温度90℃的减压渣油,由罐区泵送入装置原料油缓冲罐,然后由原料泵输送至柴油原料油换热器,加热到135℃左右进入蜡油原料油换热器,加热至160℃左右进入焦化炉对流段,加热至305℃进入焦化分馏塔脱过热段,在此与来自焦炭塔顶的热油气接触换热。原料油与来自焦炭塔油气中被凝的循环油一起流入塔底,在380~390℃温度下,用辐射泵抽出打入焦化炉辐射段,快速升温至495~500℃,经四通阀进入焦碳塔底部。 循环油和减压渣油中蜡油以上馏分在焦碳塔内由于高温和长时间停留而发生裂解、缩合等一系列的焦化反应,反应的高温油气自塔顶流出进入分馏塔下部与原料油直接换热后,冷凝出循环油馏份;其余大量油气上升经五层分馏洗涤板,在控制蜡油集油箱下蒸发段温度的条件下,上升进入集油箱以上分馏段,进行分馏。从下往上分馏出蜡油、柴油、石脑油(顶油)和富气。 分馏塔蜡油集油箱的蜡油在343℃温度下,自流至蜡油汽提塔,经过热蒸汽汽提后蜡油自蜡油泵抽出,去吸收稳定为稳定塔重沸器提供热源后降温至258℃左右,再为解吸塔重沸器提供热源后降温至242℃左右,进入蜡油原料油换热器与原料油换热,蜡油温度降至210℃,后分成三部分:一部分分两路作为蜡油回流返回分馏塔,一路作为下回流控制分馏塔蒸发段温度和循环比,一路作为上回流取中段热;一部分回焦化炉对流段入口以平衡大循环比条件下的对流段热负荷及对流出口温度;另一部分进水箱式蜡油冷却器降温至90℃,一路作为急冷油控制焦炭塔油气线温度,少量蜡油作为产品出装置。 柴油自分馏塔由柴油泵抽出,仅柴油原料油换热器、柴油富吸收油换热器后一部分返回分馏塔作柴油回流,另一部分去柴油空冷器冷却至55℃后,再去柴油水冷器冷却至40℃后分两路:一路出装置;另一路去吸收稳定单元的再吸收塔作吸收剂。由吸收稳定单元返回的富吸收油经柴油富吸收油换热器换热后也返回分馏塔。 分馏塔顶油气经分馏塔顶空冷器,分馏塔顶水冷器冷却到40℃,流入分馏塔顶气液分离罐,焦化石脑油由石脑油泵抽出送往吸收稳定单元。焦化富气经压缩机入口分液罐分液后,进入富气压缩机。 焦炭塔吹汽、冷焦产生的大量蒸汽及少量油气,进入接触冷却塔下部,塔顶部打入冷却后的重油,洗涤下来自焦炭塔顶大量油气中的中的重质油,进入接触冷却塔底泵抽出后经接触冷却塔底油及甩油水冷器冷却后送往接触冷却塔顶或送出装置。塔顶流出的大量水蒸气经接触冷却塔顶空冷器、接触冷却塔顶水冷器冷却到40℃进入接触冷却塔顶气液分离罐,分出的轻污油由污油泵送出装置,污水由污水泵送至焦池,不凝气排入火炬烧掉。甩油经甩油罐及甩油冷却器冷却后出装置。 2. 吸收稳定工艺流程: 从焦化来的富气经富气压缩机升压至1.4Mpa,然后经焦化富气空冷器冷却,冷却后与来自解吸塔的轻组份一起进入富气水冷器,冷却到40℃后进入气液分离罐,分离出的富气进入吸收塔;从石脑油(顶油)泵来的粗石脑油进入吸收塔上段作吸收剂。从稳定塔来的稳定石脑油打入塔顶部与塔底气体逆流接触,富气中的C3、C4组分大部分被吸收下来。吸收塔设中段回流,从吸收塔顶出来带少量吸收剂的贫气自压进入再吸收塔底部,再吸收塔

相关主题
文本预览
相关文档 最新文档