当前位置:文档之家› 介质滤波器技术总结

介质滤波器技术总结

介质滤波器技术总结
介质滤波器技术总结

TE01δ模式介质谐振滤波器技术总结

一、前言

由于通信技术的发展,低费用、更有效、更好品质的无线通信系统而需要高性能,小体积和低损耗滤波器。所以介质滤波器,腔体介质谐振滤波器的研究与开发,是今后滤波器发展的重点所在。

1.1 介质谐振器的工作原理

电磁壁理论

理想的导体壁(电磁率为零)在电磁理论中称为电壁,在电壁上,电场的切向分量为零,磁场的法向分量为零。电磁波入射到电壁上,将会完全反射回来,没有透射波穿透电壁。因此,用电壁围成一个封闭腔,一旦有适当频率的电磁波馈入,波将在腔的电壁上来回反射,在腔内形成电磁驻波,发生电磁谐振。此时即使外部停止向腔内馈送能量,已建立起来的电磁振荡仍将无衰减维持下去。可见电壁空腔是一种谐振器,电磁能量按一定频率在其中振荡。当然,非理想导体壁构成的空腔,也具有电壁空腔的类似特性,只不过外部停止馈送能量后,起内部已建立起来的电磁振荡,不会长期地维持下去,将随时间而逐渐衰减,终于消逝,成为阻尼振荡。谐振器中电磁振荡维持的时间的长短(时间常数)是其Q 值高低的一种度量。

高介电常数的介质的界面能使电磁波发生完全的或者近似完全的反射。当然,这两类的界面性质不同,其对电磁波的反射特性也不尽相同。电磁波在导体壁上的电场切向分量为零,故入射波与反射波的电场切向分量相消,仅有法向分量,因为合成场的电力线垂直导体表面,亦即垂直电壁;而在高介电常数的介质

界面上,磁场的切向分量近似为零,入射波与反射波的磁场切向分量近似相消,合成场的磁力线近似垂直于介质界面。在电磁场理论中,垂直于磁力线的壁称为磁壁,故高介电常数的介质表面可以近似看为磁壁,只有时,才是真正的磁壁。在磁壁上,磁场切向分量为零,电场法向分量为零,它与电壁对偶。既然电壁所构成的空腔可以作为微波谐振器,显然,磁壁周围的介质块可以近似是个磁谐振器,电磁能量在介质块内振荡,不会穿过磁壁泄露到空气里。

介质波导理论

若将一个介质棒变成一个环,令其首尾相连接,并使连接处电磁波有相同相位,该电磁波就能在环内循环传输,成为一个行波环。如果介质损耗非常小,循环时间就很长,于是电磁波被“禁锢”在介质环内,成为一个环形介质谐振器。介质环的最小平均周长,应该是被导波的一个波导波长。上述的谐振条件并未对介质环的形状加以任何限制,所以环可以是圆的,方的或者其他任意形状。此外,环的内径大小对谐振来说也不是实质性的,内径缩小至零,照样能维持谐振,储存电磁能量。

最常用的介质谐振器的形状有矩形,圆柱形和圆环形三种,前两种用的更普遍。矩形介质谐振器的工作模式主模是TE11d模,圆柱形的有TE01d模。图中就是两种谐振器的振荡模式。

1.2 介质谐振器的材料

微波介质材料是指在微波频率下使用的介质材料。它具有介电损耗小、频率温度参数接近零的特性。微波介质材料对原材料的要求比较高,要获得高质量的材料须严格按照生产工艺操作。微波介质器件是指应用微波介质材料制成的具有某种功能的器件。常见的是介质谐振器、介质滤波器、介质无线块。介质滤波器:是由多个介质谐振器通过耦合构成的。

1.3介质谐振器的几种主要结构及尺寸

1.4 TE01 谐振单腔的尺寸设计:

谐振单腔可以是矩形腔体,也可是圆柱腔体,为了保证不使谐振器Qu下降很多,和引入TM模谐振单腔的尺寸最小处大约为谐振器直径的1.5倍,高度

约要是谐振器厚度的三倍。

1.5微波介质腔的场型

介质谐振器可以激励三种振荡模式:TE、TM、HE型振荡模式,本文中主要介绍TE01δ。其电场主要在集中于

二、腔体介质谐振滤波器

腔体介质谐振滤波器,是将介质谐振器放置于截止金属波导中去,滤波器的中频率由介质谐振器的谐振频率所决定,耦合带宽可以通过调节谐振器之间的距离或者两谐振器之间的耦合窗口的大小来实现。

2.1主要特性及应用

体积和重量是金属空腔的1%左右。其他优点:

1、可以实现器件的高稳定,高可靠,谐振频率温度系数可达ppm 级

2、可以实现谐振器的低损耗,高品质因数,使损耗角正切很小。

3、陶瓷材料加工简便,机械性能良好

4、介质滤波器有很高的脉冲功率容量。

缺点:

1、批量生产工艺控制要非常严格

2、因为谐振器导热能力差,所以平均功率容量小。

3、因为绝大部分电场被束缚在介质谐振器内部,耦合螺杆调节范围很小。

2.2材料与谐振器性能关系

微波介质陶瓷的介电常数主要取决于材料结构中的晶相和制备工艺,与使用频率基本无关。从陶瓷工程学的角度看,除了从组成上考虑微观的晶相类型及组合外,在工艺上使晶粒生长充分,结构致密,也是提高介电常数的途径。

谐振器的品质因数Q 受介质损耗(d tg δ).欧姆损耗(e tg δ).辐射损耗(tg λδ)这三个因素的影响,Q 主要由介质损耗决定。对于微波介质材料,欧姆损耗

和辐射损耗可以忽略,Q 约与戒指损耗成反比关系,与

100//()d d d d Q Q tg tg tg λδλδδ-≈=≈≈此外品质因数Q 与微波频率f 有

关:'''22()/()//2r r Q f εωεωωωγωπτ=≈=g g

式中'()εω--------有功介电常数;''()εω无功介电常数;r ω材料固有角频率;γ材料衰减常数;ω微波频率为f 时的角频率。不同的测试频率有不同的Q 值。在比较同一系列材料的Q 值时,必须换算成同一个频率才有可比

性。

据报道采用静压成型与热压烧结提高了材料的致密性,使材料的微波介质损耗得以降低,介电常数r ε上升;使用微细瓷粉,提高了材料组成与结

构的均匀性,改善了材料的Q 值和频率温度系数;使用微波快速闪烧技术使材料中易挥发成分得到了控制,提高了材料组组成的一致性;在d 氮气气氛中退火处理使材料提高了Q 值。

三、腔体介质谐振滤波器设计步骤

1、 根据规范书要求,确定滤波器节数以及所需Qu 、耦合系数。

2、 根据滤波器外形,以及滤波器节数来确定单个谐振腔尺寸。

3、根据介质金属波导尺寸,来选择适当介电常数的材料,根据所选介质的介电常数r ε求介质谐振器的尺寸可以根据:

00/c f λ=

/0.4L D =

tan 2

d d a L ββα=

2d βπ

=

2d α=两端谐振器由于终端耦合结构影响要使谐振器的谐振频率上升,故将两端谐振器厚度增加0.01英寸作为补偿。

一般截止圆波导直径是介质半径的2倍。

3、 由外部q 值设计出输入和输出的耦合结构。

4、 根据计算出的耦合系数通过仿真,确认各腔之间耦合窗口的大小。

5、安装调试。

四、TE01δ模式介质谐振滤波器内部的耦合形式。

4.1 馈电处耦合

馈电处的耦合主要是用来满足滤波器设计外部Q 值的要求,根据 馈电点处的耦合带宽101BW KE g

g =?,1

n n n BW KE g g +=?,转换为馈电点处的反射时延的关系11636.6T KE =,636.6n n

T KE =,可以设计某种耦合结构来满足馈电点处的反射时延要求。耦合方式基本上是一种探针形式,可以做成圆弧状围绕在谐振器边上,这种探针的长度、探针与谐振器之间的间距是影响到耦合强度的重要因素。

4.2 级间耦合

腔间的耦合是通过耦合窗口实现的,耦合窗口结构的设计要考虑电磁场阵列。窗口应该开在磁场最强的地方,且要与磁场方向保持一致。为了保证耦合的 TM01模式的频率远离TE01模式的耦合频率,窗口的宽度不能太大。TM01模式的藕荷要比TE01模式的强,并且窗口宽度的方向正好是磁场排列的方向。一对相对称的耦合腔之间有两个本征模。一个相对应的在他们之间插入了一个良电壁,另一个是在他们之间插入良磁壁而得到的。实际的场离散是两个本征模式的线形重叠。对于磁耦合而言,因为在耦合区域的周围主要的扰乱能量是磁场所以磁壁的模式场在中间区域。

切线方向穿过窗口的磁场,看起来是不连续的,因为工作模式的磁场改变

了符号穿过耦合窗口。但是局部的场强将会支配耦合窗口周围的局部的场强,使得整个切线方向的场强,连续的通过边界。相应的穿过相临腔的工作模式的磁场方向对于非相邻腔的耦合符号的确定是非常重要的.

4.3 交叉耦合

交叉耦合可以用来实现滤波器性能的改进,例如准椭圆函数,恒定时延和非对称响应.四组和三节构成的交叉耦合都被认为是构成对称和非对称传输零点的基本函数.相应的TE01模式腔体和他们等价的耦合谐振模式如下图.

磁耦合被认为是正的耦合可以由电感形式来表示.非相邻的耦合,它与相邻耦合符号相反,可以用认为是一种负的耦合,可以用电容来标注.标注交叉耦合的符号是非常有意义的,在平面上四组和三节里通过窗口来实现交叉耦合是不一样的,通过探针实现也是一样的道理.与其他形式的腔体,例如波导和同轴相比,它的性能不是很真实,因为工作模式的场分布也是不相同的.

五、TE01δ模式介质谐振滤波器高低温解决方案。

5.1滤波器高低温问题要求

介质滤波器因为其主要的电场都集中在谐振器内部,所以谐振器与谐振器

之间,以及谐振器与输入输出端口之间的都不能够达到非常强的耦合,所以介质滤波器只适合用来做窄带相对带宽1~2%左右的滤波器。

窄带滤波器,带宽窄,带外抑制要求严格,所以要求滤波器在高低温环境下保持良好的温度稳定性,才能够满足客户要求。

5.2 改善方法

带通滤波器可近似看为是由几个单独的相同体积谐振腔,通过耦合窗口耦合在一起。所以要完成一个温度稳定性良好的介质滤波器,只需要调整介质材料配方、工艺,而改变介质谐振器的温度系数,然后在金属单腔内进行测试得到理想的温度曲线。

5.3 测试夹具

采用和滤波器相同材料的金属制成单腔,并在两端任意位置打孔安装测试探针,探针采用普通SMA接插件前端焊接少许柔韧性好的金属丝构成,将谐振器稳固安装于腔体中央,当金属探头与谐振器轴向位置垂直时,可以用来测试TE模式,当金属探头与金属谐振器轴向平行时,可以用来测试TM模式。

六、TE01δ模式介质谐振滤波器平均功率解决方案。

6.1平均功率时出现的问题

平均功率容量又称为等幅波功率容量,平均功率容量主要会导致谐振器发热。介质滤波器中,谐振器材料主要由金属氧化物陶瓷构成,其下的支撑柱材料也是三氧化二铝陶瓷,谐振器与支撑柱之间是由胶沾结在一起的。陶瓷材料相比金属材料而言,不具备良好的导热性能和良好的延展性。当信号源发生较大功率的等幅波功率时,由于滤波器的绝大部分能量是聚集在谐振器内部,所以谐振器急剧变热,如果谐振器热量不能很快到通过粘胶、支撑柱、传导到金属腔壁上,

那么会产生两个非常严重的问题:

1、谐振器炸裂

如果谐振器成型烧结工艺不好,或者谐振器非常脆,谐振器、粘胶、和支撑柱材料热膨胀系数不能良好匹配的话,谐振器在急剧发热膨胀,但不能把热量有效传导出去的情况下,谐振器有可能炸裂,滤波器失效。

解决之道:

主要是介质谐振器供应商在谐振器技术上的体现。介质供应商,应该制造可靠性非常高的谐振器,选择适当的粘胶,适当的支撑柱设计,优良的制造、粘结工艺。

2、滤波器整体通带频率偏移

金属腔体在高温情况下,会膨胀内部容积变大,如果谐振器本身频率不变化的话,那么单腔的谐振频率会相低漂移,为了解决高低温下单个谐振腔的谐振频率漂移尽量少,谐振器的温度系数要做成正温度系数,并且屏蔽腔越小,则需要温度系数越大。

当平均功率施加时,谐振器发热,并且热量不能尽快的传导到金属腔体上,那么腔体不会发生膨胀,而谐振器单方面的发热,由于谐振器的正温度系数,谐振的频率向高漂移,使得滤波器的带外抑制不能够满足指标要求,通带内的插入损耗,驻波比变大,滤波器功能失效。

解决之道:

1、滤波器发热主要是因为滤波器内部的欧姆损耗引起的,要减小滤波器发热,最基本的是提高滤波器的内部的Qu,提高单个谐振器的无载Q能够有效的减小滤波器插入损耗,从而谐振器不会急剧变热,有利于滤波器内部尽快热平衡。

2、在保证滤波器温度稳定性的条件下,尽量的减小谐振器的温度系数使得谐振器发热时频率不至于漂移太多,在谐振频率发生漂移的情况下滤波器也能够满足规范书的要求。

3、单个谐振器的设计,谐振器是通过粘胶,支撑柱来安装到金属腔体上的,为了滤波器能够承受更大的平均功率,就要求谐振器材料,粘胶,以及支撑柱都有较高的导热率。另外支撑柱的设计也是很关键的,支撑柱与谐振器粘结的地方应该是谐振器发热最严重的地方,一般是谐振器直径的三分之二的地方,支撑柱的高度不能过高,使得导热路径过长,也不能太低,使得谐振器离金属腔体太近使得Qu下降。如下图:

4、改变滤波器内部的耦合结构。由于滤波器输入端口处的谐振器承受功率较大,如果滤波器内部交叉耦合的处于输入端口时,传输零点很可能随着谐振器的发热发生漂移导致带外抑制不合格,所以在结构设计时应当使得交叉耦合远离输入端。

六个腔加两个传输零点的排腔方式

5、可以通过改变排腔方式以及传输零点的实现方式来改善平均功率的

承受能力,上图中的两个跨奇数节的交叉耦合何以由一个跨偶数节

的交叉耦合来实现两个带外对称的传输零点。

六腔加一对称飞的排腔方式

此种交叉耦合方式使得传输零点的能量由两个腔3、4来承受,相对前种排腔方式而言功率容量更大,但是这种交叉耦合方式由于滤波器的色散效应很难将传输零点调对称。

七、TE01δ模式介质谐振滤波器谐波问题。

TE01模式介质谐振器的谐波出现在工作频率的1.4倍附近,通信系统一般都对2次,到3次谐波是有抑制要求的,一般可用一个低通滤波器串在带通滤波器前级或后级来抑制谐波。在滤波器中间隔的排放金属谐振器和介质谐振器可以改善滤波器的谐波效应,但是这样也会降低滤波器的整体Qu,增加滤波器的插入损耗。

这种滤波器可以看做是一个介质的窄带滤波器和一个金属的宽带滤波器串联在一起,以上两种途径的插损估算公式如下:

111,,2

() 4.343, 4.343(),,n n n n n n k u u IL gk m

g g Q DR Q M

ωω-==+?+∑ 4211() 4.343, 4.343,,,n n k k u u IL gk n

gk Q DR Q M

ωωωω

===+∑∑ 其中n ω,,gk n ,和,u Q DR 分别是滤波器相对带宽,滤波器低通原形参数,窄带DR 滤波器的无载Q 值。ωω,,gk ω,,u Q M 是宽带梳状线滤波器的相关参数。这种滤波器的尺寸相对于波导滤波器而言小了8~12倍,Q 值是相应金属谐振器的3~5倍。两种途径中第一种有可能使的滤波器Q 下降30%到50%,途径二有可能使得滤波器Q 下降5%到20%。如此看来途径一可以有效的减小滤波器体积,但是却增加很大的插入损耗,对于节数比较多的滤波器,看来途径2更是一种比较好的选择。

除此之外,滤波器的TM 模式对于 TE 模式而言对金属圆盘的调节更为敏感,当金属调节圆盘往下调节的时候,TE 模式频率往高漂移,而TM 模式迅速往下飘溢,所以在滤波器设计初期就应该优化使得DR 频率比较恰当的使得金属圆盘调节范围尽量小,这样可以使得TM 模式尽量远离通带,不干扰正常的工作模式。

小学一年级数学下册知识点重难点题目类型归纳总结

人教版小学一年级数学下册重点、难点复习 一、位置 1.、位置的表示:上边、下边、左边、右边、前边、后边。 上面、下面、左面、右面、前面、后面。 2、在填写含有序数的位置关系时,先看给出的物体位置是怎么数的,那么其他的物体的位置也按相同的顺序数。见课本第5页位置。 二、20以内的退位减法 1、方法:①相加算减②分解法过程: 如:12—— 9 = 3 把12分解成10和2 过程:想先算:10-9=1 则再算:1+2=3 ★2、应用题: ①已知条件里知道了其中一部分和另一部分,求总数,用加法计算。 问题里常见的关键字:一共、共、总的、原有等。 ②已知条件里知道了总数和其中一部分,求另一部分,用减法计算。 1、平面图形的拼组 ⑴区分正方形和长方形 长方形的特点:相对的两条长边相等,相对的两条短边相等。 正方形的特点:四条边长度都相等。 正方形(四条对称轴)长方形(两条对称轴) (2)常见拼组: ①两个完全相同的长方形可拼成正方形和长方形。 ②两个完全相同的正方形可以拼成长方形。 ③四个完全相同的小正方形,可拼成正方形和长方形。 2、立体图形的拼组 (!)区分正方体和长方体 长方体:有6个面,相对的面相同。 正方体:有6个面,每个面都相同,都是正方形。 (2)常见拼组 ①两个完全一样的长方体,可以拼成长方体。 ②八个完全一样的正方体可以拼成一个大的正方体。 ★1、10个十是100,读作一百。 100是由10个十或100个一组成,它是一个三位数。 2、数数时,可以一个一个的数,也可以二个二个的数,五个五个的数,十个十个的数。 ★3、从右边起,第一位是个位,第二位是十位,第三位是百位。

数字滤波器总结

1数字滤波器的应用领域 在信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的问题。根据有用信号和噪音的不同特性,提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。在近代电信设备和各类控制系统中,数字滤波器应用极为广泛,这里只列举部分应用最成功的领域。 (1) 语音处理 语音处理是最早应用数字滤波器的领域之一,也是最早推动数字信号处理理论发展的领域之一。该领域主要包括5个方面的内容:第一,语音信号分析。即对语音信号的波形特征、统计特性、模型参数等进行分析计算;第二,语音合成。即利用专用数字硬件或在通用计算机上运行软件来产生语音;第三,语音识别。即用专用硬件或计算机识别人讲的话,或者识别说话的人;第四,语音增强。即从噪音或干扰中提取被掩盖的语音信号。第五,语音编码。主要用于语音数据压缩,目前已经建立了一系列语音编码的国际标准,大量用于通信和音频处理。近年来,这5个方面都取得了不少研究成果,并且,在市场上已出现了一些相关的软件和硬件产品,例如,盲人阅读机、哑人语音合成器、口授打印机、语音应答机,各种会说话的仪器和玩具,以及通信和视听产品大量使用的音频压缩编码技术。 (2) 图像处理 数字滤波技术以成功地应用于静止图像和活动图像的恢复和增强、数据压缩、去噪音和干扰、图像识别以及层析X射线摄影,还成功地应用于雷达、声纳、超声波和红外信号的可见图像成像。 (3) 通信 在现代通信技术领域内,几乎没有一个分支不受到数字滤波技术的影响。信源编码、信道编码、调制、多路复用、数据压缩以及自适应信道均衡等,都广泛地采用数字滤波器,特别是在数字通信、网络通信、图像通信、多媒体通信等应用中,离开了数字滤波器,几乎是寸步难行。其中,被认为是通信技术未来发展方向的软件无线电技术,更是以数字滤波技术为基础。 (4) 电视 数字电视取代模拟电视已是必然趋势。高清晰度电视的普及指日可待,与之配套的视频光盘技术已形成具有巨大市场的产业;可视电话和会议电视产品不断更新换代。视频压缩和音频压缩技术所取得的成就和标准化工作,促成了电视领域产业的蓬勃发展,而数字滤波器及其相关技术是视频压缩和音频压缩技术的重要基础。 (5) 雷达 雷达信号占有的频带非常宽,数据传输速率也非常高,因而压缩数据量和降低数据传输速率是雷达信号数字处理面临的首要问题。高速数字器件的出现促进了雷达信号处理技术的进步。在现代雷达系统中,数字信号处理部分是不可缺少的,因为从信号的产生、滤波、加工到目标参数的估计和目标成像显示都离不开数字滤波技术。雷达信号的数字滤波器是当今十分活跃的研究领域之一。 (6) 声纳

初中数学规律题汇总(全部有解析)

初中数学规律题拓展研究 “有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。 初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索: 一、基本方法——看增幅 (一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。 例:4、10、16、22、28……,求第n位数。 分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2 (二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。 基本思路是:1、求出数列的第n-1位到第n位的增幅; 2、求出第1位到第第n位的总增幅; 3、数列的第1位数加上总增幅即是第n位数。 此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。 (三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8. (四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。 二、基本技巧

多孔介质燃烧技术研究进展及应用

多孔介质燃烧技术研究进展及应用 1概述 20世纪70年代,英国学者Weinber首次提出超绝热燃烧概念。多孔介质燃烧是用惰性多孔介质材料取代自由空间,利用其相对于气体而言强大得多的蓄热功能和辐射特性,实现热反馈,即将燃烧产生的热量及尾气中的余热用于加热反应区上游的预混合气,加强火焰中的传热传质过程,从而使燃烧反应大大增强,多孔介质燃烧是用惰性多孔介质材料取代自由空间。在忽略对外热损失的情况下火焰温度可超过未预热可燃混合气的绝热火焰温度,因此也称为超绝热燃烧(Super-adiabatic Combustion)。 图1 超绝热火焰的形成机理 多孔介质燃烧器具有功率大、范围可调、高功率密度、极低的CO和Nox 排放量、安全稳定燃烧、结构紧凑,尺寸大大减小,制造成本低,系统效率较高,消除了额外能耗。 该技术主要包括多孔介质内的预混合气燃烧技术和液体燃料的汽化燃烧技术两部分内容。 2气体燃料在多孔介质中的燃烧 气体燃料在多孔介质中的燃烧可以被应用到诸多领域,包括动力工程、化学工艺、生态学、火灾和爆炸的预防等。实际上,气体在多孔介质中的燃烧又都可

以称为滤过燃烧(FiltionCombustion,FC)。 主要包括以下几个方向:多孔惰性介质(PIM)中的燃烧技术,催化性多孔介质中的燃烧技术,可燃多孔介质中的燃烧,多孔介质的燃烧合成或烧结技术等。 2.1天然气在渐变型多孔介质中的燃烧特性试验研究 惰性多孔介质中的燃烧。多孔介质中火焰受限在多孔介质孔隙中,被分成若干个微小火焰,相互制约相互影响,宏观上又表现为均匀的平面火焰。 图2 惰性多孔介质中预混燃烧机理 钢瓶额定压力为20MPa,高压天然气经过天然气减压器后通入预混室与空气混合。由于天然气在减压过程中会出现结露或者结霜现象,导致减压器出口受堵,引起天然气压力和流量波动,不能保证正常供气,所以天然气减压器需要有伴热装。 图3 多孔介质燃烧试验系统

滤波器的几个概念

滤波器定义 Attenuation(衰减)信号在通过耗散网络或其他媒体时所导致的电压损耗(以 dB 为单位)。 Band Reject Filter(频带抑制滤波器)滤波器,其对一个频带的频率进行抑制而让较高或较低的频率通过。有时也称作带阻滤波器。 (带宽)带通滤波器的通带宽度是较低和较高转角频率之间的频差,诸如3 dB 点。Bandpass Filters(带通滤波器)滤波器,其让一个频带的频率通过而对较高和较低的频率进行抑制。 Bessel Function(贝塞尔函数)数学函数,用于在根本不考虑幅度响应的情况下在滤波器中产生最恒定的时间延迟。该函数十分接近于高斯函数。 Butterworth Function(巴特沃斯函数)数学函数,用于在根本不考虑时间延迟或相位响应的情况下在滤波器中产生最恒定的幅度响应。 Center Frequency(中心频率)(?0) 在标准带通滤波器中,中心频率是通过集合或算术方法计算出来的。 几何方法 算术方法 Characteristic Impedance(特征阻抗)滤波器的特征阻抗通常被认为是等于 L/C,其中L 是以亨利 (henry) 为单位的全系列电感应,而 C 是以法拉 (farad) 为单位的总旁路电容。特征阻抗是以欧姆 (ohm) 为量度的。

Chebyshev Function(切比雪夫函数)数学函数,用于生成在特定范围波动的曲线(见ripple/波纹)。这用于生成比巴特沃斯函数更接近矩形的幅度响应,但想要的相位和时间延迟特征较少。有一整套的切比雪夫函数(0.1 波纹、0.5 波纹,等等)。 Cut-Off Frequency(截止频率)( fc ) 低通滤波器中的上通带边缘或者高通滤波器中的下通带边缘。最靠近阻带的通带边缘,有时称作 3 dB 点。 Decibel(分贝)(dB) 增益或衰减单位,用于表示两个电压之比。用于描述电压增益、电压损耗、性能指数或任何可以作为两个电压之比来考虑的数值。以分贝定义为 20 Log (E1/E2),其中 E1 和 E2 是两个电压,诸如输入和输出电压,或者峰值电压和平均电压,等等。 Dissipation(耗散)滤波器中由于电阻或磁芯损耗等而发生的能量损耗。 Distortion(失真)通常是指信号遭到修改从而产生不想要的末端效应。这些修改可以是与相位、幅度和延时等有关的。正弦波失真通常定义为正弦基波成分被去除后所剩余的信号功率的百分比。 Elliptic Function(椭圆函数)一个数学函数,用于借助若干个电路元件产生最接近矩形的相位滤波器相应。椭圆函数在通带和阻带两者中都有一个切比雪夫响应。椭圆函数滤波器的相位响应和瞬态响应要比任何传统的传递函数要差。 Envelope Delay(包络延迟)调相信号在通过滤波器时,其包络的传播时间延迟。有时也称作时间延迟或群延时。包络延迟与移相响应与频率曲线之比成比例。包络延迟失真是当延时在通带区域中所有频率处并不都恒定时发生的。 Filter Q(滤波器 Q)带通和频带抑制滤波器的一个重要参数:

初级中学找规律题型情况总结

规律探究(1次课) 1、二级数列 这里所谓的二级数列是指数列中前后两个数的和、差、积或商构成一个我们熟悉的某种数列形式。 例1:2 6 12 20 30 ( 42 )(2002年考题) A.38 B.42 C.48 D.56 解析:后一个数与前个数的差分别为:4,6,8,10这显然是一个等差数列,因而要选的答案与30的差应该是12,所以答案应该是B。 例2:20 22 25 30 37 ( ) (2002年考题) A.39 B.45 C.48 D.51 解析:后一个数与前一个数的差分别为:2,3,5,7这是一个质数数列,因而要选的答案与37的差应该是11,所以答案应该是C。 例3:2 5 11 20 32 ( 47 ) (2002年考题) A.43 B.45 C.47 D.49 解析:后一个数与前一个数的差分别为:3,6,9,12这显然是一个等差数列,因而要选的答案与32的差应该是15,所以答案应该是C。 例4:4 5 7 1l 19 ( 35 ) (2002年考题) A.27 B.31 C.35 D.41 解析:后一个数与前一个数的差分别为:1,2,4,8这是一个等比数列,因而要选的答案与19的差应该是16,所以答案应该是C。 例5:3 4 7 16 ( 43 ) (2002年考题) A.23 B.27 C.39 D.43 解析:后一个数与前一个数的差分别为:1,3,9这显然也是一个等比数列,因而要选的答案与16的差应该是27,所以答案应该是D。 例6:32 27 23 20 18 ( 17 ) (2002年考题) A.14 B.15 C.16 D.17 解析:后一个数与前一个数的差分别为:-5,-4,-3,-2这显然是一个等差数列,因而要选的答案与18的差应该是-1,所以答案应该是D。 例7:1,4,8,13,16,20,( 25 ) (2003年考题) A.20 B.25 C.27 D.28 解析:后一个数与前一个数的差分别为:3,4,5,3,4这是一个循环数列,因而要选的答案与20的差应该是5,所以答案应该是B。 例8:1,3,7,15,31,( 63 ) (2003年考题) A.61 B.62 C.63 D.64 解析:后一个数与前一个数的差分别为:2,4,8,16这显然是一个等比数列,因而要选的答案与31的差应该是32,所以答案应该是C。 例9:( 69 ),36,19,10,5,2(2003年考题) A.77 B.69 C.54 D.48 解析:前一个数与后一个数的差分别为:3,5,9,17这个数列中前一个数的2倍减1得后一个数,后面的数应该是17*2-1=33,因而33+36=69答案应该是B。 例10:1,2,6,15,31,( 56 ) (2003年考题) A.53 B.56 C.62 D.87 解析:后一个数与前一个数的差分别为:1,4,9,16这显然是一个完全平方数列,因而要选的答案与31的差应该是25,所以答案应该是B。 例11:1,3,18,216,( 5184 ) A.1023 B.1892 C.243 D.5184 解析:后一个数与前一个数的比值分别为:3,6,12这显然是一个等比数列,因而要选的答案与216的比

最新数字滤波器总结

精品文档 精品文档1数字滤波器的应用领域 在信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的问题。根据有用信号和噪音的不同特性,提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。在近代电信设备和各类控制系统中,数字滤波器应用极为广泛,这里只列举部分应用最成功的领域。 (1) 语音处理 语音处理是最早应用数字滤波器的领域之一,也是最早推动数字信号处理理论发展的领域之一。该领域主要包括5个方面的内容:第一,语音信号分析。即对语音信号的波形特征、统计特性、模型参数等进行分析计算;第二,语音合成。即利用专用数字硬件或在通用计算机上运行软件来产生语音;第三,语音识别。即用专用硬件或计算机识别人讲的话,或者识别说话的人;第四,语音增强。即从噪音或干扰中提取被掩盖的语音信号。第五,语音编码。主要用于语音数据压缩,目前已经建立了一系列语音编码的国际标准,大量用于通信和音频处理。近年来,这5个方面都取得了不少研究成果,并且,在市场上已出现了一些相关的软件和硬件产品,例如,盲人阅读机、哑人语音合成器、口授打印机、语音应答机,各种会说话的仪器和玩具,以及通信和视听产品大量使用的音频压缩编码技术。 (2) 图像处理 数字滤波技术以成功地应用于静止图像和活动图像的恢复和增强、数据压缩、去噪音和干扰、图像识别以及层析X射线摄影,还成功地应用于雷达、声纳、超声波和红外信号的可见图像成像。 (3) 通信 在现代通信技术领域内,几乎没有一个分支不受到数字滤波技术的影响。信源编码、信道编码、调制、多路复用、数据压缩以及自适应信道均衡等,都广泛地采用数字滤波器,特别是在数字通信、网络通信、图像通信、多媒体通信等应用中,离开了数字滤波器,几乎是寸步难行。其中,被认为是通信技术未来发展方向的软件无线电技术,更是以数字滤波技术为基础。 (4) 电视 数字电视取代模拟电视已是必然趋势。高清晰度电视的普及指日可待,与之配套的视频光盘技术已形成具有巨大市场的产业;可视电话和会议电视产品不断更新换代。视频压缩和音频压缩技术所取得的成就和标准化工作,促成了电视领域产业的蓬勃发展,而数字滤波器及其相关技术是视频压缩和音频压缩技术的重要基础。 (5) 雷达 雷达信号占有的频带非常宽,数据传输速率也非常高,因而压缩数据量和降低数据传

二年级找规律题型总结大全

第四讲找规律填数 哪吒智闯水晶宫---惊险的房子哪 吒寻宝途中觉得肚子饿得咕咕叫,想找个地方弄 点吃的,结果来到一个大房子,他敲了敲门,门 自动开了,他进入空空的大厅里什么也没有,地 面水晶砖上杂乱的写了好多数字,哪吒刚想迈步 向前走。“当心有暗器!”南海龙王从身后跑过来叫 道。 南海龙王递给哪吒一张纸条,说道:“幸好你 没有向前走,这间大厅里布满了暗器,我忘记给你通过这个房间的的密码了,你按照纸条上的数字向前走,一定能通过这个大厅。”说完,南海龙王就告辞了。 哪吒拿起纸条一看,上面写着:1、2、3、5、8……哪吒按照纸条上的数字,踏着写着同样数字的水晶砖向前走,果然平安无事,可当哪吒走到写着“8”的水晶砖时,发现前面还有许多数字,哪吒心想:南海龙王的密码不完整啊,我下面该踏哪个数字呢?哪吒认真的研究起这组特殊的数字:“1、2、3、5、8……”。 “哈哈,我知道!从第三个数字开始,每个数都是前两个数字之和。”哪吒紧皱的眉头舒展开了,高兴的叫了起来。接下来哪吒就踏着水晶砖上的:5+8=13、8+13=21、13+21=34、21+34=55……这些数向前走,安全的通过了这个大厅,找到了一个存储食物的仓库,美美地饱餐了一顿。 例题精讲 第一种类型:数列问题 在日常生活中,我们经常会碰到许多按一定顺序排列的数 比如:一列自然数:1,2,3,4,5,6,7,8,… 年份:1998,1999,2000,2001,2002,… 某文具厂生产笔筒个数(按月份排):400,450,500,450,500…例1 仔细观察找出规律,再填数。 (1)2,5,8,();

(2)20,(),12,8,4。 (3)1,6,7,12,13,(),(); (4)1,3,6,(),(); 分析:(1)11 加3 (2)16 减4 (3)18、19 先加5再加1(4)10 、15 例2 6,7,9,12,(),21,27,34 分析通过计算可以得出,每相邻两项的差依次增加1。如:7-6=1,9-2=2,12-9=3,故可推知()-12=4,()中填16,经检验,21-16=5,27-21=6,34-27=7,均符合前面所说的规律。 例3 小静静班上的同学排队做操,第一个同学身高120厘米,第二个同学身高121厘米,第三个同学身高123厘米,第四个同学身高126厘米,那么第五个同学的身高是多少?第七个同学就是你的好朋友圆圆,圆圆的身高是多少呢? 分析:130厘米,圆圆身高141厘米 例4 一个工厂1991年生产100件产品,1992年生产115件产品,1993年生产130件产品,请问2000年这个工厂生产多少件产品? 分析每年增加15件产品,100+(15*9 ) =235(件) 第二种类型:数图阵问题 例5 智力大比拼,在空格中填上合适的数 1、 2、 分析 1、44345 55345 66345 2、19,22

多孔介质燃烧技术

多孔介质燃烧技术 1 多孔介质燃烧技术 加入多孔介质的燃烧器由于对流,导热和辐射三种换热方式的存在,使燃烧区域温度趋于均匀,保持较平稳的温度梯度。在燃烧稳定的同时还具有较高的容积热强度。与自由空间燃烧相比,预混气体在多孔介质中的燃烧具有功率密度大,调节范围广,污染物排放低和结构紧凑等优点。多孔介质预混燃烧特点是燃烧设备的热效率较高,其原因有以下两个方面:①燃气与空气预先充分混合, 在过剩空气很小的情况下也可达到完全燃烧, ②由于辐射作用, 多孔介质的高温后部对低温的前部进行加热, 从而达到对未反应的燃气混合物的预热作用, 加快了燃烧速度。因此对多孔介质传热传质和燃烧的研究具有重大的学术价值,已成为当前最活跃最前沿的研究领域之一[1]。 传统的气体燃料燃烧主要是以自由火焰为特征的燃烧。这种燃烧需要较大的空间,火焰周围温度梯度大,容易产生局部高温。当温度高于1500℃时, NO生 x 成变得明显[2]。由于 NO的剧毒性,减少其排放也显得非常重要。传统燃烧器的 x 换热器主要以烟气辐射和对流换热为主,换热系数小。 多孔介质燃烧技术是一种新颖独特的燃烧方式[3]。其与自由空间燃烧的区别在于:(1)多孔介质的空隙率很大相对于自由空间有较大的固体表面积,因而有较强的蓄热能力[4];(2)多孔介质的存在使混合气体在其中产生剧烈的扰动,强化了换热。(3)相对于气体来说多孔介质有较强的导热和辐射能力,可以使预混气体燃烧产生的部分热量从下游的高温区传递到上游的低温区预热未然混合气体,这样就提高了燃烧速率并可使燃料完全燃烧,减少了CO的排放;(4)多孔介质良好的换热特性是燃烧区域温度迅速趋于均匀,保持了平稳的温度梯 NO生成量;(5)辐射燃烧效率最高可达度,降低了最高温度水平,减少了 x 80%-90%,而常规辐射燃烧器对辐射的转换效率充其量为30%[5],在相同的热负荷下,多孔介质预混燃烧热效率较高,比本生式燃烧节约燃气30-50%[6]。与自由燃烧相比,多孔介质燃烧具有燃烧速率高、燃烧稳定性好、负荷调节范围大、容

非常好的滤波器基础知识

非常好的滤波器基础知识 滤波器是射频系统中必不可少的关键部件之一,主要是用来作频率选择----让需要的频率信号通过而反射不需要的干扰频率信号。经典的滤波器应用实例是接收机或发射机前端,如图1、图2所示: 从图1中可以看到,滤波器广泛应用在接收机中的射频、中频以及基带部分。虽然对这数字技术的发展,采用数字滤波器有取代基带部分甚至中频部分的模拟滤波器,但射频部分的滤波器任然不可替代。因此,滤波器是射频系统中必不可少的关键性部件之一。滤波器的分类有很多种方法。例如:按频率选择的特性可以分为:低通、高通、带通、带阻滤波器等; 按实现方式可以分为:LC滤波器、声表面波/体声波滤波器、螺旋滤波器、介质滤波器、腔体滤波器、高温超导滤波器、平面结构滤波器。 按不同的频率响应函数可以分为:切比雪夫、广义切比雪夫、巴特沃斯、高斯、贝塞尔函数、椭圆函数等。 对于不同的滤波器分类,主要是从不同的滤波器特性需求来描述滤波器的不同特征。 滤波器的这种众多分类方法所描述的滤波器不同的众多特征,集中体现出了实际工程应用中对滤波器的需求是需要综

合考量的,也就是说对于用户需求来做设计时,需要综合考虑用户需求。 滤波器选择时,首先需要确定的就是应该使用低通、高通、带通还是带阻的滤波器。 下面首先介绍一下按频率选择的特性分类的高通、低通、带通以及带阻的频率响应特性及其作用。 巴特沃斯切比雪夫带通滤波器 巴特沃斯切比雪夫高通滤波器 最常用的滤波器是低通跟带通。低通在混频器部分的镜像抑制、频率源部分的谐波抑制等有广泛应用。带通在接收机前端信号选择、发射机功放后杂散抑制、频率源杂散抑制等方面广泛使用。滤波器在微波射频系统中广泛应用,作为一功能性部件,必然有其对应的电性能指标用于描述系统对该部件的性能需求。对应不同的应用场合,对滤波器某些电器性能特性有不同的要求。描述滤波器电性能技术指标有: 阶数(级数) 绝对带宽/相对带宽 截止频率 驻波 带外抑制 纹波 损耗

word完整版自适应滤波器原理 带图带总结word版推荐文档

第二章自适应滤波器原理 2.1 基本原理 2.1.1 自适应滤波器的发展 在解决线性滤波问题的统计方法中,通常假设已知有用信号及其附加噪声的某些统计参数(例如,均值和自相关函数) ,而且需要设计含噪数据作为其输入的线性滤波器,使得根据某种统计准则噪声对滤波器的影响最小。实现该滤波器优化问题的一个有用方法是使误差信号(定义为期望响应与滤波器实际输出之差)的均方值最小化。对于平稳输入,通常采用所谓维纳滤波器( Wiener filter) 的解决方案。该滤波器在均方误差意义上使最优的。误差信号均方值相对于滤波器可调参数的曲线通常称为误差性能曲面。该曲面的极小点即为维纳解。 维纳滤波器不适合于应对信号和/或噪声非平稳问题。在这种情况下,必须假设最优滤波器为时变形式。对于这个更加困难的问题,十分成功的一个解决方案使采用卡尔曼滤波器 (Kalman filter )。该滤波器在各种工程应用中式一个强有力的系统。 维纳滤波器的设计要求所要处理的数据统计方面的先验知识。只有当输入数据的统计特性与滤波器设计所依赖的某一先验知识匹配时,该滤波器才是最优的。当这个信息完全未知时,就不可能设计维纳滤波器,或者该设计不再是最优的。而且维纳滤波器的参数是固定的。 在这种情况下,可采用的一个直接方法是“估计和插入过程”。该过程包含两个步骤,首先是“估计”有关信号的统计参数,然后将所得到的结果“插入( plug into)”非递归公式以计算滤波器参数。对于实时运算,该过程的缺点是要求特别精心制作,而且要求价格昂贵的硬件。为了消除这个限制,可采用自适应滤波器(adaptive filter)。采用这样一种系统,意味着滤波器是自设计的,即自适应滤波器依靠递归算法进行其计算,这样使它有可能在无法获得有关信号特征完整知识的环境下,玩完满地完成滤波运算。该算法将从某些预先确定的初始条件集出发,这些初始条件代表了人们所知道的上述环境的任何一种情况。我们还发现,在平稳环境下,该运算经一些成功迭代后收敛于某种统计意义上的最优维纳解。在非平稳环境下,该算法提供了一种跟踪能力,即跟踪输入数据统计特性随时间的变化,只要这种变化时足够缓慢的。 40年代,N.维纳用最小均方原则设计最佳线性滤波器,用来处理平稳随机

公务员考试之数字推理类(解题规律总结)

公务员考试之数字推理类(解题规律总结) 本文包括以下两部分: 一、数量关系测验类 (一)、考点分析 (二)、解题技巧及规律总结 (三)、题型分析 二、数学题快速获得答案方法之-----十字相乘法 一、数量关系测验类 (一)、考点分析 数量关系测验主要是测验考生对数量关系的理解与计算的能力,体现了一个人抽象思维的发展水平。在行政职业能力测验中,数量关系测验主要是从数字推理和数学运算两个角度来考查考生对数量关系的理解能力和反应速度。 数量关系测验含有速度与难度的双重性质。在速度方面,要求考生反应灵活活,思维敏捷;在难度方面,其所涉及的数学知识或原理都不超过小学与初中水平,甚至多数是小学水平。如果时间充足,获得正确答案是不成问题的。但在一定的时间限制下,要求考生答题既快又准,这样,个人之间的能力差异就显现出来了。可见,该测验难点并不在于数字与计算上,而在于对规律与方法的发现和把握上,它实际测查的是个人的抽象思维能力。因此,解答数量关系测验题不仅要求考生具有数字的直觉能力,还需要具有判断、分析、推理、运算等能力。 1.数字推理 数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。 在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与

前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。 两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。 由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。 需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。 此时,与其“卡”死在这里,不如抛开这道题先做别的题。在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。 在做这些难题时,有一个基本思路:“尝试错误”。很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。 2.数学运算 数学运算题主要考查解决四则运算等基本数字问题的能力。在这种题型中,每道试题中呈现一道算术式子,或者是表述数字关系的一段文字,要求考生迅速、准确地计算出答案,并判断所计算的结果与答案各选项中哪一项相同,则该选项即为正确答案,并在答卷纸上将相应题号下面的选项字母涂黑。 数学运算的试题一般比较简短,其知识内容和原理多限于小学数中的加、减、乘、除四则运算。尽管如此,也不能掉以轻心、麻痹大意,因为测验有时间限制,需要考生算得既快又准。

数字推理规律总结

<2>表格形式数字推理 行间运算规律:行间运算规律主要是每行两个数字简单运算得到第三个数.主要有下面三种形式: 每行前两个数运算得到第三个数. 每行后两个数运算得到第一个数. 每行第一个数和第三个数运算得到中间数字. <3> 三角形形式数字推理 三角形数字推理的规律通常是寻找三角形的数字与中心数字之间的联系 一、圆圈形数字推理 1、考虑对角数字和周围数字 【例】 A.27 B. 21 C. 16 D. 11 【答案】C 【解题关键点】考虑对角数字和周围数字 5×8+(13+7)=2,3×12+(3+15)=2,15×4+(19+11)=2 2、考虑四周数字得到中间数字的方式 解题思想 1.思考角度:一般由四周向中间位置的数靠拢。 2.运算关系:一般各数之间为“加减乘除”关系,其中加法、减法、乘法是最常见的运算方法。 3.组合关系:一般采用上下、左右、对角三种组合关系。 4.如果中间位置的数是质数,那么一般是通过加法或减法向中间位置靠拢;如果中间位置的数是合数(特别的一些质数也可分解为其与1的乘积),则可以首先将中间位置拆分成 两个(或三个)因数的乘积,再将已知数向因数靠拢,也可以通过加减法向中间位置数靠拢。 5.如果中间位置数值较大,而其他数值较小,则考虑运算中含有乘法关系。 6.作减法和除法时,注意减数和被减数、除数和被除数的位置关系。 要点提示 奇偶数之间有如下的运算法则: 偶数±偶数=偶数,奇数±奇数=偶数,奇数±偶数=奇数 偶数×偶数=偶数,奇数×奇数=奇数,奇数×偶数=偶数 根据以上法则可以得到以下规律: (1)几个偶数之间做四则运算无法得到一个奇数。 (2)偶数个奇数之间的无法通过加法得到一个奇数,偶数个奇数之间无法

滤波器的定义、参数以及测试方法

认证部物料培训 滤波器 主讲人:邹一鸣

一、滤波器的定义 滤波器是一种对信号有处理作用的器件或电路。 主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。 滤波器,顾名思义,是对波进行过滤的器件。“波”是一个非常广泛的物理概念,在电子技术领域,“波”被狭义地局限于特指描述各种物理量的取值随时间起伏变化的过程。该过程通过各类传感器的作用,被转换为电压或电流的时间函数,称之为各种物理量的时间波形,或者称之为信号。因为自变量时间‘是连续取值的,所以称之为连续时间信号,又习惯地称之为模拟信号(Analog Signal)。随着数字式电子计算机(一般简称计算机)技术的产生和飞速发展,为了便于计算机对信号进行处理,产生了在抽样定理指导下将连续时间信号变换成离散时间信号的完整的理论和方法。也就是说,可以只用原模拟信号在一系列离散时间坐标点上的样本值表达原始信号而不丢失任何信息,波、波形、信号这些概念既然表达的是客观世界中各种物理量的变化,自然就是现代社会赖以生存的各种信息的载体。信息需要传播,靠的就是波形信号的传递。信号在它的产生、转换、传输的每一个环节都可能由于环境和干扰的存在而畸变,有时,甚至是在相当多的情况下,这种畸变还很严重,以致于信号及其所携带的信息被深深地埋在噪声当中了。 滤波,本质上是从被噪声畸变和污染了的信号中提取原始信号所携带的信息的过程。 二、滤波器的分类 滤波器按所处理的信号分为模拟滤波器和数字滤波器 模拟滤波器可以分为声表滤波器和介质滤波器 三、声表滤波器的原理及特点 声表面波滤波器是利用石英、铌酸锂、钛酸钡晶体具有压电效应做成的。所谓压电效应,即是当晶体受到机械作用时,将产生与压力成正比的电场的现象。具有压电效应的晶体,在受到电信号的作用时,也会产生弹性形变而发出机械波(声波),即可把电信号转为声信号。由于这种声波只在晶体表面传播,故称为声表面波。声表面波滤波器的英文缩写为SAWF,声表面波滤波器具有体积小,重量轻、性能可靠、不需要复杂调整。在有线电视系统中实现邻频传输的关键器件。

数字滤波的基础知识(不断更新,总结)

数字滤波的基础知识(不断更新,总结) 数字滤波是一种软件程序滤波,与模拟滤波器相比,数字滤波有以下优点: 1) 数字滤波是用程序实现的,无需增加硬设备,而且滤波器(滤波程序)可多通道共享,降低了开发成本。 2)数字滤波可以对低频信号(如0.01Hz 以下)实现滤波,克服了模拟滤波器的缺陷。 3)数字滤波可以根据信号的不同,采取不同的滤波方法或滤波参数,使用方便灵活。 4)数字滤波由于不用硬件设备,各回路间不存在阻抗匹配等问题,故可靠性高,稳定性好。 (1)平均值滤波程序设计 1)算术平均值滤波 N 为采样次数; x i 为第i 次采样值; y 为N 个采样值的算术平均值; 2)加权平均值滤波 在N 次采样值中,突出最近几次采样值在平均值中所占比重,这种方法称为加权平均滤波方法。加权平均滤波算法为: N 为采样次数; x i 为第i 次采样值; y 为N 次采样值的滤波输出值; C i 为加权系数, 对C i 选取要求: (2)中位值滤波 ∑==N i i x N y 11∑==N i i i x C y 11 1=∑=N i i C

中位值滤波的原理是对被测参数连续采样N 次(N 取奇数),并按大小顺序排列,再取中间值作为本次采样的有效数据。中位值滤波能有效地滤除由于偶然因素引起采样值波动的脉冲干扰,对变化缓慢的被测参数有良好的滤波效果。 (3)限幅滤波 限幅滤波的方法是考虑到被测参数在两次采样时间间隔内,一般最大变化的增量△Y(以绝对值表示)总是在一定的范围内,如果前后两次采样值的实际增量│Y k -Y k-1│≤△Y ,则认为是正常的,否则认为是干扰造成的,则用上次的采样值代替本次采样。由此得限幅滤波的算法为 (4)惯性滤波 在模拟量输入通道中,常用一阶低通滤波器来消弱干扰,惯性滤波运算公式源于RC 低通滤波器的传递函数 ????>-?≤-=---Y Y Y Y Y Y Y Y Y k k k k k k k 111,,当当

卡尔曼滤波器总结

1. 卡尔曼全名Rudolf Emil Kalman ,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems 》(线性滤波与预测问题的新方法)。 基于状态空间描述对混有噪声的信号进行滤波的方法,简称卡尔曼滤波。这种方法是R.E.卡尔曼和R.S.布什于1960和1961年提出的。卡尔曼滤波是一种切实可行和便于应用的滤波方法,其计算过程通常需要在计算机上实现。实现卡尔曼滤波的装置或软件称为卡尔曼滤波器。 卡尔曼滤波器(Kalman Filter )是在克服以往滤波方法局限性的基础上提出来的,是一个最优化自回归数据处理算法(optimal recursive data processing algorithm )。它是针对系统的部分状态或是部分状态的线性组合,且量测值中有随机误差(常称为量测噪声)。将仅与部分状态有关的测量进行处理,得出从某种统计意义上讲误差最小的更多状态的估值,从而将混有噪声(干扰)的信号中噪声滤除、提取有用信号。 卡尔曼滤波是一种递推线性最小方差估计,以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。 现设线性时变系统的离散状态方程和观测方程为: ()()()()()X k+1F k X k G k u k ()w k =?++ ()()()()k+1H k+1X k+1k+1Y v =?+ 其中 ()k X 和()k Y 分别是k 时刻的状态矩阵和测量矩阵 ()k F 为状态转移矩阵 ()k G 为系统控制项矩阵 ()k u 为k 时刻对系统的控制量 ()k w 为k 时刻动态噪声,其协方差()Q k ()k H 为k 时刻观测矩阵 ()k v 为k 时刻测量噪声, 其协方差()R k 则卡尔曼滤波的算法流程为: 状态的一步预估计()()()()()??X k+1k F k X k k G k u k |=?|+ 一步预估计协方差矩阵 ()()()()()C k+1k F k C k k F k Q k '|=?|+' 计算卡尔曼增益矩阵

多孔介质燃烧实验报告

多孔介质燃烧实验报告 班级:08081801学号:0808180122 姓名:黄锦宏指导老师:谭洪 一、实验背景: 多孔介质,即由固体物质组成的骨架和由骨架分隔成大量密集成群的微小空隙构成的介质。多孔介质是由多相物质所占据的共同空间,也是多相物质共存的一种组合体,没有固体骨架的那部分空间叫做孔隙,由液体或气体或气液两相共同占有,相对于其中一相来说,其他相都弥散在其中,并以固相为固体骨架,构成空隙空间的某些空洞相互连通。多孔介质是一种具有大孔隙率和光学厚度的透气性固体。多孔介质的存在使燃料和氧气的接触面积变大,燃烧过程中,多孔介质内气相的燃烧放热、内部导热、对流、传质和固相内部导热、辐射及气、固两相之问的对流换热互相耦合,这种复杂的传热和化学反应过程就构成新颖、独特的燃烧方式。 燃料和氧化剂(氧气或空气)按一定的比例预先均匀混合,再送入燃烧室中进行燃烧的方法称为预混合燃烧。多孔介质内预混合燃烧是指预混合气体通过颗粒或小球填充床、蜂窝陶瓷或泡沫陶瓷、毛毡滤芯、金属薄片叠层、纤维膨化结构等多孔介质固体框架缝隙内的燃烧。 多孔介质燃烧优点有很多,相对于气体,多孔介质具有更良好的热交换特性,使燃烧区域温度迅速趋于均匀;相对于自由空间,多孔介质有更大的固体表面积,因而具有很强的蓄热能力。由于多孔介质的存在,在燃烧过程中,通过各种换热形式,尤其为辐射放热,大部分反应区产生的热量回流有效预热未燃混合气体,使燃烧保持更好的稳定性。大量的研究表明多孔介质中的预混燃烧可大幅度提高燃烧速率,显著增强火焰稳定性,提高火焰温度,扩展贫燃极限,降低有害污染物的排放量。 二、实验目的: 研究可燃气体混合物在耐高温、导热性能较好的多孔介质里的燃烧情况,并且与无多孔介质时加以对比。通过监测分析燃烧室各处的温度变化来分析多孔介质对燃烧的促进作用。 三、实验系统与设备 本研究的实验装置结构系统包括燃烧器、供气系统和测量系统三个部分。燃烧器由预混室和燃烧室组成。燃烧室下部装置厚20mm,孔径为1mm的直孔陶瓷板,用以对预混气体进行整流,使预混气体尽量均匀地进入燃烧室燃烧。燃烧室中填充的多孔介质为泡沫陶瓷片(主要成分为SiC) 四、实验系统图:

数字滤波器的设计

实验报告 课程名称:数字信号与信息处理 实验名称:数字滤波器的设计 院(系): 专业班级: 姓名: 学号: 指导教师:李家星 2012年12月14日

一、实验目的: (1)实验类型:设计性实验。 (2)掌握通过零、极点设计低阶数字滤波器的设计方法。 (3)掌握IIR 和FIR 数字滤波器的设计方法,并利用所设计滤波器解决实际问题。 (4)通过分析滤波前后信号频谱的变化,使学生能深刻理解滤波的概念。 (5)对两种滤波器设计方法的进行比较。 二、实验主要仪器设备,软件 (1)硬件准备:PC 机 (2)软件准备:Matlab 语言环境 三、实验的基本原理与内容: 1)实验原理: 数字滤波器是具有某种特定频率特性的线性时不变系统。广义上,任何线性时不变离散系统都是一个数字滤波器。设计数字滤波器的任务就是需求一个因果稳定的线性是不变系统,并使系统函数H(z)具有指定的频率特性。 ()() ()n j 0 n e z j e n h z H e H j ωω ω ∑∞ ==== 低阶数字滤波器一般指一阶或二阶滤波器。因其阶次较低,可用零极点的分布来调控其频率特性;其好处处理速度快,硬件简单。另外,高阶滤波器在许多情况下由多个低阶滤波器组合来实现。 LTI 系统可在z 域中用零极点图的形式来描述。这在设计简单的滤波器时很重要,利用其可进行谱分析,只要正确地配置零极点就可达到一定的设计要求。那么,建立零极点与频率特性的关系规律:1)设计滤波器时,一定要保证结构的稳定,因此所有极点应该位于单位圆之内;2)负相位越大引起系统的延时越大,为了减少系统时延,所设计的系统零点最好也在单位圆内(或上);3)极点在单位圆附近,对应频率幅度会出现波峰;零点在单位圆上,对应频率幅度会出现波谷。 基于零极点的低阶数据滤波器模型: 低通:()111121--?-+?-=z a z a z H LP 高通:()1 1 1121--?--?+=z z z H HP αα

介质滤波器技术总结

TE01δ模式介质谐振滤波器技术总结 一、前言 由于通信技术的发展,低费用、更有效、更好品质的无线通信系统而需要高性能,小体积和低损耗滤波器。所以介质滤波器,腔体介质谐振滤波器的研究与开发,是今后滤波器发展的重点所在。 介质谐振器的工作原理 电磁壁理论 理想的导体壁(电磁率为零)在电磁理论中称为电壁,在电壁上,电场的切向分量为零,磁场的法向分量为零。电磁波入射到电壁上,将会完全反射回来,没有透射波穿透电壁。因此,用电壁围成一个封闭腔,一旦有适当频率的电磁波馈入,波将在腔的电壁上来回反射,在腔内形成电磁驻波,发生电磁谐振。此时即使外部停止向腔内馈送能量,已建立起来的电磁振荡仍将无衰减维持下去。可见电壁空腔是一种谐振器,电磁能量按一定频率在其中振荡。当然,非理想导体壁构成的空腔,也具有电壁空腔的类似特性,只不过外部停止馈送能量后,起内部已建立起来的电磁振荡,不会长期地维持下去,将随时间而逐渐衰减,终于消逝,成为阻尼振荡。谐振器中电磁振荡维持的时间的长短(时间常数)是其Q 值高低的一种度量。 高介电常数的介质的界面能使电磁波发生完全的或者近似完全的反射。当然,这两类的界面性质不同,其对电磁波的反射特性也不尽相同。电磁波在导体壁上的电场切向分量为零,故入射波与反射波的电场切向分量相消,仅有法向分量,因为合成场的电力线垂直导体表面,亦即垂直电壁;而在高介电常数的介质界面上,磁场的切向分量近似为零,入射波与反射波的磁场切向分量近似相消,合成场的磁力线近似垂直于介质界面。在电磁场理论中,垂直于磁力线的壁称为磁壁,故高介电常数的介质表面可以近似看为磁壁,只有时,才是真正的磁壁。在磁壁上,磁场切向分量为零,电场法向分量为零,它与电壁对偶。既然

相关主题
文本预览
相关文档 最新文档