当前位置:文档之家› 随机变量序列函数的几乎处处中心极限定理

随机变量序列函数的几乎处处中心极限定理

随机变量序列函数的几乎处处中心极限定理
随机变量序列函数的几乎处处中心极限定理

中心极限定理的创立与发展

中心极限定理的创立与发展 -----杨静邓明立 概率论极限理论是概率论的重要组成部分,是概率论的其他分支和数理统计的重要基础。的概率现象是由于无数的随机因素共同作用的结果---这些因素每一个都起到一点作用,但都没有起到很大的甚至决定性的作用。而极限定理告诉我们,这类多随机因素作用的现象必然会收敛于某个正态分布的概率模型。因此,该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 现实中有许多随机变量都具有上述特点,比如,大炮的射程受到多种因素影响:炮身结构,炮弹外形,炮弹几炮弹内炸药质量,瞄准的误差,风速,风向的干扰,大炮的使用年限等等,其中每种因素的微小差异对总的影响作用都不大,并且可以看作是互相独立的、互相不影响的。每种因素都会引起一个微小的误差,而炮弹落点的误差就是这许多随机误差的总和所影响的。由此看出,研究随机变量和的极限对于搞清楚随机现象的本质有着极其的重要价值。 在生产和生活中,有许多随机变量的取值呈现出“中间多,两头少,左右对称”的特点。例如,一般来说我国北方男性身高在170厘米左右的居多,而高于180厘米和低于160厘米的较少。或者在生产条件不变的情况下产品的抗压强度、长度、等许多随机变量指标也都存在这样类似的情况。这样的随机变量所服从的分布就是所谓的“正态分布”。许多随机变量服从正态分布。 极限理论中的中心极限定理曾是概率论的中心课题。中心极限定理有很多形式。凡是关于随机变量的数目无限增多时,其和的分布函数在一定的条件下收敛于正态分布函数的任何论断,都称为中心极限定理。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理”。

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理

中心极限定理 中心极限定理(Central Limit Theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。 (二)德莫佛——拉普拉斯中心极限定理 设μ n是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n 无限大时,频率设μ n / n趋于服从参数为的正态分布。即:

该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设是一个相互独立的随机变量序列,它们具有有限的数学期望和方 差:。 记,如果能选择这一个正数δ>0,使当n→∞时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

(完整版)大数定律及中心极限定理

第五章大数定律及中心极限定理 【基本要求】1、了解切比雪夫不等式; 2、了解切比雪夫大数定律,Bernoulli大数定律和辛钦大数定律成立的条件及结论; 3、了解独立同分布的中心极限定理(列维—林德伯格定理)和德莫佛—拉普拉斯 中心极限定理(二项分布以正态分布为极限分布)的应用条件和结论,并会用 相关定理近似计算有关随机事件的概率。 【本章重点】切比雪夫不等式,切比雪夫大数定理及Bernoulli大数定理。 【本章难点】对切比雪夫大数定理及独立同分布的中心极限定理的理解。 【学时分配】2学时 【授课内容】 §5.1 大数定律 0.前言 在第一章我们提到过事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,而频率的稳定性是概率定义的客观基础。在实践中人们还认识到大量测量值的算术平均值也具有稳定性,而这种稳定性就是本节所要讨论的大数定律的客观背景,而这些理论正是概率论的理论基础。 下面介绍三个定理,它们分别反映了算术平均值及频率的稳定性。 一、切比雪夫大数定律 1

2 事件的频率稳定于概率,能否有p n lim n n =μ∞→,答案是否定的。而是用)(0}{ ∞→→ε≥-μn p n P n [依概率收敛]来刻划 (弱)。或者用{}1n n P p n →∞ μ???→=[a.e.收敛] 来刻划(强)。 1.定义:设ΛΛ,,,,21n X X X 是一个随机变量序列,a 是一个常数,若对于任意正数ε,有 ()1lim =<-∞ →εa X P n n , 则称序列ΛΛ,,,,21n X X X 依概率收敛于a .记为a X P n ?→? . 2.切比雪夫不等式 设随机变量ξ具有有限的期望与方差,则对0>?ε,有 2 ) ())((ε ξεξξD E P ≤ ≥-或2 ) (1))((ε ξεξξD E P - ≥<- 证明:我们就连续性随机变量的情况来证明。设~()p x ξ,则有 2 2 ()()(())(())()()x E x E x E P E p x dx p x dx ξ ε ξ ε ξξξεε -≥-≥--≥= ≤ ?? 22 2 1 () (())()D x E p x dx ξξεε+∞ -∞ ≤ -= ? 该不等式表明:当)(ξD 很小时,))((εξξ≥-E P 也很小,即ξ的取值偏离)(ξE 的可能性很小。这再次说明方差是描述ξ取值分散程度的一个量。 切比雪夫不等式常用来求在随机变量分布未知,只知其期望和方差的情况下,事件 {}E ξξε-≥概率的下限估计;同时,在理论上切比雪夫不等式常作为其它定理证明的工具。 3.定理1(切比雪夫大数定律) 设}{n ξ是相互独立的随机变量序列,每一随机变量都有有限的方差,且一致有界,即存在 常数C ,使Λ,2,1)(=≤i C D i ξ,则对任意的0>ε,有01111 =ε≥ξ-ξ∑∑==∞→})(E n n {P lim n i n i i i n [即

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

中心极限定理与大数定理的关系

渤海大学学士学位论文 题目: 中心极限定理与大数定理的关系 系别: 渤海大学 专业: 数学系 班级: 2002级1班 姓名:于丹 指导教师:金铁英 完成日期:2006年5月19日 中心极限定理与大数定理的关系 于丹 (渤海大学数学系辽宁锦州 121000 中国) 摘要:中心极限定理是概率与数理统计的一个重要分支,大数定理和中心极限定理都是讨论的随机变量序列的极限问题,它们是概率论中比较深入的理论结果。 本篇论文从研究大数定理开始,然后由大数定理以及收敛性引出了中心极限定理,最后通过对定理在实际应用中的举例和定理的一些反例的研究使我们弄清中心极限定理的内涵与外延,进一步弄清了大数定理与中心极限定理之间的关系。 关键词:大数定理中心极限定理收敛性 The relation of the central limit theorem and large numbers law Yu Dan (Department of Mathematics Bohai University Liaoning jinzhou 121000 China) Abstract:The Central limit theorem is an important branch of probability and mathematical statistic. The large numbers law and the central limit theorem is limit question of random variable sequence .They are the quite thorough theory result in the theory of probability. This paper commences from large numbers law,then the central limit theorem is cited by large numbers law and convergence.Eventually,we can understand connotation and extension of the central limit theorem by its examples and relationship between large numbers law and the central limit theorem . Key words:large numbers law ; the central limit theorem ; convergence. 引言

中心极限定理及其意义

中心极限定理及其意义

————————————————————————————————作者:————————————————————————————————日期:

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

中心极限定理证明

中心极限定理证明 目录 第一篇:中心极限定理证明 第二篇:大数定理中心极限定理证明 第三篇:中心极限定理 第四篇:中心极限定理应用 第五篇:中心极限定理 更多相关范文 正文 第一篇:中心极限定理证明 中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史

上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此 故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次? 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.

中心极限定理及其意义

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

概率论大数定律与中心极限定理

‘、第五章 大数定律与中心极限定理 第一节 大数定律 在第一章中我们已经指出,人们经过长期实践认识到,虽然个别随机事件在某次试验中可能发生也可能不发生,但是在大量重复试验中却呈现明显的规律性,即随着试验次数的增大,一个随机事件发生的频率在某一固定值附近摆动.这就是所谓的频率具有稳定性.同时,人们通过实践发现大量测量值的算术平均值也具有稳定性.而这些稳定性如何从理论上给以证明就是本节介绍的大数定律所要回答的问题. 在引入大数定律之前,我们先证一个重要的不等式——契比雪夫(Chebyshev )不等式. 设随机变量X 存在有限方差D (X ),则有对任意ε>0, P {|X -E (X )|≥ε}≤2) (εX D .(5.1) 证 如果X 是连续型随机变量,设X 的概率密度为f (x ),则有 P {|X -E (X )|≥ε}= ??≥-≥--≤ εεε)(22)()()()(X E x X E x x x f X E x x x f d d ≤[].)()()(1 222?+∞∞-=-ε εX D x x f X E x d 请读者自己证明X 是离散型随机变量的情况. 契比雪夫不等式也可表示成 P {|X -E (X )|<ε}≥1-2) (εX D . 5.2) 这个不等式给出了在随机变量X 的分布未知的情况下事件{|X -E (X )|<ε}的概率的下限估计,例如,在契比雪夫不等式中,令ε=3)(X D ,4)(X D 分别可得到 P {|X -E (X )|<3)(X D }≥0.8889, P {|X -E (X )|<4)(X D }≥0.9375. 例5.1 设X 是掷一颗骰子所出现的点数,若给定ε=1,2,实际计算P {|X -E (X )|≥ε},并验证契比雪夫不等式成立. 解 因为X 的概率函数是P {X =k }=1/6(k =1,2,…,6),所以 E (X )=7/2, D (X )=35/12, P {|X -7/2|≥1=P {X =1}+P {X =2}+P {X =5}+P {X =6}=2/3; P {|X -7/2|}≥2}=P {X =1}+P {X =6}=1/3. ε=1: 2)(εX D =35/12>2/3, ε=2:2) (εX D =1/4×35/12=35/48>1/3.

第四章大数定律和中心极限定理

第四章 大数定律和中心极限定理 教学内容:本章主要讲述契比雪夫不等式,契比雪夫大数定律,贝努里大数定律和中心极限定理等内容. 教学重点:讲清大数定律的条件、结论和中心极限定理的条件、结论。 教学难点:随机变量序列的两种收敛性及大数定律和中心极限定理的应用。 在本课程一开始引入概率这个概念时,我们曾经指出,频率是概率的反映,随着观察次数n 的增大,频率将会逐渐稳定到概率。还曾经指出,当n 很大时,频率会概率是会非常“靠近”的,某些读者可能早就有了疑问:这里说的“逐渐稳定”和非常“靠近”究竟是什么意思?与数学分析中的极限概念有关系吗?这个问题提得非常好,前面提到的“逐渐稳定”和非常“靠近”都只是一种直观的说法,它的严格的数学家意义确实需要我们进一步阐明,本章就是要讨论这一类问题。 第一节 切比雪夫不等式 一、 契比雪夫不等式(Chebyshev inequality ) 设随机变量X 的均值()E X 及方差()D X 存在,则对于任意正数ε,有不等式 22 }|)X (E X {|P εσ≤ε≥- 或22 1}|)X (E X {|P ε σ-≥ε<- 成立。 我们称该不等式为契比雪夫(Chebyshev )不等式。 证明:(我们仅对连续性的随机变量进行证明)设()f x 为X 的密度函数,记μ=)X (E , 2)(σ=X D 则 ??≥-≥ --≤= ≥-ε μ εμεμεx x dx x f x dx x f X E X P )()()(}|)({|2 2 2 22 22 ) (1 )()(1 εσεμεX D dx x f x = ?≤ -≤ ? ∞ +∞ - 从定理中看出,如果()D X 越小,那么随机变量X 取值于开区间((),())E X E X εε-+中的概率就越大,这就说明方差是一个反映随机变量的概率分布对其分布中心(distribution center)()E X 的集中程度的数量指标。 利用契比雪夫不等式,我们可以在随机变量X 的分布未知的情况下估算事件 {}()X E X ε-<的概率。

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

中心极限定理证明

中心极限定理证明)题的方法应用于统计学,这从另一个方面也间接地开辟了统计学的方法领域,其在现代推断统计学方法论中居于主导地 位。参考文献 [1]邓永录著应用概率及其理论基础.清华大学出版社。 [2]魏振军著概率论与数理统计三十三讲.中国统计出版社。 [3]程依明等著概率论与数理统计习题与解答.高等数学出版社。 第五篇:中心极限定理 中心极限定理 中心极限定理(central limit theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a 和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。

(二)德莫佛——拉普拉斯中心极限定理 设μn是n次独立试验中事件a发生的次数,事件a在每次试验中发生的概率为p,则当n无限大时,频率设μn / n 趋于服从参数为的正态分布。即: 该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设 差:是一个相互独立的随机变量序列,它们具有有限的数学期望和方 。 记,如果能选择这一个正数δ>0,使当n→∞ 时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x ,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

第四章 大数定律与中心极限定理答案

第四章 大数定律与中心极限定理答案 一、单项选择 1. 设)(x Φ为标准正态分布函数,?? ?=不发生, 事件发生; 事件A A X i ,0,1100,,2,1Λ=i ,且 8.0)(=A P ,10021,,,X X X Λ相互独立。令∑==1001 i i X Y ,则由中心极限定理知Y 的分 布函数)(y F 近似于( ) (A ))(y Φ (B )Ф()y -80 4 (C ))8016(+Φy (D ))804(+Φy 答案:D 二、填空 1. 设X 的期望和方差分别为 μ和2σ,则由切比雪夫不等式可估计 )2(σμ<-X P 。 答案:34 ≥ 2.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式,有≤≥+}6|{|Y X P ________. 答案: 12 1 3. 已知随机变量ξ的均值μ=12,标准差σ=3,试用切比雪夫不等式估计ξ落在6到18之间的概率为________.与3到21之间 解 由题意得,2212,3,E D ξξσ=== 由切比雪夫不等式得 222{618}{126}3311466 P P D ξξξ≤≤=-≤≥-=-= 3 {618}4 P ξ∴≤≤≥

4. 已知随机变量ξ的均值μ=12,标准差σ=3,试用切比雪夫不等式估计ξ落在3到21之间的概率为________. 解 由题意得,2212,3,E D ξξσ=== 由切比雪夫不等式得 222{321}{129}3811999 P P D ξξξ≤≤=-≤≥-=-= 8 {321}9 P ξ∴≤≤≥ 5.假定生男孩、生女孩的概率均为0.5,用切比雪夫不等式估计200个新生婴儿中男孩在80个到120个之间的概率为________. 解 设ξ表示在200个新生婴儿中男孩的个数, 则~(,),B n p ξ 其中0.5p 200,n ==, 则 ()2000.5100,E np ξ==?= ()(1)2000.5(10.5)50.D np p ξ=-=??-= 由切比雪夫不等式得 22{80120}{10020}507 118 2020P P D ξξξ≤≤=-≤≥- =-= 6.用切比雪夫不等式估计下题的概率: 废品率为0.03, 求1000个产品中废品多 于20个且少于40个的概率为________. 答案:0.709 7.用切比雪夫不等式估计下题的概率: 求200个新生婴儿中, 男孩多于80个且少于120个的概率为________. (假定生女孩和生男孩的概率均为0.5.) 答案: 0.875

概率论与数理统计-大数定律与中心极限定理、样本及其分布

概率论与数理统计练习题 系 专业 班 姓名 学号 第五章 大数定律与中心极限定理、第六章 样本及其分布 一、选择题: 1.设n μ是n 次重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则对任意的0ε>均有lim { }n n P p n με→∞ -≥ [ A ] (A )0= (B )1= (C )0> (D )不存在 2. 设,, ,, n X X X 12为独立同分布的随机变量列,且均服从参数为λλ>(1)的指数分布,记 ()x Φ为正态分布函数,则 (考研题 2005) [ C ] (A )lim }()n i n X n P x x λ →∞ -≤=Φ∑ (B )lim }()n i n X n P x x λ →∞ -≤=Φ∑ (C )lim }()n i n X n P x x λ→∞ -≤=Φ∑ (D )lim }()n i n X P x x λ →∞ -≤=Φ∑ 3.设随机变量(,),(,),X N Y N 0101则 (考研题 2002) [ C ] (A )X Y +服从正态分布 (B )22 X Y +服从χ2分布 (C )22X Y 和服从χ2分布 (D )22 /X Y 服从F 分布 二、填空题: 1.对于随机变量X ,仅知其1 ()3,()25 E X D X == ,则可知{|3|3}P X -<≥ 2. 设总体X 服从参数为2的指数分布,,, ,, n X X X 12是来自总体X 的简单随机样本,则当 n →∞时,21 1 i i Y X n ==∑n 依概率收敛于 (考研题 2003) 3.设总体2 ~(,)X N μσ,12,, ,n X X X 为其样本,记1 1n i i X X n ==∑,2 211()1n i i S X X n ==--∑, 则)/Y X S μ=-服从的分布是 . 224225 1 2(1)t n -分布

还原正态分布之高斯推导过程

《概率论与数理统计》大作业 题目:还原正态分布之高斯推导过程 学院:化学工程学院 姓名:赵振华 学号: 班级序号:14 专业班级:装控1407 任课教师:李明 2016年4月27日还原正态分布之高斯推导过程 摘要:正态分布是概率中最重要的分布,其发现极大的促进了概率论和数理统计的发展,虽然正态分布的获得过程本身包含着大量的数理统计思想,对之有详尽的了解有益于对其他理论的理解,但其推导过程一般少见于统计着作,因此本文将正态分布函数形式的推导过程还原与众,弥补众多着作的正态分布的发现和推导过程。

背景前言 正态分布又称高斯分布,是由数学家棣莫弗和数学王子高斯各自独立发现的,1733年,棣莫弗有二项分布的逼近推导出正态分布,1809年高斯在推导误差分布函数是发现正态分布,两位数学家在不同的数学文化背景下,采用不同的方式得到相同的正态分布,可谓知识都是相同的,两种方式可相互证明,更体现正态分布的客观性和科学性。中心极限定理表明:“任何随机分布当样本足够大时,都会逼近正态分布。”正态分布在数理统计研究历史上具有里程碑式的意义。但是正态分布的推导过程能被统计学着作提到的少之又少,又有许多想本人一样的学生对正太分布的来源和其推导过程有着强烈的兴趣,于是几费周折在陈希孺院士《数理统计学简史》一书上找到一两百字的有关介绍,再结合其他资料整理得到两种推导过程,但是本人还是大二,目前只能理解和深入研究高斯的推导过程,故本主要介绍了高斯的正态分布的推导过程。 1、高斯正态分布之推导 最初的高斯密度分布函数思想动机来源于对误差规律的认识。众所周知,随机误差属于一种典型的随机变量。直觉上,对一个物体的测量,用多次测量的结果的算术平均数作为总体平均真值的估计肯定优于用单次测量结果作为其估计值,而且似乎并不存在其它更好的估计量。那么误差随机变量所服从的分布或者说其密度函数一定是这么一个“周密”的函数,它总能使样本的算术平均数成为总体真值估计量

中心极限定理证明

中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此

故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有的把握使出现六点的概率与之差不超过,问需要抛掷多少次 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解:

中心极限定理证明

中心极限定理证明 中心极限定理证明 中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此 故服从中心极限定理.

三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计: . 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次? 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得. 由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解: 因为很大,于是 所以 利用标准正态分布表,就可以求出的值.

相关主题
文本预览
相关文档 最新文档