当前位置:文档之家› 强混合鞅差序列部分和乘积的几乎处处中心极限定理

强混合鞅差序列部分和乘积的几乎处处中心极限定理

强混合鞅差序列部分和乘积的几乎处处中心极限定理
强混合鞅差序列部分和乘积的几乎处处中心极限定理

第5章大数定律及中心极限定理习题及答案

第 5 章 大数定律与中心极限定理 一、 填空题: 1.设随机变量μξ=)(E ,方差2 σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 9 1 . 2.设n ξξξ,,, 21是 n 个相互独立同分布的随机变量, ),,,(,)(,)(n i D E i i 218===ξμξ对于∑== n i i n 1 ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤ ≥-)(}|{| ,并估计≥<-}|{|4μξP n 21 1- . 3. 设随机变量129,, ,X X X 相互独立且同分布, 而且有1i EX =, 1(1,2, ,9)i DX i ==, 令9 1 i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式 直接可得{} ≥<-ε9X P 2 9 1ε- . 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2 ()D X σ=都存在, 则对任意给定的0ε>, 有 22{||}P X σμεε-≥≤, 或者2 2{||}1.P X σμεε -<≥- 由于随机变量129,, ,X X X 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i === 所以 99 9111()()19,i i i i i E X E X E X μ===??===== ???∑∑∑ 99 9 2 111()()19.i i i i i D X D X D X σ===??===== ???∑∑∑ 4. 设随机变量X 满足:2 (),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 1 16 ≤ . 解:切比雪夫不等式为:设随机变量X 满足2 (),()E X D X μσ==, 则对任意 的0ε>, 有2 2{||}.P X σμεε -≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤ =

中心极限定理的创立与发展

中心极限定理的创立与发展 -----杨静邓明立 概率论极限理论是概率论的重要组成部分,是概率论的其他分支和数理统计的重要基础。的概率现象是由于无数的随机因素共同作用的结果---这些因素每一个都起到一点作用,但都没有起到很大的甚至决定性的作用。而极限定理告诉我们,这类多随机因素作用的现象必然会收敛于某个正态分布的概率模型。因此,该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 现实中有许多随机变量都具有上述特点,比如,大炮的射程受到多种因素影响:炮身结构,炮弹外形,炮弹几炮弹内炸药质量,瞄准的误差,风速,风向的干扰,大炮的使用年限等等,其中每种因素的微小差异对总的影响作用都不大,并且可以看作是互相独立的、互相不影响的。每种因素都会引起一个微小的误差,而炮弹落点的误差就是这许多随机误差的总和所影响的。由此看出,研究随机变量和的极限对于搞清楚随机现象的本质有着极其的重要价值。 在生产和生活中,有许多随机变量的取值呈现出“中间多,两头少,左右对称”的特点。例如,一般来说我国北方男性身高在170厘米左右的居多,而高于180厘米和低于160厘米的较少。或者在生产条件不变的情况下产品的抗压强度、长度、等许多随机变量指标也都存在这样类似的情况。这样的随机变量所服从的分布就是所谓的“正态分布”。许多随机变量服从正态分布。 极限理论中的中心极限定理曾是概率论的中心课题。中心极限定理有很多形式。凡是关于随机变量的数目无限增多时,其和的分布函数在一定的条件下收敛于正态分布函数的任何论断,都称为中心极限定理。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理”。

抽样分布习题与答案

第 4 章抽样分布自测题选择题 1.抽样分布是指() A. 一个样本各观测值的分布C. 样本统计量的分布 B. 总体中各观测值的分布D. 样本数量的分布 2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为() 2 A. B. x C.2 D. n 3.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为() 2 A. B.x C.2 D. n 4.从均值为,方差为2 n 的样本,则()的任意一个总体中抽取大小为 A.当 n 充分大时,样本均值x 的分布近似服从正态分布 B.只有当 n<30 时,样本均值x的分布近似服从正态分布 C.样本均值 x 的分布与n无关 D. 无论 n 多大,样本均值x 的分布都是非正态分布 5.假设总体服从均匀分布,从该总体中抽取容量为 36 的样本,则样本均值的抽样分布() A. 服从非正态分布 B. 近似正态分布 C. 服从均匀分布 D. 服从 2 分布 6. 从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,则当样本容量增大时,样 本均值的标准差() A. 保持不变 B. 增加 C.减小 D.无法确定 7. 某大学的一家快餐店记录了过去 5 年每天的营业额,每天营业额的均值为2500 元,标准差为 400 元。由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100 天,并计算这100 天的平均营业额,则样本均值的抽样分布是() A. 正态分布,均值为250 元,标准差为40 元 B. 正态分布,均值为2500 元,标准差为40 元 C.右偏,均值为2500 元,标准差为400 元 D. 正态分布,均值为2500 元,标准差为400 元 8. 在一个饭店门口等待出租车的时间是左偏的,均值为12 分钟,标准差为 3 分钟。如果从饭店门口随机抽取 81 名顾客并记录他们等待出租车的时间,则样本均值的抽样分布是() A. 正态分布,均值为12 分钟,标准差为0.33 分钟 B. 正态分布,均值为12 分钟,标准差为 3 分钟 C. 左偏分布,均值为12 分钟,标准差为 3 分钟

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

第五章大数定律与中心极限定理习题

第五章 大数定律与中心极限定理 一、填空题: 1. 将一枚硬币连掷100次,则出现正面的次数大于60的概率约为 。 2.在概率论里,把研究在什么条件下,大量独立随机变量和的分布以 为极限这一类定理称为中心极限定理。 3.在天平上重复称量一重为a 的物体,假设各次称重结果相互独立且同服从正态分布)2.0,(2a N ,若以n X 表示n 次称重结果的算术平均值,则为使95.0)1.0(≥<-a X P n ,n 的最小值应不小于自然数 。 二、选择题: 1.设随机变量ξ服从参数为n ,p 的二项分布,则当∞→n 时,≈<<)(b a P ξ( )。 (A))()(a b Φ+Φ (B))()(00a b Φ+Φ (C))()(a b Φ-Φ (D)1)(20-Φb 2.设ξ为服从参数为n ,p 的二项分布的随机变量,则当∞→n 时,npq np -ξ一定服从 ( )。 (A)正态分布。 ( B)标准正态分布。 (C)普哇松分布。 ( D)二项分布。 三、计算题: 1. 对敌人的防御地段进行100次射击,每次射击中,炮弹命中数的数学期望为2,而命中数的均方差为1.5,求当射击100次时,有180颗到220颗炮弹命中目标的概率。 2.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布。(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)多少个数加在一起时的误差总和的绝对值小于10的概率为0.90?

2. 已知某工厂生产一大批无线电元件,合格品占 61,某商店从该厂任意选购6000个这种元件,问在这6000个元件中合格品的比例与6 1之差小于1%的概率是多少? 3. 一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准 差为5千克,若用最大载重量为5吨的汽车承运,试用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.9770? 4. 某工厂有400台同类机器,各台机器发生故障的概率都是0.02。假设各台机器工作是相 互独立的,试求机器出故障的台数不少于2的概率。

大数定理与中心极限定理典型题解

第四章 大数定理与中心极限定理典型题解 1. 计算器在进行时,将每个加数舍入,最靠近它的整数,设所有舍入误差 相互独立且在(-0.5,0.5)上服从均匀分布,将1500个数相加,问误差总和的绝对 值超过15的概率是多少? 解 设第k 个加数的舍入误差为 X k (k =1,2,…,1500),已知X k 在(-0.5,0.5) 1 1500 上服从均匀分布,故知E(X k ) =0,D(X k )=丄.记X =送X k ,由中心极限定理, 12 心 当n 充分时有近似公式 P{ 匸芒0 笄30} = P{30

实验十三 二项分布的计算与中心极限定.

实验十三二项分布的计算与中心极限定 [实验目的] 1.研究用Poisson逼近与正态逼近进行二项分布近似计算的条件 2.检验中心极限定理 §1 引言 二项分布在概率论中占有很重要的地位。N次Bernoulli实验中正好出现K次成功的概 率有下式给出b k;n,p C n k p k1p n k ,k=0,1,2,……..n.二项分布的 值有现成的表可查,这种表对不同的n及p给出了b(k;n.p)的数值。在实际应用中。通常可用二项的Poisson逼近与正态逼近来进行二项分布的近似计算。在本实验中,,我们来具体地研究在什么条件下,可用Poisson逼近与正态逼近来进行二项分布的近似计算。 在概率论中,中心极限定理是一个很重要的内容,在本实验中,我们用随即模拟的方法来检验一个重要的中心极限定理——Liderberg-Levi中心极限定理。 §2 实验内容与练习 1.1二项分布的Poisson逼近 用Mathematica软件可以比较方便地求出二项分布的数值。例如n=20;p=0,1;Table[Binomial[n,k]*p^k*(1-p)(n-k),{k,0,20}]给出了b(k;20,0.1)(k=0,1,2,…..,20)的值。 联系 1 用Mathematica软件给出了b(k;20,0.1),b(k;20,0.3)与 b (k;20,0.5)(k=0,1,2,…..,20)的值。 我们可用Mathematica软件画出上述数据的散点图,下面的语句给出了b(k;20.0.1)的(连线)散点图(图13。1): LISTpOLT[table[Binomi al[20,k]*0.1^k*0.9^(20-k), {k,0,20}],PlotJoined->True] 图13.1 b(k;20,0.1) b k;n,p C n k p k1p n k (k=1,1,2,……,20)的散点图 练习2绘出b(l;20,0.3)与b(k;20,0.5)(k=0,1,2,…,20)的散点图 根据下面的定理,二项分布可用Poisson分布来进行近似计算。 定理13。1 在Bernoulli实验中,以P n 代表事件A在试验中出现的概率,它与试验总数有关. 如果np n→→λ,则当n→∞时,b k;n,p k k e 。 由定理13,1在n很大,p很小,而λ=np大小适中时,有 b k;n.p c k n p k1p n k k k e

数理统计作业二__用数学实验的方法验证大数定理和中心极限定理

验证大数定理: 1、实验原理: 证明大数定理即证明样本均值趋近于总体均值。 2、实验步骤: ①在excel中,用公式 =RAND( )*9+1 生成2000个1到10之间的随机数。 ②选择样本的前50个,前100个,前150个…前2000个,分别求出均值。 ③利用excel作出上述求出值的样本均值折线图(图一)和总体均值折线图(图二): 图一 图二 从图一和图二中可以看出样本均值最终趋于水平,即趋于总体均值,大数定理得证。

验证中心极限定理: 1、实验原理: 证明中心极限定理即证明N个独立同分布的随机变量和的极限分布为正态分布。本次实验采用独立同分布于0-1分布B(1,0.5)的随机变量序列E k,k=1,2,3······来验证中心极限定理。因为E k, k=1,2,3······之间是独立同分布,所以 )5.0, ( ~ E n 1 k k n B ∑ =。由中心极 限定理可知,当n的取值足够大时,∑ = n 1 k k E 这一随机变量的分布与正太分 布具有很好的近似,下面用MATLAB软件分别画出n取不同值时∑ = n 1 k k E 的分 布及对应的正太分布的图像,通过对比这两条曲线的相似度来验证中心极限定理。 2、实验步骤: ①当n=10时,对应正态分布为N(5,2.5)。 MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: ⑤观察得出,当N足够大时,其密度函数服从正态分布,即满足 中心极限定理。

第五章 数定理与中心极限定理

第五章 大数定理与中心极限定理 ■考试内容 切比雪夫(Chebyshev )不等式 切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗—拉普拉斯(De Moivre —Laplace )定理 列维—林德伯格(Levy —Lindberg )定理 ■考试要求 1.了解切比雪夫不等式。 2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数 定律) 3. 了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独 立同分布随机变量序列的中心极限定理) 3大均2中和1不等(3个大数定理、2个中心极限定理和一个不等式)。 一、切贝雪夫不等式 1.1 切贝雪夫不等式及其应用范围 如果不知道X 属于何种分布,只要()E X 和()D X 存在,就可以估算出以()E X 为中心的对称区间上取值的概率。即:则任给0,ε>有 或 ●证 明:由积分比较定理可知: ()[]()[]()()(){} {}() {}() {}() 2 2 2()()2 2()2 2 2 ()()()()1()()1x E X x E X x E X D X x E X f x dx x E X f x dx f x dx f x dx P X E X D X P X E X D X D X P X E X P X E X ε ε ε εεεεεεεεεε∞ -∞ -≥-≥-≥=-≥-≥ ==-≥?-≥≤ ?--<≤ ?-<≥- ??? ? 1.2 依概率收敛的定义 设a 是一个常数,n X 为一随机变量序列, 0, {}1n P X a εε?>?-<=或{}0n P X a ε-≥=,

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

大数定理与中心极限定理典型题解

第四章 大数定理与中心极限定理典型题解 1.计算器在进行时,将每个加数舍入,最靠近它的整数,设所有舍入误差相互独立且在)5.0,5.0(-上服从均匀分布,将1500个数相加,问误差总和的绝对值超过15的概率是多少? 解 设第k 个加数的舍入误差为),1500,,2,1( =k X k 已知k X 在) 5.0,5.0(-上服从均匀分布,故知121)(,0)(==k k X D X E .记∑==15001 k k X X ,由中心极限定理,当n 充分 时有近似公式 )(}12115000 1500{x x X P Φ≈≤?-, 于是 {15}1{15}1{1515} 11[1[21]2(1.342)2[10.9099]0.1802. P x P x P X P >=-≤=--≤≤=-≤≤≈-Φ-Φ=-Φ=Φ=-= 即误差总和的绝对值超过15的概率近似地为1802.0. 2.有一批建筑房屋用的木柱,其中%80的长度不小于m 3,现在从这批木柱中地取100根,求其中至少有30根短于m 3的概率. 解 以X 记被抽取的100根木柱长度短于m 3的根数,则)2.0,100(~b X .于是由中心极限定理得 {30}{30} ()1(2.5)10.99380.0062. P X P X P ≥=≤<∞=≤<=Φ∞-Φ=-Φ=-= 3.将一枚硬币投掷49次,(I )求至多出现28次正面的概率;(II )求出现20-25次正面的概率.

解 以X 表示49次投掷中出现正面的次数,则有)2 1,49(~b X . (I )由中心极限定理得 8413.0)1()21214921 4928(}28{=Φ=??? -Φ≈≤X P ; (II )由中心极限定理得 112549204919{2025}()()770.55570.09850.4572.P X -? -?≤≤≈Φ-Φ=Φ-Φ-=-= 4.某厂有同号机器100台,且独立工作,在一段时间内每台正常工作的概率为8.0.求正常工作的机器超过85台的概率. 解 设ξ为100台中正常工作的机器数,则)8.0,100(~B ξ,且 16 ,80====ξξD npq E np . 由中心极限定理可得所求概率为 080808580{85}1{085}1{ }444 1[(1.25)(20)]0.1056.P P P ξξξ--->=-≤≤=-≤≤≈-Φ-Φ-= 5.一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50kg ,标准差5kg .若用最大载重量5t 的汽车承运最多可以装多少箱才能保障不超载的概率大于0.977. 解 设n 为每辆车所装的箱数,),,2,1(n i i =ε是装运的第i 箱的重量,且25,50==i i D E εε.n 箱的总重量 n εεεε+++= 21有n D n E 25,50==εε,由中心极限定理ε近似服从正态分布)25,50(n n N .现求使下面不等式成立的:n 977.0)101000(}5505000550{}5000{>-Φ≈-≤-=≤n n n n n n P P εε 查正态分布表得 2101000>-n n , 从而0199.98

第四章 大数定律与中心极限定理

第四章大数定律与中心极限定理 第一节大数定律 一、历史简介 概率论历史上第一个极限定理属于贝努里,后人称之为“大数定律”.1733年,德莫佛——拉普拉斯在分布的极限定理方面走出了根本性的一步,证明了时二项分布的极限分布是正态分布.拉普拉斯改进了他的证明并把二项分布推广为更一般的分布.1900年,李雅普诺夫进一步推广了他们的结论,并创立了特征函数法.这类分布极限问题是当时概率论研究的中心问题,卜里耶为之命名“中心极限定理”.20世纪初,主要探讨使中心极限定理成立的最广泛的条件,二三十年代的林德贝尔格条件和费勒条件是独立随机变量序列情形下的显著进展.在第一章已经指出,随机事件在大量重复试验中呈现明显的统计规律性,即一个事件在大量重复试验中出现的频率具有稳定性.这种稳定性的提法应该说是什么形式? 贝努里是第一个研究这一问题的数学家.他于是1713年首先提出后人称之为“大数定律”的极限定理. 二、大数定律 定理1(贝努里大数定律) 设是重贝努里试验中事件出现的次数,是事件在每次试验中出现的概率,则对任意的,有 证明:令表示在第次试验中出现的次数.若第次 试验中出现,则令;若若第次试验中不出现,则令.由贝 努里试验定义,是个相互独立的随机变量,且 而

于是 由契比晓夫不等式有 又由独立性知道有 从而有 这就证明了定理1. 若是随机变量序列,如果存在常数列,使得对任意的 ,有

成立,则称随机变量序列服从大数定律. 定理2(契比晓夫大数定律) 设是一列两两不相关的随机变量,又设它们的方差有界,即存在常数,使有 则对于任意的,有 证明:利用契比晓夫不等式,有 因为是一列两两不相关的随机变量,它们的方差有界,即可得到 从而有

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

大数定律与中心极限定理习题

第六章 大数定律与中心极限定理习题 一、 填空题 1.设n ξ是n 次独立试验中事件A 出现的次数,P 为A 在每次试验中出现的概率,则对任意的0>ε,有=≥-)(εξp n P n 。 2.设随机变量ξ,E ξ=μ,D ξ=2σ,则≥<-)2(σμξP 。 3.设随机变量ξ的方差为2,则根据切比雪夫不等式有估计≤≥-)2(ξξE P 。 4.在概率论里,把研究在什么条件下,大量独立随机变量和的分布以 为极限这一类定理称为中心极限定理。 5.将一枚硬币连掷100次,则出现正面的次数大于60的概率约为 。 6.在天平上重复称量一重为a 的物体,假设各次称重结果相互独立且同服从正态分布)2.0,(2a N ,若以n X 表示n 次称重结果的算术平均值,则为使95.0)1.0(≥<-a X P n ,n 的最小值应不小于自然数 。 二、选择题 1.设随机变量ξ服从参数为n ,p 的二项分布,则当∞→n 时,≈<<)(b a P ξ( )。 (A))()(a b Φ+Φ (B))()(00a b Φ+Φ (C))()(a b Φ-Φ (D)1)(20-Φb 2.设ξ为服从参数为n ,p 的二项分布的随机变量,则当∞→n 时,npq np -ξ一定服从 ( )。 (A)正态分布。 ( B)标准正态分布。 (C)普哇松分布。 ( D)二项分布。 三、计算题 1.对敌人的防御地段进行100次射击,每次射击中,炮弹命中数的数学期望为2,而命中数的均方差为,求当射击100次时,有180颗到220颗炮弹命中目标的概率。 2.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-,)上服从均匀分布。(1)若将1500个数相加,问误差总和

抽样技术上机实验_中心极限定理验证

均匀分布中心极限定律的实现: clc clear n=200000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; sigma=1/12; population=0:0.001:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-0.5)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%% 两点分布的实现: clc clear n=10000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; p=0.5; sigma=p*(1-p); population=0:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-p)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 两点分布1以概率0.4发生

中心极限定理实验仿真

中心极限定理的仿真实验 目的:模拟投掷一枚骰子出现的点数的试验,重复进行104次,统计出现的点数和,并将数据标准化处理后,画出频率直方图,通过观察比较验证数据的正态性。 所用的软件:Microsoft EXCEL 步骤如下: 1 打开excel软件,在A2格子中输入=INT(6*RAND())+1,按回车就会产生一个1-6中的某一个随机整数,并且出现1-6中每一个整数的概率是相同的。 2鼠标点击A2格子,并移动到格子的右下角,出现”+”后往下拖动鼠标直到出现A501时停下来,这样就得到了500个随机数据,都是在1-6中随机取值的。(当然你越往下拖,产生的随机整数越多,试验效果越好) 3 在第二列重复第1步和第2步,第三列,第四列……直到CZ列都和第二列同样操作,这样产生了104列随机数据。 4 在DB列分别求出每行数据的和,用的函数是“SUM”,接着依次求出500行数据的和。 5 复制DB列到DC列,注意值复制数值。 6 对DC列数据进行排序, 7对DC列数据进行标准化处理,即每个数据减去平均值再除以标准差(均值函数为average,样本方差函数为var)

8处理后的数据放在DE列。根据最大值和最小值,把数据分到20个区间,这里数据范围从-2.7到2.7,故每个区间长度为0.27,这样得到(-2.7,-2.43],……,(2.43,2.7)共20个区间(也可以分15个区间,这时区间长度为0.36)。 9统计每个区间里的数据个数,用函数countif(区域,条件),详见EXCEL文件。 10 画出频率直方图,大家可以看到,投掷104次骰子后出现的点数和数据标准化后出现标准正态分布的特征。 请大家按照以上方法,产生200列数据,每列1000个数据,按照以上步骤做好中心极限定理的仿真实验。按个步骤写出实验过程,并将计算结果或图标截图后放在每个步骤后面,完整一份实验报告。

概率论与数理统计第四章第四节 大数定理与中心极限定理

第四节 大数定理与中心极限定理 概率论与数理统计是研究随机现象统计规律性的学科. 而随机现象的规律性在相同的条件下进行大量重复试验时会呈现某种稳定性. 例如, 大量的抛掷硬币的随机试验中, 正面出现频率; 在大量文字资料中, 字母使用频率; 工厂大量生产某种产品过程中, 产品的废品率等. 一般地, 要从随机现象中去寻求事件内在的必然规律, 就要研究大量随机现象的问题. 在生产实践中, 人们还认识到大量试验数据、测量数据的算术平均值也具有稳定性. 这种稳定性就是我们将要讨论的大数定律的客观背景. 在这一节中,我们将介绍有关随机变量序列的最基本的两类极限定理----大数定理和中心极限定理. 教学目标:了解大数定理与中心极限定理。 教学重点:大数定理与中心定理。 教学难点:中心定理。 教学内容: 一、依概率收敛 与微积分学中的收敛性的概念类似, 在概率论中, 我们要考虑随机变量序列的收敛性. 定义1 设 ,,,,21n X X X 是一个随机变量序列, a 为一个常数,若对于任意给定的正数ε,有 ,1}|{|lim =<-∞ →εa X P n n 则称序列 ,,,,21n X X X 依概率收敛于a , 记为 ).(∞→?→?n a X P n 定理1 设,,b Y a X P n P n ?→??→?又设函数),(y x g 在点),(b a 连续, 则 ),(),(b a g Y X g P n n ?→?. 二、切比雪夫不等式 定理2设随机变量X 有期望μ=)(X E 和方差2)(σ=X D ,则对于任给0>ε, 有 22 }|{|ε σεμ≤≥-X P . 上述不等式称切比雪夫不等式. 注:(i) 由切比雪夫不等式可以看出,若2σ越小, 则事件 }|)({|ε<-X E X 的概率越大, 即, 随机变量X 集中在期望附近的可能性越大. 由此可见方差刻划了随机变量取值的离散程度. (ii) 当方差已知时,切比雪夫不等式给出了X 与它的期望的偏差不小于ε的概率的估计式.如取,3σε= 则有 .111.09}3|)({|2 2 ≈≤≥-σσσX E X P 故对任给的分布,只要期望和方差2σ存在, 则随机变量X 取值偏离)(X E 超过σ3的概率小于0.111.

《大数定律及中心极限定理》习题

大数定律及中心极限定理 习题十五 大数定律及中心极限定理 一、填空题 1.随机变量ΛΛ,,,,21n X X X 相互独立,且它们服从参数为2的指数分布,则当∞→n 时, 21 1∑=n i i X n 依概率收敛于 。 2.随机变量ΛΛ,,,,21n X X X 相互独立,且它们服从参数为λ的泊松分布,则}{ 1lim x n n X P n i i n ≤-∑=∞→λ λ= 。 3.设n Y 表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b Y a P n 。 二、选择题 1.设ΛΛ,,,,21n X X X 是相互独立的随机变量序列,n X 服从参数为n 的指数分布 ),2,1(Λ=n 。则下列选项中不服从切比雪夫大数定律的随机变量序列是( ) 。 A 、 ΛΛ,,,,21n X X X B 、ΛΛ,,,2,2221n X n X X C 、 ΛΛ,1,,21,21n X n X X D 、ΛΛ,,,2,21n nX X X 2.设随机变量ΛΛ,,,,21n X X X 独立同分布,其分布函数为: )0(arctan 1 )(≠+=b b x a x F π 则辛钦大数定律对此序列( )。 A 、适用 B 、当常数a,b 取适当数值时适用 C 、不适用 D 、无法判断 3.设n X X X ,,,21Λ是相互独立的随机变量,∑==n i i n X S 1,则根据独立同分布的中心极限 定理,当n 充分大时,n S 近似服从正态分布,只要n X X X ,,,21Λ( )。 A 、有相同的数学期望 B 、有相同的方差 C 、服从同一指数分布 D 、服从同一离散型分布 三、设某工厂生产的零件的合格品率为90%。 1.如果每箱装100个零件,求其中合格品数不少于95个的概率;

中心极限定理证明

中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此

故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有的把握使出现六点的概率与之差不超过,问需要抛掷多少次 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解:

中心极限定理

心极限定理(上) 骰子和生日 了解中心极限定理 马克.吐温讽刺道:有三种避免讲zhenxiang的方式:谎言,该死的谎言和统计数据。这个笑话很中肯,因为统计信息频繁地看似一个黑匣子——了 解统计定理怎样让通过数据取得结论变成可能,这是有难度的。 但因为不论是喷气发动机可靠性还是安排我们平日看的电视节目的流程,数据分析,类似的任何事情中都扮演着重要角色,所以至少获取对统 计基本理解是重要的。要了解其中一个重要概念是中心极限定理。 在这篇文章中,我们将解释中心极限定理,通过普通的例子,诸如掷骰子和美国职业棒球联赛球员生日来展示如何操作它。 定义中心极限定理 某典型课本对中心极限定理的定义如下:

当样本容量增加时,样本均值X的分布接近均值等于μ,标准差σ/√n 注: μ是总体均值 σ是总体标准差 n是样本大小 换句话说,如果我们多次采用大小为n的独立随机抽样,那么当n足够大的时,样本平均值的分布就接近正态分布。 那么多大才是足够大呢?一般来说,样本容量大于或者等于30认为是足够大,此时中心极限定理起作用。如果总体分布越要接近正态分布,那么需要更多的样本来使用该定理。对于严重不对称的或者有几个模板的总体来说,也许要求更大的样本。 为什么有关呢 从一个总体中收集所有的数据是很难操作或者不可行的,统计学就是基于这个情况产生的。换种方式来做,我们可以从总体中获取数据的子集,然后对这个样本进行统计分析,以得到总体的结论。 举例来说,我们可以从工业生产流程中收集多个随机样本,然后使用各个样本的平均值来推断整个过程的稳定性。 2个常用于解释总体的特征值分别是平均值和标准差。当数据遵循正态分布,均值表示分布的中心位置,标准差揭示分布情况。

大数定律和中心极限定理 应用题

大数定律和中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

相关主题
文本预览
相关文档 最新文档