当前位置:文档之家› 心肌肥厚动物模型建立方法研究进展

心肌肥厚动物模型建立方法研究进展

心肌肥厚动物模型建立方法研究进展
心肌肥厚动物模型建立方法研究进展

心肌肥厚动物模型建立方法研究进展

摘要目的:综述心肌肥厚(CH)动物模型的建立方法,为CH类疾病的研究和临床治疗提供参考。方法:以“心肌肥厚”“动物模型”“Cardiac hypertrophy”“Model”等组合作为关键词,在中国知网、 PubMed等数据库中检索相关文献,筛选2004-2014年有关CH动物模型建立方法的内容,综述常用模型的基本原理、制备方法及特点等。结果与结论:共查阅到376条文献,其中有效文献29条。目前常用的CH动物模型建立方法有物理法(包括压力超负荷法致CH、容量负荷法致CH、心肌梗死致CH、运动诱导致CH)、化学法(包括药物诱导法致CH)和生物法(包括转基因型CH、自发性高血压大鼠模型致CH)等。其均可模拟CH,而CH原理、制备方法和模型特点各异。在CH动物模型中,大鼠易饲养、经济、抗感染力强,常作为首选造模动物,常用鼠种为SD大鼠及小鼠,雌雄均可。在现有成模方法中,压力超负荷法制作慢性CH模型,手术操作简单方便、重复性好、造价低廉,最为常用;转基因动物模型对人类疾病的模拟程度更高,但耗时长,费用昂贵,可能成为未来的发展方向。

关键词心肌肥厚;动物模型;建模方法;转基因

心肌肥厚(CH)是心肌细胞对多种病理刺激的一种适应性反应。在早期,CH因心室壁增厚、心肌收缩功能改善而被视为代偿性过程 [1];但在持久病理性应激情况下, CH伴随间质纤维化、收缩功能失调以及基因表达、能量代谢和电生理特征异常,最终导致失代偿性心功能衰竭,严重危害人体健康。目前认为, CH是心血管疾病的一种常见并发症,已被列为引起心血管疾病发生率和病死率显著升高的独立危险因素[2]。其发生机制复杂,至今仍未完全阐明,而对CH的发生机制及治疗方法等研究常用动物实验进行,因此复制动物模型成为目前国内外从事CH研究的常用手段。本文拟以“心肌肥厚”“动物模型”“Cardiac hypertrophy”“Model”等组合作为关键词,在中国知网、 PubMed 等数据库中检索相关文献,筛选2004-2014年有关CH动物模型建立方法的内容。结果共查阅到376条文献,其中有效文献29条。现根据物理法、化学法和生物法等基本造模方法,对常用CH动物模型的基本原理、制备方法及特点等进行综述,为CH类疾病的研究和临床治疗提供参考。

1 物理法

物理法是指通过外界机械力、气压、温度、光和声音等条件的改变,诱发动物形成某一疾病的造模过程,主要包括压力超负荷法、容量负荷法、心肌梗死致CH和运动诱导致CH。其中,前3种均采用手术方式复制CH模型,具有成模时间短、操作方便、重复性好、价格较低等优点,但会给动物造成极大的痛苦;后者通过有规律的运动复制CH模型,能较好地模拟人类CH疾病发展过程,但造模时间较长、操作较烦琐。

1.1 压力超负荷法致CH

压力超负荷法的机制为促使大鼠血压升高或主动脉狭窄导致心脏后负荷增加,心脏运作耗氧量增加,心肌内交感神经末梢去甲肾上腺素释放增高,血管紧张素Ⅱ(AngⅡ)等体液因素参与,导致其心肌代谢紊乱、左心室重构,最终产生CH [3]。

一般可选择在大鼠升主动脉、主动脉弓和腹主动脉处进行主动脉缩窄手术,建立压力超负荷疾病的动物模型。该法具有成模时间短、操作方便、重复性好、价格较低等优点,已成为最常用的一种造模方法,但大鼠术后早期死亡率较高(约20%~30%),据认为与急性心功能不全有关[4]。

1.1.1 主动脉弓缩窄法(TAC)致CH TAC是采用微创方法,

在小鼠无名动脉和左颈总动脉之间结扎主动脉弓,通过构建不同程度的主动脉弓缩窄,造成中度或重度左心室流出通路机械梗阻, 4周后可形成较明显的左心室CH。采用该法构建不同程度的主动脉缩窄模型,具有重复性好、效果确切、术后小鼠存活率高等特点,是一种值得推荐的方法[5]。

1.1.2 升主动脉缩窄法致CH 该法系将SD大鼠麻醉后,行气管插管,并用呼吸机进行辅助呼吸[6]。具体做法是:取大鼠左胸前外切口,于第2~3肋间无菌操作下开胸,用开胸器撑开切口,暴露升主动脉,将主动脉结扎于8号针头上,随后将针头退出即可。造模10周后超声心动图检测显示,大鼠左心室呈典型的向心性肥厚病理改变。该法逐渐增加的后负荷与临床心力衰竭的演变过程更为接近,因此适于CH-心力衰竭转变机制的研究,可为药物干预逆转CH、心力衰竭及基因治疗提供理想的研究对象。

1.1.3 腹主动脉缩窄法致CH 国外学者 [7-8] 采用SD大鼠,在略高于右肾动脉处进行腹主动脉暴露及分离,并结扎在8号针头上,结扎后退出针头。术后饲养,经过超声心动图检测,发现在第4周末舒张期室壁厚度明显增加,表明造模成功。国内学者对大鼠腹主动脉狭窄高血压CH模型进行了优化,对雄性Wistar大鼠腹腔麻醉后,在腹左侧左肋弓下缘0.5 cm、脊柱前0.5 cm处行1.5~

2.0 cm纵切口,结扎在8号针头上,结扎后退出针头。术后4周大鼠心脏系数和心肌肥大指数已增大,病理切片显示心肌细胞肥大。既往的腹正中切口术式,手术切口长3~4 cm,需拨开胃肠等内脏器官显露后腹膜,破坏后腹膜方能暴露腹主动脉,术式创伤性较大,易造成腹腔感染。而手术切口的优化避免了传统的正中切口或左侧斜切口术式,减少了动物的损伤,使动物存活率提高,手术难度也减小[9] 。

1.1.4 肾性高血压大鼠致CH 黄帧桧等 [10] 选用雄性SD大鼠,

以25%乌拉坦3 ml/kg腹腔注射麻醉后,分离大鼠的左肾动脉,放置内径为0.2 mm的银夹并固定,术后4周经检测造模成功。肾性高血压大鼠造模是对大鼠肾动脉缩窄,造成肾脏缺血,使肾内产生肾素,增加血内的AngⅡ含量,致使高血压形成、长期刺激而产生CH。其优点在于和人类的病理模型相近, CH

逐渐形成,高血压较稳定,形成CH模型也不太困难,因此常被用作研究模型。肾性高血压大鼠模型在肾动脉狭窄时应注意肾动脉狭窄的程度,松紧度应适宜:过松则血压不会升高,导致CH不能形成;过紧则会造成肾脏坏死,也不能形成CH。因此,使血流量减少原水平的50%~70%较为合适。

1.2 容量负荷法致CH

容量负荷法是持续增加动物心室内血容量,容量超负荷一般出现在患有二尖瓣返流、主动脉返流、动静脉畸形和其他一些先天性心脏病的动物体内。出现以上状况时,心脏须增大压力将一定量的血液泵出和对抗血液的返流压力。随着前负荷的增加,长时间刺激就会导致心脏舒张末期容量增加,最终引发CH。

1.2.1 动静脉造瘘法(ACF)致CH ACF通过造成动物动静

脉短路,使回心血量增加,导致血流动力学过载引起右心室肥大。此方法一般采用大鼠腹部正中切口后,于肾动脉下分离出腹主动脉和下腔静脉,用血管夹分别夹在肾动脉起始部下方约2~3 mm和腹主动脉分叉处,阻断动、静脉血流。用9号静脉注射针斜向上刺穿下腔静脉壁,继续刺穿动静脉联合壁,鲜红色血液流出。退针后,用9~0无损伤缝线缝合静脉壁创口。松开血管夹,下腔静脉变红,证明造瘘成功 [11] , 4~5周即形成CH模型。Cantor EJ等 [12]采用此模型进行了压力超负荷与容量超负荷相关性比较,结果表明压力超负荷与容量超负荷都会对CH产生代偿性的调节作用,但其所引起的心脏结构与功能变化有所差异。

1.2.2 二尖瓣返流(MR)致CH MR常用犬或羊作为实验动物,通过断裂动物瓣膜上的腱索来破坏二尖瓣。腱索断裂可采用胸内或开胸技术来完成。在胸内模型中,需借助超声定

位,用心肌活检钳钳夹二尖瓣前叶缘上一条腱索,并将其咬断,术后饲养待模型形成。在开胸模型中,需将正中胸骨切开,切除心包,然后可通过切开心房或用金属器械插入左心室心尖来破坏腱索使二尖瓣关闭不全。有报道称,选用杂种健康犬MR之后,因肾上腺素和去甲肾上腺素等神经体液分泌释放到心肌细胞间液中, 4周后可观察到左心室舒张末期的内径和收缩指数明显增加[13] 。MR造模成型时间较长、成本较高,而且动物的死亡率和并发症发生率均较高[14]。

1.3 心肌梗死致CH

心肌梗死致CH常采用冠状动脉结扎、堵塞冠状动脉或促进冠状动脉血栓形成等方法阻断冠状动脉血流,使相应供血部位心肌发生缺血坏死;非缺血区心室肌由于心室内压增高,心室壁牵张力增加,同时心肌局部和循环肾素-血管紧张素系统激活以及心脏交感张力提高等导致CH。冠状动脉有利于定位、定性、定量,有利于形态、功能、化学等指标观测动态研究,是目前应用比较广泛的心肌梗死致CH模型研究方法。选取SD大鼠,麻醉开胸后,在其左心耳下2 mm 处结扎冠状动脉左前降支,逐层关胸,术后饲养。Henderson KK等 [15]报道,

左前降支结扎后1周即可形成CH。该实验关键在于要注意结扎的位置及梗死的程度,需要一定的操作技巧与熟练度。

1.4 运动诱导致CH

运动诱导是通过使动物进行有规律的有氧训练来增强其心脏功能并诱导CH。目前已运用的有跑台训练、跑轮训练和游泳训练法。其均由长期运动、全身血流需求增加、心脏泵血能力得到锻炼和提高、心肌耗氧量增加、代偿性增大射血量、心肌增大以提高泵血能力,最终导致CH。

1.4.1 跑台训练致CH 研究表明,小鼠在跑台上进行持续的强烈运动并不能形成明显的CH,这可能是持续的强烈运动使其运动能力得到提高,导致运动训练中压力负荷减小的缘故[16]。

Kem OJ等[17]将小鼠放在跑台上进行有氧间断性训练,第4周即形成CH,其左心室和右心室体积增加25%~35%, 7~13周后心肌直径增加15%。

1.4.2 跑轮训练致CH 跑轮训练是在跑轮上施加适量的阻力,让大鼠在跑轮上自主训练,无外界刺激与干扰。跑轮训练在2~4周跑步距离达到高峰,为10~15 km/d;此后降低至<4km/d。依照此方法,完全的CH可在3~4周被观察到[18]。

1.4.3 游泳训练致CH 将大鼠放入水箱,让其负荷游泳,游泳时间无固定标准。研究显示,进行每周5 d、 200 m/d、共12周的训练,能观察到明显的CH 现象[19]。国内学者[20] 使用类似方法,选用SD大鼠,每日使其游泳2次、 1 h/次、每周5 d、共8周,结果可见显著的CH发生。

运动诱导法是由耐力运动训练诱导的生理性CH和重构,被认为对心功能是有益的 [21] 。在诱导CH中,同样伴随心肌细胞体积的增大和新生肌小节的形成,但很少出现心肌纤维化、细胞坏死和凋亡,并不会失代偿或转变为心力衰竭。

2 化学法

化学法是使用各种化学试剂或药物对动物机体产生直接或间接(通过代谢产物)作用,由此诱发动物疾病模型。化学法诱发CH主要为药物诱导法,具有操作简单、耗时少、形成快、心肌病变明显、动物死亡率低的优势,并能模拟机体肾上腺素分泌量增加导致CH的病理过程。

具体来说,药物诱导主要通过注射给药或植入渗透泵等方式,持续性地给予某种药物,使受试动物在药物的持续刺激下诱发CH。其机制是通过激活动物肾上腺素促进信号转导通路和多种神经内分泌激素的形成,如去甲肾上腺素(NE)、异丙肾上腺素(ISO)等儿茶酚胺类能激动α、β受体,刺激心肌细胞内调节蛋白DNA的合成,促进蛋白合成、胶原沉着、心肌纤维化,最后出现CH。

白崇峰等 [22]选用SD大鼠,采取腹腔注射去甲肾上腺素1.5 mg/kg、每日2次、持续28 d形成CH模型; Chowdhury D等[23]以ISO皮下注射、 5 mg/kg、1 次/d、 14 d得到SD大鼠CH模型;Takeshita D 等[24]利用皮下植入 ISO 渗透泵方式,考察了 1.2mg/ (kg · d)、 3 d和1.2 mg/ (kg · d)、 7 d不同剂量的ISO对CH的影响,结果显示3 d和7 d不同ISO剂量诱导的CH 形状和功能无显著性差异, 3 d的ISO剂量足以诱发CH。

3 生物法

生物法主要指通过动物自身的遗传因素和转基因技术获得某种疾病模型的方法。该法复制CH模型主要有自发性高血压大鼠(SHR)模型和转基因CH动物模型。

3.1 SHR模型

SHR多由基因遗传决定。SHR大鼠在出生后,血压随着鼠龄的增长而不断升高,4周龄时大鼠的心肌质量即开始增加, 3~4个月时血压即已稳定升高, CH亦加重, SHR CH以左心室肥厚为主,但亦可能伴发肺动脉高压及右心室肥厚。有研究表明, SHR大鼠至14周龄时会出现明显的左心室肥厚, 24周时进一步加剧,但差异并不明显[25]。Rysa J等[26] 通过对SHR大鼠基因表达的观察,发现编码细胞外基质蛋白基因表达的增加与CH的发展有一定联系。

3.2 转基因型CH

转基因动物维持着遗传背景的高度真实,故通过转基因动物研究得出的结论具有其他实验系统所不具备的真实性;同时,转基因动物也是新的治疗方法研究体系和新的药物筛选系统。转基因型CH模型的建立为CH等心血管疾病的研究提供了更新、更全面的舞台。

3.2.1 肌球蛋白突变模型肌球蛋白由2条重链(MHC)和2条轻链(MLC)组成, MHC分α、β 2种亚型。小鼠α-MHC基因第403密码子产生错义突变,即R403Q。小鼠模型表现为肌细胞排列紊乱、纤维化、心脏功能障碍,且雌性的病理变化比雄性更显著, CH局限于左心房。R403Q是首个发现的与家族性心肌病(FHC)相关的突变基因。Lowey S等 [27]研究显示,在小鼠α-MHC和β-MHC 中R403Q突变将对CH产生相反的作用:小鼠α-MHC中R403Q突变使小鼠肌动蛋白丝滑行速度增加,而β-MHC中R403Q突变的小鼠肌动蛋白丝滑行速度下降。

3.2.2 肌球蛋白结合蛋白C (MYBPC)突变模型 MYBPC突变可导致CH,突变类型为插入、缺失或剪接位点突变,导致肌球蛋白和肌联蛋白结合位点缺少。Cheng Y等[28]通过基因敲除技术,将小鼠心肌上MYBPC基因敲除,导致肌小节收缩功能障碍和结构破坏,从而影响小鼠心肌收缩与心室结构改变,证实MYBPC基因敲除会影响心肌收缩和心室重构,诱发代偿性心肌肥大。

3.2.3 肌钙蛋白T突变模型董伟等[29]用反转录-聚合酶链反应扩增人心肌肌钙蛋白T (cTnT)全长互补DNA (cDNA),用点突变方法使cDNA在275碱

基产生G→A的突变,编码的氨基酸由精氨酸(Arg)突变为谷氨酰胺(Gln),将cTnT R92Q (cTnT基因第92密码子产生错义突变,即R92Q)基因克隆入小鼠心脏特异表达的α-MHC的下游构建cTnT R92Q转基因载体。然后,用显微注射法将线性化的转基因载体注射到C57BL/6J (小鼠品系,纯系)小鼠的受精卵中。待小鼠出生后9月龄cTnTR92Q转基因小鼠的心脏进行病理解剖,观察到cTnT R92Q转基因小鼠的心脏明显大于同窝阴性小鼠,表明CH造模成功。转基因动物模型在分子、细胞和整体水平上有机结合起来,为研究人类疾病、揭示各个基因的各种功能起到了重大作用;而且,转基因动物模型的建立为人类疾病的深入研究开辟了新的思路,有助于认识疾病的本质、确定治疗方案及药物开发。但同时,转基因动物模型研究耗时较长、费用昂贵,因而受到了一定限制。

4 结语

近年来,国内外学者采用物理、化学、生物等方法建立的各种CH动物模型,均能较好地模拟人类心肌疾病的发病过程,并随着研究不断深入,实验的成功率、仿真度等都在逐渐提高。在这些模型中,目前使用最广的是通过部分缩窄主动脉这一经典的造模方法,是目前研究CH较为理想的模型。此外,转基因CH小鼠也逐渐参与到CH疾病研究的过程中来,为研究CH提供了一种新的工具,并且在分子水平更深的层次上实现CH疾病模型的复制,突破了传统造模方式受外界因素的干扰。转基因CH小鼠模型的建立在其功能及与疾病关系的研究中具有广阔的应用前景。笔者相信,随着人类对转基因技术理论与实践研究的深入,转基因动物模型可能将会成为未来发展的方向。

参考文献

[ 1 ] Yang FY, Liu Z, Wang YJ, et al. Hydrogen sulfide endo-thelin-induced myocardial hypertrophy in rats and themechanism involved[J]. Cell Biochem Biophys, 2014, 70

(3): 1 683.

[ 2 ] Zhang L, Mmagu O, Liu L, et al. Hypertrophic cardiomy-opathy:can the noninvasive diagnostic testing identify high risk patients?[J]. World J Cardio, 2014, 6 (8): 764.

[ 3 ] 李峰,冯耀光.大鼠心肌肥厚模型概述[J].中国现代医生,2010, 48 (32): 6.

[ 4 ] Ezequiel JM, Jon P, Dipin G, et al. Novel experimentalmodel of pressure overload hypertrophy in rats[J]. J SurgiRes, 2009, 153 (2):287.

[ 5 ] 徐洪,臧旺福.微创建立主动脉弓缩窄动物模型及超声评价[J].中华胸心血管外科杂志, 2012, 28 (9): 544.

[ 6 ] 周亚光,屠恩远,王照华,等.大鼠胸主动脉缩窄诱导心肌肥厚模型的建立[J].中国比较医学杂志, 2008, 18 (12):21.

[ 7 ] Kompa AR, Wang BH, Phrommintikul A, et al. Chronicurotensin Ⅱreceptor antagonist treatment does not alterhypertrophy or fibrosis in a rat model of pressure-over-load hypertrophy[J]. Peptides, 2010, 31 (8): 1 523.

[ 8 ] Phrommintikul A, Tran L, Kompa A, et al. Effects of a Rho kinase inhibitor on pressure overload induced cardiac hy-pertrophy and associated diastolic dysfunction[J]. Am J Physiol Heart Circ Physiol,2008, 294 (4pt2): H1 804.

[ 9 ] 王彦珍,孙胜,蔡莉蓉,等.大鼠腹主动脉狭窄高血压心肌肥厚模型的优化[J].军医进修学院学报, 2004, 25 (3):231.

[10] 黄帧桧,张培,杨帆,等.葛根素对肾性高血压大鼠ape-lin-12、 Ang Ⅱ及NO含量与血压的影响[J].中国病理生理杂志, 2011, 27 (12): 2 323.

[11] Vélez JM, Chamorro GA, Calzada CC, et al. A study of prevention and regression of cardiac hypertrophy with a prolactin inhibitor in a biological model of ventricular hy-pertrophy caused by aorto caval fistulae in rat[J]. Cardio-vasc Pathol, 2013, 22 (5): 357.

[12] Cantor EJ, Babick AP, Vasanji Z, et al. A comparative seri- al echocardiographic analysis of cardiac structure and function in rats subjected to pressure or volume overload [J]. J Mol Cell Cardiol, 2005,38 (5): 777.

[13] Hankes GH, Ardell J, Wei CC, et al. Beta1-adrenoceptorblockade mitigates excessive norepinephrine release into cardiac interstitium in mitral regurgitation in dog[J].Ameri J Physiol, 2006, 291 (1): H147.

[14] Leroux AA, Moonen ML, Pierard LA, et al. Animal mod-els of mitral regurgitation induced by mitral valve chordate tendineae rupture[J]. J Heart Val Dis, 2012, 21 (4): 416.

[15] Henderson KK, Danzi S, Paul JT, et al. Rhysiological re-placement of T3 improves left ventricular function in an animal model of myocardical infarction-induce congestive heart failure[J]. Circ Heart Fail, 2009,2 (3): 243.

[16] Bellafiore M, Sivverini G, Palumbo D, et al. Increased cx43 and angiogenesis in exercised mouse hearts[J]. Int J Sports Med, 2007, 28 (9): 749.

[17] Kem OJ, Ceci M, Condorelli G, et al. Myocardial sarco- plasmic reticulum Ca 2 + ATPase function is increased by aerobic interval training[J]. Eur J Cardiovasc Prev Reha-

bil, 2008, 15 (2): 145.

[18] Konhilas JP, Maass AH, Luckey SW, et al. Sex modifies exercise and cardiac adaptation in mice[J]. Am J Physiol,2004, 287 (6): H2 768.

[19] Radovits T, OláhA, LuxA, et al. Rat model of exercise-in- duced cardiac hypertrophy:hemodynamic characteriza-tion using left ventricular pressure-volume analysis[J].Heart Circul Physiol, 2013, 305 (1): H124.

[20] 余良主,韩璐,王柏军,等.牛磺酸对游泳训练诱导大鼠心肌肥厚的影响[J].湖北科技学院学报, 2013, 27 (3): 185.

[21] 徐同毅,韩庆奇,张本,等.长期被动跑轮运动诱导建立大鼠生理性心肌肥厚模型[J].第二军医大学学报, 2014, 35(7): 697.

[22] 白崇峰,黎涛,马春山,等. 5-HT2β受体阻断剂在去甲肾上腺素诱导大鼠心肌肥厚中的作用[J].实用医药杂志,2012, 29 (2): 149.

[23] Chowdhury D, Tangutur AD, Khatua TN, et al. A pro-teomic view of isoproterenol induced cardiac hypertro- phy:prohibitin identified as a potential biomarker in rats[J]. J Transla Med, 2013, 11 (1): 130.

[24] Takeshita D, Shimizu J, Kitagawa Y, et al. Isoproterenol-induced hypertrophied rat hearts: does short-term treat-ment correspond to long-term treatment?[J]. J Physioll Sci, 2008, 58 (3): 179.

[25] 黄朝阳,刘忠,朱建华,等.细胞外调节激酶的表达及活化在不同年龄自发性高血压大鼠心肌肥厚中的作用[J].浙大学学报, 2005, 34 (6): 542.

[26] Rysa J, Leskinen HM, Ruskoaho H, et al. Distinct upregu-lation of extracellular matrix genes in transition from hy-pertrophy to hypertensive heart failure[J]. Hypertension,2005, 45 (5): 927.

[27] Lowey S, Lesko LM, Rovner AS, et al. Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an alphaor beta-myosin heavy chain backbone [J]. J Biol Chemis, 2008, 283 (29):20 579.

[28] Cheng Y, Wan X, McElfresh TA, et al. Impaired contrac-tile function due to decreased cardiac myosin binding pro-tein C content in the sarcomere[J]. Am J Physiol Heart Circ Physiol, 2013, 305 (1): H52.

[29] 董伟,冯娟,全雄志,等. cTnTR92Q转基因小鼠肥厚型心肌病模型的建立[J].中国比较医学杂志, 2008, 18

慢性心理应激大鼠模型的建立及评价研究进展

[收稿日期]2009-03-17 [基金项目]安徽省教育厅自然科学研究资助项目(K J 2008B 318)[作者单位]蚌埠医学院第一附属医院心内科,233004[作者简介]王 寅(1981-),男,硕士研究生,住院医师. [文章编号]1000-2200(2010)02-0206-03 综 述 慢性心理应激大鼠模型的建立及评价研究进展 王 寅 综述,王洪巨 审校 [关键词]应激,心理学;动物模型;大鼠;综述[中国图书资料分类法分类号]R 395 [文献标识码]A 随着社会环境和生活方式的改变,工作压力增加,生活节奏加快,心理应激因素参与疾病的发生、发展得到广泛重视。心理应激触发机体产生的生理学效应包括急性自主神经功能不全、神经内分泌激活、血流动力学改变和引发炎症反应过程。因此,研究心理因素在疾病发生、发展和康复过程中的作用,具有重要的意义。慢性心理应激动物模型在医学研究领域发挥着越来越重要的作用,大量用于临床药物的筛选和评价,并且通过这些慢性心理应激动物模型了解临床疾病的病理生理机制,发生、发展以及对疾病的预后评估都有不可替代的作用。目前对于心理应激模型还没有统一的标准,现将主要的几类心理应激动物模型及其评价方法作一综述。 1 慢性抑郁型动物模型 抑郁是一种以情绪低落,思维迟钝,行为迟缓为主要症状的精神疾病,同时可伴有睡眠减少,体重降低等躯体症状。1.1 模型制作 1.1.1 慢性温和的不可预知性应激(chron ic m ild stress ,C M S) 由K atz 等 [1] 于1981年创立,但缺点较多,如过强的 应激刺激常导致动物死亡。由W ill ner 等[2-3] 对其进行改 进,是目前应用和研究较多的一种抑郁症模型。让大鼠在2~4周内每天经历一种不愉快的轻度应激,包括冷水游泳(4 ,5m i n),电击(电流强度1.0mA,频率1次/分),热环境(45 ,5m in),日夜颠倒,闪光刺激(频率3次/分),禁食,禁水,夹尾(1m in)等刺激。每种刺激形式不连续2天出现,形成一种CM S ,避免动物对同一种刺激产生适应。1.1.2 束缚应激模型 慢性束缚模型[4-5] 是将动物限制在 一个狭小的容器内(直径5cm ,长20cm ),使动物产生无助 或抑郁,每次刺激时间约1h 。 1.1.3 行为绝望(behav i oural despair ,BD )模型 亦称之为 强迫游泳模型 (f o rced s w i m m i ng test ,F S T ),由Porso lt 等1977年建立,被R enard 等[6-7]应用,是将大鼠(或小鼠)置入盛水的环形玻璃缸内强迫游泳。动物最初在水中拼命游动、挣扎,试图逃脱,随之感到逃脱是不可能的,便不再挣扎和游动,仅将头部露出水面,肢体漂浮,维持一种不动状态,称之为 BD 。由此衍生出小鼠的悬尾模型(tail suspension test ,T ST ),是将小鼠尾部悬挂,悬尾小鼠为克服不正常体位而挣 扎活动,但活动一定时间后,出现间断性不动,显示 绝望 状态[7-8]。 1.1.4 其他类型 如药物诱发的抑郁模型[9],孤养模型[10]等抑郁模型。 1.2 模型行为评分 目前尚无公认的经典测量抑郁情绪的测验,在各种抑郁模型动物中主要通过以下试验测量抑郁水平:多用敞箱试验[1]进行行为测评,表现为大鼠自发性探究行为明显减弱,运动能力降低。体重减轻、性行为减少、血浆中糖皮质激素升高,睡眠周期紊乱。同时发现老鼠天生偏好糖水的兴趣下降,运用糖水消耗试验测定24h 饮用1%蔗糖溶液的量,若糖水消耗显著降低,表示抑郁模型造模成功[2]。1.3 模型评价 上述抑郁模型可用于抗抑郁药物的筛选及抑郁病理生理机制的研究,因其采用的刺激因子类似人在生活中经历的应激事件强度,较好地模拟了人类快感缺乏、兴趣降低这一核心症状,并且模型稳定持久,作为抑郁应激模型是理想的。2 焦虑动物模型 焦虑是事先知道但又不可避免的、即将发生的应激性事件引起的一种预期反应,以恐惧、担心、紧张等精神症状为主要表现,同时伴心悸、多汗、手脚发冷等植物神经功能紊乱,其核心症状为担忧。2.1 模型制作 2.1.1 间氯苯哌嗪(mCPP)诱导焦虑的明暗箱模型 1998 年B ilke -i Go rz 等[11]建立了W istar 大鼠mCPP (2.5m g /kg)诱导焦虑的明暗模型,焦虑症状是通过对动物进入明箱的次数明显减少表现的。谭德讲等[12]用ddy 小鼠取代W i star 大鼠建立mCPP 诱导焦虑的明暗箱模型,是一个简便易行,经济有效的焦虑模型。 2.1.2 V oge l 饮水冲突试验和条件性电击饮水冲突是将动物的饮水行为和不确定的电击结合起来,动物如果想满足饮水的需要就可能受到电击的创伤,由此造成动物在饮水和避免电击之间的冲突,产生焦虑反应[13]。而条件性电击模型中,将某种信号和电击随机结合起来,信号出现后可能会出现电击,也可能不出现电击,动物处于期待性焦虑反应[14]。2.1.3 社会行为模型 该类模型包括天敌暴露[15]、社会隔离、母爱剥夺[16]等。天敌暴露模型是将动物暴露于对其生命有强烈威胁的另一动物面前,天敌就会进行猛烈的进攻, 而造成其焦虑水平的提高。但这一模型往往会对试验动物造成创伤,故多采用可视天敌暴露和天敌气味暴露等模型。2.2 模型行为评分标准 经典的测量动物焦虑反应的方法是高架十字迷宫试验[17]和敞箱试验。高架十字迷宫试验是 206 J Bengbu M ed Co l,l Februar y 2010,Vo.l 35,N o .2

园林景观模型设计与制作方法

园林景观模型设计与制作方法 2014-07-03 10:00:26 摘要:随着人民生活水平的提高,城市建设速度加快,老百姓越来越关心我们的周边环境,尤其是居住区的环境。以当前城市居住区景观规划设计作为研究对象,分析居住区户外环境景观规划设计的原则和方法,致力改善和提高居民的户外生活质量。 关键词:设计导则,场所,景观,以人为本 居住区绿化是城市绿化的重要组成部分,最接近居民,与居民日常生活关系最为密切,它对提高居民生活环境质量,增进居民的身心健康至关重要。居住区的绿化水平,是体现城市现代化的一个重要标志。居住区绿地在城市园林绿地系统中分布最广,是普遍绿化的重要方面,是城市生态系统中重要的一环。随着城市现代化进程步伐的加快,居住区的绿化水平也应相应的提高,以更好地满足人们对环境质量的不同要求。因此,加强居住区绿化建设首要的任务是必须做好设计。提高设计水平应在尊重传统、尊重科学基础上摈弃原有落后的环境,着重注重生态及景观设计,才能使居住区绿化工作再上新台阶。因此制作园林景观模型对日后的园林实体发展和现场勘查有着重要的意义。 在进行绿化设计制作前,首先要对建筑的风格、表现形式以及在科面上所占的比重有着明确的了解,因为绿化无论采用何种表现形式和色彩,它与建筑之间应该是和谐的。 在设计制作大比例单体或群体建筑模型绿化时,对于绿化的表现形式要尽量做得简洁些,做到示意明确、清楚有序。不要求新求异,切忌喧宾夺主。树的色彩选择要稳重,树种的形体塑造应随着建筑主体的体量、模型比例与制作深度进行刻画。 在设计制作大比例别墅模型绿化时,表现形式可以考虑做得新颖、活泼一些,要给人一种温馨的感觉,塑造出家园的氛围。树的色彩则可以明快些,但一定要掌握尺度,如果色彩过于明快则会产生一种漂浮感。树种的形体塑造要有变化,做到有详、有略,详略得当。 模型制作的设计构思包括比例和尺度的设计构思、形体的设计构思、材料的设计构思和色彩与表面处理的设计构思共四部分内容。构思包括建筑物与配景的做法、材料的选用、底台的设计、台面的布置、色彩的构成等。 色彩关系 在进行制作设计时,首先应特别注意色彩的整体效果,因为模型是在楹尺间反映个体或群体建筑的全貌,每一种色彩同时映射入观者眼中产生出综合的视觉感受,若处理不当,哪怕是再小的一块色彩也会影响整体的色彩效果。所以,在建筑模型的色彩设计与使用时,、应特别注意色彩的整体效果。 其次,建筑模型的色彩具有较强的装饰性.就其本质而言,建筑模型是缩微后的建筑物。因而,色彩也应作相应的变化,若一味追求实体建筑与材料的色彩,那么呈现在观者眼中的建筑模型色彩会感觉很“脏”. 模型制作的工具应随其制作物的变化而进行选择。从某种意义上来说,工具和设备的

4种实验动物心肌肥厚模型

实验动物心肌肥厚模型 A、压力超负荷/主动脉缩窄 压力超负荷引起的心脏肥厚常用的手术方法是主动脉缩窄(.缩窄升主动脉)。小鼠行主动脉缩窄(TAC)可以引起心脏机械性的压力超负荷,最终导致心肌肥厚、心衰(20,84)。TAC通常诱导方法采用在近胸骨端行小切口, 缩窄主动脉的这样的开胸手术。TAC模型虽然不能完全模拟人类的心室重构,但该模型可以用于肥厚发病过程中多种基因学的研究。主动脉缩窄模型能很好的模拟血流动力学超负荷引起左心室肥厚的发生发展。该动物模型在主动脉缩窄造成心肌肥厚几个月后会导致心衰。 B、容量超负荷 在静脉回流适当的情况下,心脏不能排出足够的血液满足全身组织代谢的需要就会引起CHF(充血性心力衰竭)。心内檐沟血或回心血量增加导致瓣膜闭锁不全就会引起心室容量超负荷。在慢性动脉和/或二尖瓣瓣膜回流疾病中的容量超负荷,我们会观察到“舒张期压力-容积曲线”整体右移,说明心脏僵硬度增加,即发生LVH (可见于主动脉瓣狭窄、高血压、肥厚性心肌病)(36)。通常情况下,容量超负荷CHF模型制备方法是腹主动脉-下腔静脉分流术。即于肾动脉上方分离出下腔静脉和腹主动脉,用血管夹在近肾动脉端夹闭主动脉阻断血流;用的针头由主动脉远端刺入,继续进针刺入下腔静脉,使动静脉联合。退针后,缝合血管壁伤口。4-5周后,就能复制出心肌肥厚模型,并具有左心室收缩力增强、舒张末期压力增加的特点(257)。 C、冠状动脉结扎 冠状动脉结扎常用于复制心衰动物模型。冠脉左前降枝(LAD)结扎后会阻断心脏的供养和营养输送,这种情况类似于人类心脏病发作时伴随的症状。血氧和营养供输阻断后,心肌细胞死亡,心脏整体功能受影响,最终导致心功能紊乱。由于这种动物模型非常接近临床心衰疾病的发生发展,研究证明该模型是心衰发病机制研究的重要手段(13)。 D、转基因型心脏肥大模型 几十年以来,一些心脏肥大和心力衰竭的转基因小鼠模型被学者们用于心肌肥厚和心衰这些致命疾病的可能的分子机制研究。受条件限制,在此不能针对于所有模型作一全面的综述,但在此文中,我们介绍一种转基因小鼠模型,该模型能成功模拟心肌肥厚的发生发展以及最终演变为心衰的过程。表1列举的是截止目前,研究学者们发现的较成熟的心肌肥厚/心衰模型。 表1:小鼠心衰模型 转基因小鼠模型代谢转变模型ECM紊乱转基因模型 肌侵蛋白, TNFα,G i,Gαq,PKCβ, PKA,β1AR, 磷酸化蛋白, 肌集钙蛋白, 钙调磷酸酶, L-型Ca2+ 通道 线粒体功能紊乱 氧化应激 脂肪酸氧化 (FAO) 通路的受损 基质金属蛋白酶2/MMP2 基质金属蛋白酶9/MMP9 组织金属蛋白酶抑制剂 1/TIMP1

动物氧化应激研究进展

动物氧化应激研究进展 中国农业科学院饲料研究所姚浪群 北京爱绿生物科技有限公司胡红军 随着我国畜牧业特别是现代养殖业集约化程度的提高以及人们对动物福利意识的增强,动物应激医学已成为动物医学的重要组成部分。在动物应激医学研究中,动物氧化应激又逐渐成为国内外学者的热点研究课题。 1 氧化应激概念与起因 1.1 氧化应激概念 动物在正常生理代谢过程中,会产生许多自由基,这些自由基通常不会导致组织细胞的损伤,机体依靠自身体内的抗氧化防御体系,主要包括抗氧化酶类(包括超氧化物歧化酶SOD、过氧化氢酶CAT、谷胱甘肽过氧化物酶GSH-Px、谷胱甘肽硫转酶GST等)以及非酶类的抗氧化剂(包括维生素C、维生素E、谷胱甘肽、褪黑素、a-硫辛酸、类胡萝卜素、微量元素铜、锌、硒等),可以保护机体组织和细胞防止自由基的损伤。当动物机体细胞内产生的自由基的水平高于细胞的抗氧化防御能力时,氧化还原状态失衡,过量的自由基存在于组织或细胞内,即诱发氧化应激,并导致氧化损伤。因此,氧化应激(Oxidative Stress)是机体应答内外环境,通过氧化还原反应对机体进行多层次应激性调节和信号转导,同时造成氧化损伤的重要生命过程。器官和组织对氧化应激的易感性依赖于它的抗氧化系统的状态和氧化剂与抗氧化之间的动态平衡。 氧化应激可导致细胞膜磷脂过氧化、蛋白质过氧化(受体和酶)以及DNA的氧化损伤。脂质、蛋白质和DNA的氧化会对机体造成不同程度的危害,从而影响机体的生长、发育、衰老等过程。急性和慢性的应激都能通过产生自由基诱导胃肠道、免疫系统等多方面的氧化应激。 1.2 氧化应激的起因 1.2.1 自由基的产生 细胞在正常新陈代谢和先天免疫反应过程中,都会产生活性氧代谢物(ROM)——自由基。首先,肠上皮细胞的主动新陈代谢本身就是ROM的来源,其生成与电子传递链的活性有关。所产生的活性物质包括超氧化物阴离子(O2-)、过氧化氢(H2O2)和羟基自由基(·OH),它们都是线粒体中氧化磷酸化不可避免的产物。其次,另一个内源性氧化应激源自于肠道先天及获得性免疫系统在与许多共生物和病原微生物反应过程中产生的一氧化氮(NO),其在食物和水的吸收过程中不可避免的会产生。 当动物遭受应激刺激或患病时,机体代谢出现异常而骤然产生大量自由基,过量的自由基数

动物热应激的生理变化机制

文献综述题目:动物热应激的生理变化机制

动物热应激的生理变化机制 摘要:随着畜牧业产业化和集约化的逐步深入畜禽应激方面的研究已成为动物研究领域中的一个热点,有关动物应激机理的研究则更加引人注目。因此只有彻底弄清楚HSPs的调控机制才有可能了解应激的作用本质,为应激的研究提供参考,从而为动物生产中的应激监测系统提供科学依据。 热应激蛋白(heat shock proteins HSPs)是动物在不良因素作用下所产生的一组特异性蛋白质,任何应激均可诱导机体的HSPs合成增加,它能使动物迅速适应环境变化,保护机体不受或少受损害。HSPs作为应激的调控蛋白对阐明动物的应激机理有着非常重要的作用。 热应激反应的最大特点是在应激蛋白(heat shock proteins HSPs)合成增加,而正常蛋白质的合成则受到抑制。从而对机体的生长代谢、免疫功能等造成影响。文章综述畜禽热应激发生机制的国内外研究现状,运用系统动物营养学的思维方法,从动态和整体的角度探讨畜禽热应激生理变化规律。 关键词:畜禽;热应激;生理变化;系统动物营养学 热应激是指动物机体处于高温环境中所做出的非特异性生理反映的总和。随着集约化高密度饲养方式的迅速发展,热应激对畜禽生产造成的危害越来越受到人们的关注。大量研究显示,热应激严重影响机体呼吸、循环、消化、免疫和内分泌等系统的功能,使机体新陈代谢发生改变。但有关畜禽热应激发生发展规律的研究多从静态和局部的角度出发,少有以机体整体为研究对象,动态的研究热应激发生发展规律的报道。文章运用系统动物营养学的思维方法,以众多学者的研究成果为基础,从动态和整体的角度探讨畜禽热应激生理变化规律。 1.畜禽热应激生理变化规律探讨 在大量的试验研究中,对温热环境强度量化和统一的困难,可能也是造成各试验结论不一致甚至相悖的原因之一。能量代谢与物质代谢是机体新陈代谢的2个方面,热刺激下机体散热受阻导致能量代谢失衡,引起物质代谢失衡,机体便做出一系列反映来维持新陈代谢的动态平衡。运动着的事物都有一个发生、变化和发展的过程,因此可推测机体对热应激的调节同样有一个发生、变化和发展的过程。 1.1开始阶段 只有能量代谢平衡受到破坏。当温热环境最开始作用于机体时,抑制了机体的散热,在很短时间内(也许是数十分钟到数小时)无法散发的热量在体内蓄积,引起体温的细微变化,作用于体内的温度感受器(如颈动脉窦的温度感受器)感受器发出神经冲动,与体表神经末梢由于温热刺激而产生的神经冲动一同传至中枢神经;中枢首先从行为调节与加强机体散热上做出反映,机体表现出一系列有利于散热的行为与生理变化,如静止、伸展四肢及轻微喘息等[1]。正如Zhou和Yamamoto(1997)的研究表明,温度升高使肉鸡呼吸频率升高,此时机体的物质代谢平衡没有受到影响。

二十种常见实验动物模型

二十种常见实验动物模型 一、缺铁性贫血动物模型 缺铁性贫血(iron deficiency anemia,IDA)是体内用来合成血红蛋白(HGB)的贮存铁缺乏,HGB合成减少而导致的小细胞低色素性贫血,主要发生于以下情况:(1)铁需求增加而摄入不足,见于饮食中缺铁的婴幼儿、青少年、孕妇和哺乳期妇女。(2)铁吸收不良,见于胃酸缺乏、小肠粘膜病变、肠道功能紊乱、胃空肠吻合术后以及服用抗酸和H2受体及抗剂等药物等情况。(3)铁丢失过多,见于反复多次小量失血,如钩虫病、月经量过多等。 IDA是一种多发性疾病,据报道,在多数发展中国家,约2/3的儿童和育龄妇女缺铁,其中1/3患IDA,因此,研究IDA的预防和治疗具有重要的意义。在这些研究中,缺铁性贫血的动物模型(Animal model of IDA),又是实施研究的基础工具。常见的IDA动物模型的构建技术如下: 实验动物:一般选用SD大鼠,4周龄,雌雄不拘,体重65g左右,HGB≥130g/L。 建模方法:低铁饲料加多次少量放血法。低铁饲料一般参照AOAC 配方配制,采用EDTA浸泡处理以去除饲料中的铁,饲料中的含铁量是诱导SD大鼠形成缺铁性贫血模型的关键,现有研究表明,饲喂含铁量<15.63mg/Kg的饲料35天,SD大鼠出现典型IDA表现,而饲喂

含铁40.30mg/Kg的饲料SD大鼠出现缺铁,但并不表现贫血症状。建模时一般采用去离子水作为动物饮水,以排除饮水中铁离子的影响。少量多次放血主要用于模拟反复多次小量失血导致的铁丢失,还可以加速贫血的形成。放血一般在低铁饲料饲喂2周后进行,常用尾静脉放血法,1~1.5ml/次,2次/周。 模型指标:(1)HGB≤100g/L;(2)血象:红细胞体积较正常红细胞偏小,大小不一,中心淡染区扩大,MCV减小、MCHC降低;(3)血清铁(SI)降低,常小于10μmol/L,血清总铁结合力(TIBC)增高,常大于60μmol/L。 需要指出的是,以上模型不能用于铁吸收不良相关IDA的防治研究。根据具体的研究需要,也可以适当调整建模方法。 二、白血病动物模型 用免疫耐受性强的人类胎儿骨片植入重症联合免疫缺陷病(SCID)小鼠皮下,出于人类造血细胞与造血微环境均植入小鼠,建立具有人类造血功能的SCID小鼠模型称为SCID-hu小鼠。再将髓系白血病患者的骨髓细胞植入SCID-hu小鼠皮下的人类胎儿骨片内,植入的髓系白血病细胞选择性生长在SCID-hu小鼠体内的人类造血微环境中,即为人类髓系白血病的小鼠模型。SCID小鼠是由于其scid所致。T、B淋巴细胞功能联合缺陷,这种小鼠能接受人类器官移植物。 造模方法:

种试验动物心肌肥厚模型

型肥肌厚模实验动物心主动脉缩窄压力超负荷/A、缩窄升主动脉)。小鼠行主动脉缩.压力超负荷引起的心脏肥厚常用的手术方法是主动脉缩窄(通常诱导TAC)可以引起心脏机械性的压力超负荷,最终导致心肌肥厚、心衰(20,84)。窄(TAC模型虽然不能完全模拟人类的TAC方法采用在近胸骨端行小切口, 缩窄主动脉的这样的开胸手术。心室重构,但该模型可以用于肥厚发病过程中多种基因学的研究。主动脉缩窄模型能很好的模拟血流动力学超负荷引起左心室肥厚的发生发展。该动物模型在主动脉缩窄造成心肌肥厚几个月后会导致心衰。容量超负荷B、 (充CHF在静脉回流适当的情况下,心脏不能排出足够的血液满足全身组织代谢的需要就会引起 血性心力衰竭)。心内檐沟血或回心血量增加导致瓣膜闭锁不全就会引起心室容量超负荷。在慢性动脉和/或二尖瓣瓣膜回流疾病中的容量超负荷,我们会观察到“舒张期压力-容积曲线”整体右移,说明心脏僵硬度增加,即发生LVH (可见于主动脉瓣狭窄、高血压、肥厚性心肌病)(36)。通常情况下,容量超负荷CHF 模型制备方法是腹主动脉-下腔静脉分流术。即于肾动脉上方分离出下腔静脉和腹主动脉,用血管夹在近肾动脉端夹闭主动脉阻断血流;用的针头由主动脉远端刺入,继续进针刺入下腔静脉,使动静脉联合。退针后,缝合血管壁伤口。4-5周后,就能复制出心肌肥厚模型,并具有左心室收缩力增强、舒张末期压力增加的特点(257)。 C、冠状动脉结扎 冠状动脉结扎常用于复制心衰动物模型。冠脉左前降枝(LAD)结扎后会阻断心脏的供养和营养输送,这种情况类似于人类心脏病发作时伴随的症状。血氧和营养供输阻断后,心肌细胞死亡,心脏整体功能受影响,最终导致心功能紊乱。由于这种动物模型非常接近临床心衰疾病的发生发展,研究证明该模型是心衰发病机制研究的重要手段(13)。 D、转基因型心脏肥大模型 几十年以来,一些心脏肥大和心力衰竭的转基因小鼠模型被学者们用于心肌肥厚和心衰这些致命疾病的可能的分子机制研究。受条件限制,在此不能针对于所有模型作一全面的综述,但在此文中,我们介绍一种转基因小鼠模型,该模型能成功模拟心肌肥厚的发生发展以及最终演变为心衰的过程。表1列举的是截止目前,研究学者们发现的较成熟的心肌肥厚/心衰模型。 表1:小鼠心衰模型 转基因小鼠模型代谢转变模型ECM紊乱转基因模型 G,,2/MMP2 线粒体功能紊乱TNF肌侵蛋白,基质金属蛋白酶αiβPKCβ,,PKA,基质金属蛋白酶9/MMP9 氧化应激AR, Gαq1组织金属蛋白酶抑制剂通路的受损, , 磷酸化蛋白肌集钙蛋白(FAO) 脂肪酸氧化 2+ 通, L-钙调磷酸酶型Ca1/TIMP1 道

实验方法总结:动物模型部分

实验方法总结:动物模型部分 1、研究肿瘤细胞增殖 (1) 2、研究肿瘤细胞转移 (2) 2.1. 体外(浸润模型) (2) 2.2. 体内(转移模型) (2) 3、研究肿瘤细胞耐药 (4) 3.1. 耐药细胞株的建立 (4) 3.2. 裸鼠移植瘤耐药模型的建立 (5) 从肿瘤起源分,肿瘤动物模型的分类如下: 从研究目的来分,可以从增殖、转移、耐药三个角度来分析: 1、研究肿瘤细胞增殖 细胞准备:GeneA敲减慢病毒感染细胞扩增至需要的细胞量。分为:空白对照组、阴性对照组、实验组。 取Balb/c裸鼠,雄性,6周龄,每组10只,适应一周后进行肿瘤细胞注射。

XXX细胞消化离心后制成单细胞悬液,计数后取适量的细胞用PBS悬浮,在Balb/c裸鼠侧腹部皮下接种。每只接种2×106个细胞,注射体积为100 μL。此后,每隔5天测量注射部位肿瘤的体积。30天后裸鼠小鼠腹腔注射80 mg/kg 戊巴比妥钠,小鼠麻醉后置蓝色背景布上拍照(侧卧位,接种部位朝上),小鼠颈椎脱臼处死,取出肿瘤称重,将肿瘤置蓝色背景布上拍照,肿瘤一分为二,一份4%多聚甲醛固定,待后续病理分析,一份-80℃冻存。 2、研究肿瘤细胞转移 肿瘤转移的模型包括两大类:体外(浸润模型)和体内(转移模型)。体外(浸润模型):了解肿瘤细胞对周围相连组织的侵润性。体内模型主要研究肿瘤细胞的转移性即肿瘤细胞在远端组织形成病灶的能力。 2.1. 体外(浸润模型) 例:浸润型脑胶质瘤动物模型的建立 方法:取若干只Balb/c免疫缺陷裸鼠,将分离和鉴定并转染携带绿色荧光蛋白的脑胶质瘤干细胞立体定向法行小鼠颅内接种,每组10只。小鼠麻醉后头部正中切口,剥离骨膜后钻孔(坐标是冠状缝后0.5 cm,矢状缝右侧2.5 cm) 。取2 μL胶质瘤干细胞以1×104 cells /只小鼠的剂量,经微量注射器缓慢注射入鼠脑纹状体内(深度是2.5 ~3 mm) 。在确定的时间点处死一部分动物进行荧光( 立体荧光显微镜下) 病理证实和比较,同时检查脑胶质瘤干细胞的体内生长特征以及干细胞标志物等。 2.2. 体内(转移模型)

动物氧化应激研究进展

动物氧化应激研究进展

动物氧化应激研究进展 随着我国 畜牧业 特别是现代养殖业集约化程度的提高以及人们对动物福利意识的增 强,动物 应激医学已成为动物医学的重要组成部分。在动物应激医学研究中,动物氧化应 激又逐渐成为国内外学者的热点研究课题。 1 氧化应激概念与起因 1.1 氧化应激概念 动物在正常生理代谢过程中,会产生许多自由基,这些自由基通常不会导致组织细胞 的损伤,机体依靠自身体内的抗氧化防御体系,主要包括抗氧化酶类(包括超氧化物歧化 酶 SOD 、过氧化氢酶 CAT 、谷胱甘肽过氧化物酶 GSH-Px 、谷胱甘肽硫转酶 GST 等) 及非酶类的抗氧化剂(包括 维生素 C 、维生素 E 、谷胱甘肽、褪黑素、 a- 硫辛酸、类胡萝 卜素、微量元素 铜、锌、硒等),可以保护机体组织和细胞防止自由基的损伤。当动物机 体细胞内产生的自由基的水平高于细胞的抗氧化防御能力时,氧化还原状态失衡,过量的 自由基存在于组织或细胞内,即诱发氧化应激,并导致氧化损伤。因此,氧化应激 (Oxidative Stress) 是机体应答内外环境, 通过氧化还原反应对机体进行多层次应激性调节 和信号转导,同时造成氧化损伤的重要生命过程。器官和组织对氧化应激的易感性依赖于 它的抗氧化系统的状态和氧化剂与抗氧化之间的动态平衡。 氧化应激可导致细胞膜磷脂过氧化、蛋白质过氧化 (受体和酶 )以及 DNA 的氧化损伤。 脂质、 蛋白质和 DNA 的氧化会对机体造成不同程度的危害,从而影响机体的生长、发育、 衰老等过程。急性和慢性的应激都能通过产生自由基诱导胃肠道、免疫系统等多方面的氧 化应激。 1.2 氧化应激的起因 1.2.1 自由基的产生 细胞在正常新陈代谢和先天免疫反应过程中, 基。首先,肠上皮细胞的主动新陈代谢本身就是 性有关。所产生的活性物质包括超氧 化物阴离子 ( · OH) ,它们都是线粒体中氧化磷酸化不可避免的 产物。其次,另一个内源性氧化应激源 自于肠道先天 及获得性免疫系统在与许多共生物和病原微生物反应过程中产生的一氧化 氮 (NO) ,其在食物和水的吸收过程中不可避免的会产生。 当动物遭受应激刺激或患病时,机体代谢出现异常而骤然产生大量自由基,过量的自 由基数量 将超过抗氧化体系的还原能力, 使机体处于氧化应激状态, 结果会导致机体损伤。 目前研究表明主要有四种致细胞损伤机制: 1) 对脂类和细胞膜的破坏,从而导致细胞死亡。 2) 对蛋白质、酶的损伤,从而导致蛋白质变性,功能丧失和酶失活。 3) 对核酸和染色体的破坏,从而导致 DNA 链的断裂,染色体的畸变和断裂。 4) 对细胞外基质的破坏,从而使细胞外基质变得疏松,弹性降低。 1.2.2 氧化应激的起因 1.2.2.1 外源性因素 1.2.2.1.1 日粮 营养因素 营养缺乏或不良可能使体内自由基增加,而且还影响抗氧化酶生物合成及 内源性抗氧 都会产生活性氧代谢物 (ROM) ——自由 ROM 的来源,其生成与电子传递链的活 (O2-) 、过氧化氢 (H2O2) 和羟基自由基

动物应激反应

一、应激反应的概念 (一)应激反应:是指机体在受到体内外各种强烈因素(即应激原)刺激时,所出现的交感神经兴奋和垂体——肾上腺皮质分泌增多为主的一系列神经内分泌反应,以及由此而引起的各种机能和代谢的改变。 任何对动物机体或情绪的刺激,只要达到一定的强度,都可以成为应激原。当这种应激反应真正威胁到动物的健康时,动物就会觉得不适。根据动物是否感到不适这一标准可将应激反应分为良性应激和不良性应两类。 (二)良性应激:是指使动物感到愉快的应激,是对动物的有益应激。如猪有玩耍时的奔跑行为和交配行为。 (三)恶性应激:是指那些危及动物福利和健康的应激,常使动物感到无聊、压抑和紧张。恶性应激是引发一种或多种疾病发生的原因。 另外,也有人将应激反应分为免疫应激反应和非免疫应激反应。 二、养殖生产中常见的应激因素 (一)气候因素 过冷、过热、强光照射.湿度过大都会对动物产生应激反应,有资料表明,低温影响猪的生长发育,若舍内温度低l 0℃以下,就会引起猪的应激反应,尤其仔猪会冻死,低温伴有通风不良或贼风侵袭,湿度过大,会进一步加重猪的应激反应。在高温环境下,几乎所有规模化猪场都造成

母猪采食量下降,临产期、围产期死亡及仔猪死亡,母猪发情率降低,返情率提高20%~30%,窝产仔数、仔猪初生重、成活率也受到不同程度的影响,经济损失达到20%以上。 (二)有毒有害气体 冬天畜舍中的氨、硫化氢、二氧化碳等有毒有害气体会对动物产生刺激,产生应激反应,浓度过高,就会损伤呼吸道粘膜,使抗病力下降,呼吸系统发病。 (三)惊吓等环境因素 如噪音、突然断电,强辐射、奇光、外人入舍、饲养规程变更、饲养员突然更换或衣着及工作程序的变化等都会引起动物的应激反应。 (四)饲养管理因素 在饲养管理过程中,饲养员的粗暴对待、去势、断尾、打号、断喙.接种疫苗、注射药物、保定等,此时动物处于一种"戒备"状态,呼吸心跳加快,血压升高,通过这些变化来动员机体的防御机能,应付环境的急剧变化。 (五)营养因素 主要指饲料中营养不平衡、营养不良或营养过剩都会对动物产生不利的影响,在饲养管理中,饲喂时间、饲喂次数、饲喂量、突然更换饲料、饮水不足和水质不卫生或水温过低都会造成应激。

心肌肥厚指标

心肌肥厚是心脏对慢性压力或容量超负荷产生的靶器官反应,见于高血压心脏病、肺动脉高压及慢性充血性心力衰竭等。心肌肥厚的基本变化不仅是心肌细胞的肥大与增生,也有非心肌细胞如成纤维细胞、胶原细胞、血管细胞及蛋白质、酶等的生成、增殖与增生,伴有心室形态与结构的改变和心肌机械功能的减退等。心肌肥厚中最常见的是高血压病引起的左室肥厚(LVH),为高血压的主要靶器官损害之一。中医学中虽无心肌肥厚的名词,但有“阳化气,阴成形”,“阳生阴长”等论述。现代研究表明,LVH是一种极其重要的、独立的心血管危险因素,可使心肌缺血、心律失常、心力衰竭和淬死的几率增加6—10倍[1~3]。所以有关左室肥厚的动物模型研究有助于了解本病的病因,病机,对探讨其诊治办法,开发有效的防治药物有重要意义。现就近几年有关左心室肥厚的动物模型研究进行简单总结,以供大家参考。 1.实验动物的选择 进行心肌肥厚研究的动物以SD大鼠、白发性高血压大鼠、WKY(Wistar—kyoto)大鼠最为常用,仓鼠[4]及转基因小鼠也可制作动物模型。 2.动物模型 2.1压力负荷性心肌肥厚模型[5~7] 体重200g左右的大鼠,雄雌兼用,戊巴比妥钠(30mg/kg体重)腹腔注射麻醉,背位固定于手术台,手术野剪毛,皮肤消毒,腹正中切口,打开腹腔。在左肾动脉分叉处上方分离腹主动脉,将腹主动脉与7号或9号注射器针头(磨去针尖)共同结扎(3-0号丝线),然后抽出注射器针头,使该部位动脉形成狭窄(狭窄程度65%~70%),然后逐层缝合腹部切口、关腹。假手术组除不用丝线结扎腹主动脉外,其余操作步骤相同。术后每天用青霉素5万U/只肌内注射一周。一般术后3~4天大鼠心肌开始肥厚,2~3周达稳定高峰。 该模型通过缩窄部分腹主动脉,造成心脏后负荷增加而导致心肌肥厚,此外,由于肾血流量相对减少,血管紧张素Ⅱ等体液因素也参与心肌肥厚形成。 该模型形成心肌肥厚时间较短,操作方便,重复性好,应用较多。但是术后早期动物死亡率较高(约20%~30%),可能与急性心功能不全有关。 2.2肾型高血压大鼠心肌肥厚模型[6,9] 体重200g左右的大鼠,雄雌兼用,戊巴比妥钠(30mg/kg体重)腹腔注射麻

园林建筑设计说课

《园林建筑设计》课程说课稿 一、课程设计原则: 首先我们介绍一下该课程的设计原则: 本门课程紧扣高职教育的特点:坚持以就业为指导,强调以能力为本位,注重实践能力的培养。本门课程的设计原则,我们归纳了六点,分别是:1、以岗位和工作任务需求为导向;2、以工作流程对应实训教学流程;3、以实践能力为核心;4、理论结合实际能力;5、基于工作过程的情景创设;6、设计作品对应考核体系。 二、课程性质与定位: 遵循课程设计原则,我们对本课程的性质与定位分析如下: 经过实际的市场调查,园林专业学生从业的岗位大致分为三个方向:园林工程施工岗位、园林植物养护岗位和园林设计岗位。《园林建筑设计与施工》主要辅助园林工程施工岗位和园林设计岗位。因此说《园林建筑设计与施工》是园林专业的核心课程。 那么,本门课程与园林工程施工岗位和园林设计岗位到底是怎样的关系,下面我们来看一下这个图表。《园林建筑设计与施工》借助于《园林工程制图》、《设计初步》、《园林美术》及《园林CAD 制图》等先修平台课程的知识和技能,和《园林效果图制作》、《园林规划设计》、《园林植物配置》共同培养学生的园林设计能力;《园林建筑设计与施工》又可与《园林工程》、《园林工程概预算与施工组织设计》等课程结合,共同培养园林工程施工管理的能力。 因此,我们将《园林建筑设计与施工》定位为:是一门集工程、艺术、技术于一体的课程。它要求学生既要有科学设计的精神,又要有艺术创新的想象力,更要求有精湛的技艺和实际动手操作能力。 《园林建筑设计与施工》是园林技术专业的一门必修专业课在第四学期开设。 三、课程培养目标: 经过市场调查,我们将园林专业学生就业的岗位初步归纳为4个类型:1、园林景观设计公司;2、城市规划、建筑设计院、园林

实验动物心肌肥厚模型

III.实验动物心肌肥厚模型 A、压力超负荷/主动脉缩窄 压力超负荷引起的心脏肥厚常用的手术方法是主动脉缩窄(i.e.缩窄升主动脉)。 小鼠行主动脉缩窄(TAC)可以引起心脏机械性的压力超负荷,最终导致心肌肥厚、心衰(20,84)。TAC通常诱导方法采用在近胸骨端行小切口, 缩窄主动脉的这样的开胸手术。TAC模型虽然不能完全模拟人类的心室重构,但该模型可以用于肥厚发病过程中多种基因学的研究。主动脉缩窄模型能很好的模拟血流动力学超负荷引起左心室肥厚的发生发展。该动物模型在主动脉缩窄造成心肌肥厚几个月后会导致心衰。 B、容量超负荷 在静脉回流适当的情况下,心脏不能排出足够的血液满足全身组织代谢的需要就会引起CHF(充血性心力衰竭)。心内檐沟血或回心血量增加导致瓣膜闭锁不全就会引起心室容量超负荷。在慢性动脉和/或二尖瓣瓣膜回流疾病中的容量超负荷,我们会观察到“舒张期压力-容积曲线”整体右移,说明心脏僵硬度增加,即发生LVH (可见于主动脉瓣狭窄、高血压、肥厚性心肌病)(36)。通常情况下,容量超负荷CHF模型制备方法是腹主动脉-下腔静脉分流术。即于肾动脉上方分离出下腔静脉和腹主动脉,用血管夹在近肾动脉端夹闭主动脉阻断血流;用0.6-mm的针头由主动脉远端刺入,继续进针刺入下腔静脉,使动静脉联合。退针后,缝合血管壁伤口。4-5周后,就能复制出心肌肥厚模型,并具有左心室收缩力增强、舒张末期压力增加的特点(257)。 C、冠状动脉结扎 冠状动脉结扎常用于复制心衰动物模型。冠脉左前降枝(LAD)结扎后会阻断心脏的供养和营养输送,这种情况类似于人类心脏病发作时伴随的症状。血氧和营养供输阻断后,心肌细胞死亡,心脏整体功能受影响,最终导致心功能紊乱。由于这种动物模型非常接近临床心衰疾病的发生发展,研究证明该模型是心衰发病机制研究的重要手段(13)。 D、转基因型心脏肥大模型 几十年以来,一些心脏肥大和心力衰竭的转基因小鼠模型被学者们用于心肌肥厚和心衰这些致命疾病的可能的分子机制研究。受条件限制,在此不能针对于所有模型作一全面的综述,但在此文中,我们介绍一种转基因小鼠模型,该模型能成功模拟心肌肥厚的发生发展以及最终演变为心衰的过程。表1列举的是截止目前,研究学者们发现的较成熟的心肌肥厚/心衰模型。 表1:小鼠心衰模型 转基因小鼠模型代谢转变模型ECM紊乱转基因模型 肌侵蛋白,TNFα,G i,Gαq,PKCβ,PKA,β1AR, 磷酸化蛋白, 肌集钙蛋白, 钙调磷酸酶, L-型Ca2+ 通道 线粒体功能紊乱 氧化应激 脂肪酸氧化(FAO) 通路的受损 基质金属蛋白酶2/MMP2 基质金属蛋白酶9/MMP9 组织金属蛋白酶抑制剂 1/TIMP1

实验动物模型

第章实验动物模型 第一节实验动物选择的原则 第二节生物科学研究中的动物模型

实验动物模型 选择什么样的实验动物作实验是生物医学研究工作中一个重要环节,不能随便选用一种实验动物来作科学研究,因为在不适当的动物身上进行实验,常可导致实验结果的不可靠,甚至使整个实验徒劳无功,直接关系到科学研究的成败和质量。事实上,每一项科学实验都有其最适宜的实验动物。

第一节实验动物选择的原则 ?科学研究工作中实验动物的选择,首先应根据实验目的和要求来选择,其次再参考是否容易获得、是否经济,是否容易饲养和管理等情况。 ?在实验动物选择上必须注意三点,即实验动物的种类(Species);品种(Breed)或品系(Strain);质量和实验动物的健康状态。

尽量选择与研究对象的机能、代谢、结构及疾病特点相似的实验动物; ?生物医学研究的根本目的是要解决人类疾病的预防和治疗问题。因此,在选择实验动物时应优先考虑的问题是动物的种系发展阶段。在可能的条件下,尽量选择那些机能、代谢、结构和人类相似的实验动物作实验。一般来说,实验动物愈高等,进化愈高,其机能、代谢、结构愈复杂,反应就愈接近人类,猴、狒狒、猩猩、长臂猿等灵长类动物是最近似于人类的理想动物。

第二节生物科学研究中的动物模型 一、动物模型的意义和优越性 ?生物科学研究的进展常常依赖于使用动物模型作为实验假说和临床假说二者的试验基础。人类各种疾病的发生发展是十分复杂的,要深入探讨其疾病的发病机理及疗效机理不能也不应该在病人身上进行。可以通过对动物各种疾病和生命现象的研究,进而推用到人类,探索人类生命的奥秘,以控制人类的疾病的衰老,延长人类的寿命。

大鼠压力负荷增加心肌肥厚模型中核仁素的表达_严思敏

中南大学学报(医学版) J Cent South Univ (Med Sci) 2014, 39(2) htt p://https://www.doczj.com/doc/f39136183.html,; htt p://https://www.doczj.com/doc/f39136183.html, 124 大鼠压力负荷增加心肌肥厚模型中核仁素的表达 严思敏1,吴双1,孙丽2,蒋碧梅2,涂自智2,肖献忠2 (中南大学湘雅医学院 1. 2008级临床医学系;2. 病理生理学系,长沙 410078) [摘要]目的:探讨腹主动脉缩窄致压力负荷增加大鼠心肌肥厚模型中核仁素的表达情况。方法:采用体质量180~220 g SD 大鼠40只,随机分为假手术组和腹主动脉缩窄模型组,利用腹主动脉缩窄法制备压力负荷增加心肌肥厚模型,分别于术后2周、4周观察心脏质量指数、左心室质量指数;采用RT-PCR 检测心肌组织中β-MHC mRNA 的表达;采用Western 印迹检测心肌、脑、肾组织中核仁素的表达情况。结果:腹主动脉缩窄模型组4周以后心脏质量指数、左心室质量指数较假手术组显著增加(P <0.01);4周以后心肌组织中β-MHC mRNA 的表达较假手术组显著升高(P <0.05);2周以后心肌组织中核仁素蛋白的表达较假手术组显著升高(P <0.05),而在脑、肾组织中无明显升高。结论:核仁素蛋白在大鼠压力负荷增加心肌肥厚模型中的表达上调,表明核仁素可能参与了压力负荷增加心肌肥厚的发生发展。 [关键词] 核仁素;心肌肥厚;大鼠;压力负荷增加 Expression of nucleolin in pressure overload-induced cardiac hypertrophy rats YAN Simin 1, WU Shuang 1, SUN Li 2, JIANG Bimei 2, TU Zizhi 2, XIAO Xianzhong 2 (1. Clinical Medical Major, Grade 2008; 2. Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410078, China) ABSTRACT Objective: To detect the expression of nucleolin in cardiac hypertrophy rats induced by pressure overload. Methods: A total of 40 SD rats with body weight 180 g and 220 g were recruited and randomly divided into 2 groups: a transverse aortic constriction (TAC) group and a sham surgery group. Cardiac hypertrophy model was employed by transverse aortic constriction surgery. Th en 2 weeks and 4 weeks aft er the experiment, the heart mass index (HMI), left ventricle mass index (LVMI) were measured. β-MHC mRNA in the heart tissue was detected with RT-PCR. Nucleolin in the heart, brain and kidney was respectively detected with Western blot. 收稿日期(Date of reception):2013-04-02 作者简介(Biography): 严思敏,主要从事心肌的内源性保护的研究,现为湘雅二医院心胸外科硕士研究生。通信作者(Corresponding author):蒋碧梅,Email :jiangbimei@https://www.doczj.com/doc/f39136183.html, 基金项目(Foundation item):国家自然科学基金(81170113);教育部新世纪优秀人才支持计划(NECT-12-0545)。This work was supported by the grants from the National Natural Science Foundation of China (81170113) and Education Ministry's New Century Excellent T alents Supporting Plan, P . R. China (NECT-12-0545). DOI:10.11817/j.issn.1672-7347.2014.02.003 htt p://https://www.doczj.com/doc/f39136183.html,/xbwk/fi leup/PDF/201402124.pdf

心肌肥厚动物模型建立方法研究进展Word版

心肌肥厚动物模型建立方法研究进展 摘要目的:综述心肌肥厚(CH)动物模型的建立方法,为CH类疾病的研究和临床治疗提供参考。方法:以“心肌肥厚”“动物模型”“Cardiac hypertrophy”“Model”等组合作为关键词,在中国知网、 PubMed等数据库中检索相关文献,筛选2004-2014年有关CH动物模型建立方法的内容,综述常用模型的基本原理、制备方法及特点等。结果与结论:共查阅到376条文献,其中有效文献29条。目前常用的CH动物模型建立方法有物理法(包括压力超负荷法致CH、容量负荷法致CH、心肌梗死致CH、运动诱导致CH)、化学法(包括药物诱导法致CH)和生物法(包括转基因型CH、自发性高血压大鼠模型致CH)等。其均可模拟CH,而CH原理、制备方法和模型特点各异。在CH动物模型中,大鼠易饲养、经济、抗感染力强,常作为首选造模动物,常用鼠种为SD大鼠及小鼠,雌雄均可。在现有成模方法中,压力超负荷法制作慢性CH模型,手术操作简单方便、重复性好、造价低廉,最为常用;转基因动物模型对人类疾病的模拟程度更高,但耗时长,费用昂贵,可能成为未来的发展方向。 关键词心肌肥厚;动物模型;建模方法;转基因 心肌肥厚(CH)是心肌细胞对多种病理刺激的一种适应性反应。在早期,CH因心室壁增厚、心肌收缩功能改善而被视为代偿性过程 [1];但在持久病理性应激情况下, CH伴随间质纤维化、收缩功能失调以及基因表达、能量代谢和电生理特征异常,最终导致失代偿性心功能衰竭,严重危害人体健康。目前认为, CH是心血管疾病的一种常见并发症,已被列为引起心血管疾病发生率和病死率显著升高的独立危险因素[2]。其发生机制复杂,至今仍未完全阐明,而对CH的发生机制及治疗方法等研究常用动物实验进行,因此复制动物模型成为目前国内外从事CH研究的常用手段。本文拟以“心肌肥厚”“动物模型”“Cardiac hypertrophy”“Model”等组合作为关键词,在中国知网、 PubMed 等数据库中检索相关文献,筛选2004-2014年有关CH动物模型建立方法的内容。结果共查阅到376条文献,其中有效文献29条。现根据物理法、化学法和生物法等基本造模方法,对常用CH动物模型的基本原理、制备方法及特点等进行综述,为CH类疾病的研究和临床治疗提供参考。 1 物理法 物理法是指通过外界机械力、气压、温度、光和声音等条件的改变,诱发动物形成某一疾病的造模过程,主要包括压力超负荷法、容量负荷法、心肌梗死致CH和运动诱导致CH。其中,前3种均采用手术方式复制CH模型,具有成模时间短、操作方便、重复性好、价格较低等优点,但会给动物造成极大的痛苦;后者通过有规律的运动复制CH模型,能较好地模拟人类CH疾病发展过程,但造模时间较长、操作较烦琐。

相关主题
文本预览
相关文档 最新文档