当前位置:文档之家› 太阳能硅片切割技术七重攻略

太阳能硅片切割技术七重攻略

太阳能硅片切割技术七重攻略
太阳能硅片切割技术七重攻略

太阳能硅片切割技术七重

攻略

The Standardization Office was revised on the afternoon of December 13, 2020

太阳能硅片的线切割机理就是机器导轮在高速运转中带动钢线,从而由钢线将聚乙二醇和碳化硅微粉混合的砂浆送到切割区,在钢线的高速运转中与压在线网上的工件连续发生摩擦完成切割的过程。

在整个切割过程中,对硅片的质量以及成品率起主要作用的是切割液的粘度、碳化硅微粉的粒型及粒度、砂浆的粘度、砂浆的流量、钢线的速度、钢线的张力以及工件的进给速度等。

一、切割液(PEG)的粘度

由于在整个切割过程中,碳化硅微粉是悬浮在切割液上而通过钢线进行切割的,所以切割液主要起悬浮和冷却的作用。

1、切割液的粘度是碳化硅微粉悬浮的重要保证。由于不同的机器开发设计的系统思维不同,因而对砂浆的粘度也不同,即要求切割液的粘度也有不同。例如瑞士线切割机要求切割液的粘度不低于55,而NTC要求22-25,安永则低至18。只有符合机器要求的切割标准的粘度,才能在切割的过程中保证碳化硅微粉的均匀悬浮分布以及砂浆稳定地通过砂浆管道随钢线进入切割区。

2、由于带着砂浆的钢线在切割硅料的过程中,会因为摩擦发生高温,所以切割液的粘度又对冷却起着重要作用。如果粘度不达标,就会导致液的流动性差,不能将温度降下来而造成灼伤片或者出现断线,因此切割液的粘度又确保了整个过程的温度控制。

二、碳化硅微粉的粒型及粒度

太阳能硅片的切割其实是钢线带着碳化硅微粉在切,所以微粉的粒型及粒度是硅片表片的光洁程度和切割能力的关键。粒型规则,切出来的硅片表明就会光洁度很好;粒度分布均匀,就会提高硅片的切割能力。

三、砂浆的粘度

线切割机对硅片切割能力的强弱,与砂浆的粘度有着不可分割的关系。而砂浆的粘度又取决于硅片切割液的粘度、硅片切割液与碳化硅微粉的适配性、硅片切割液与碳化硅微粉的配比比例、砂浆密度等。只有达到机器要求标准的砂浆粘度(如NTC机器要求250左右)才能在切割过程中,提高切割效率,提高成品率。

四、砂浆的流量

钢线在高速运动中,要完成对硅料的切割,必须由砂浆泵将砂浆从储料箱中打到喷砂咀,再由喷砂咀喷到钢线上。砂浆的流量是否均匀、流量能否达到切割的要求,都对切割能力和切割效率起着很关键的作用。如果流量跟不上,就会出现切割能力严重下降,导致线痕片、断线、甚至是机器报警。

五、钢线的速度

由于线切割机可以根据用户的要求进行单向走线和双向走线,因而两种情况下对线速的要求也不同。单向走线时,钢线始终保持一个速度运行(MB和HCT可以根据切割情况在不同时间作出手动调整),这样相对来说比较容易控制。目前单向走线的操作越来越少,仅限于MB和HCT机器。

双向走线时,钢线速度开始由零点沿一个方向用2-3秒的时间加速到规定速度,运行一段时间后,再沿原方向慢慢降低到零点,在零点停顿秒后再慢慢地反向加速到规定的速度,再沿反方向慢慢降低到零点的周期切割过程。在双向切割的过程中,线切割机的切割能力在一定范围内随着钢线的速度提高而提高,但不能低于或超过砂浆的切割能力。如果低于砂浆的切割能力,就会出现线痕片甚至断线;反之,如果超出砂浆的切割能力,就可能导致砂浆流量跟不上,从而出现厚薄片甚至线痕片等。

目前MB的平均线速可以达到13米/秒,NTC达米/秒。

六、钢线的张力

钢线的张力是硅片切割工艺中相当核心的要素之一。张力控制不好是产生线痕片、崩边、甚至短线的重要原因。

1、钢线的张力过小,将会导致钢线弯曲度增大,带砂能力下降,切割能力降低。从而出现线痕片等。

2、钢线张力过大,悬浮在钢线上的碳化硅微粉就会难以进入锯缝,切割效率降低,出现线痕片等,并且断线的几率很大。

3、如果当切到胶条的时候,有时候会因为张力使用时间过长引起偏离零点的变化,出现崩边等情况。

MB、NTC等线切割机一般的张力控制在送线和收线相差不到1,只有安永的相差。

七、工件的进给速度

工件的进给速度与钢线速度、砂浆的切割能力以及工件形状在进给的不同位置等有关。工件进给速度在整个切割过程中,是由以上的相关因素决定的,也是最没有定量的一个要素。但控制不好,也可能会出现线痕片等不良效果,影响切割质量和成品率。总之,太阳能硅片线切割机的操作,是一个经验大于技术流程与标准的精细活。只有在实际操作中,不断总结与探讨,才能对机器的驾驭游刃有余

单晶硅太阳能电池制作工艺

单晶硅太阳能电池/DSSC/PERC技术 2015-10-20 单晶硅太阳能电池 2.太阳能电池片的化学清洗工艺切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。 具体来说太阳能硅片表面沾污大致可分为三类: 1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。 2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径≥ 0.4 μm颗粒,利用兆声波可去除≥ 0.2 μm颗粒. 3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。(2)、带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。 1、用 H2O2作强氧化剂,使“电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面 2、用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。 3、用大量去离子水进行超声波清洗,以排除溶液中的金属离子。由于SC-1是H2O2和NH4OH 的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。 具体的制作工艺说明(1)切片:采用多线切割,将硅棒切割成正方形的硅片。(2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。(3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。(4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0.5um。(5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。(6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。(7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。(8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。(9)烧结:将电池芯片烧结于镍或铜的底板上。(10)测试分档:按规定参数规范,测试分类。 生产电池片的工艺比较复杂,一般要经过硅片检测、表面制绒、扩散制结、去磷硅玻璃、等离子刻蚀、镀减反射膜、丝网印刷、快速烧结和检测分装等主要步骤。本文介绍的是晶硅太阳能电池片生产的一般工艺与设备。 一、硅片检测硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术

科技成果——太阳能硅片电磨削多线切割技术及装备

科技成果——太阳能硅片电磨削多线切割技术及装备 技术开发单位南京航空航天大学 技术简介 太阳能硅片多线切割机是一种大型、复杂、精密的核心光伏制造装备,长期依赖进口。目前,国外已能采用多线切割的方法生产出面积较大而又较薄的硅片(300mm×300mm),但由于仍属于非刚性切割,在切割过程中切割线必然产生变形从而不断产生瞬间的冲击作用,要使目前的大尺寸硅片厚度和切割损耗进一步降低,实现低成本高效切割,技术难度相当大。 因此针对现阶段国内外晶硅太阳能电池的制造技术瓶颈,寻求解决降低成本和提高光电转换效率的有效方法和途径,2009年,技术开发单位基于硅片磨削/电解多线切割原理,发明一种低宏观切削力、少机械损伤的太阳能硅片电磨削多线切割新方法。 从太阳能级晶硅表面能带结构、载流子扩散方式及磨料滚动切割特性入手,掌握了硅片的机械磨削复合微区电化学钝化(或腐蚀)材料去除和绒面形成机制,建立了全新的太阳能硅片高效低成本加工体系。采用较低电导率的水性切削液,外加低压连续(或脉冲)直流电源,基于机械磨削和电解复合加工原理,降低宏观切削力,实现大尺寸超薄硅片的磨削/电解复合多线切割,从而满足光伏产业的生产工艺需求。 目前采用该技术较传统游离磨料多线切割效率提高一倍以上,与固结磨料多线切割效率相当,且表面完整性优于单独采用游离(或固

结)磨料的传统多线切割方法;采用常规制作工艺,研制成功的太阳能多晶硅电池片平均光电转换效率达到17.5%。 为应用与推广上述技术,已在现有主流游离磨料多线切割设备上进行工艺验证和参数优化,并与国内外耗材厂家合作,开展相关的耗材如切割线、磨料使用等关键工艺技术的研发,为高效低成本太阳能硅片的规模化生产奠定坚实的基础。 该项目实施后,与现有多线切割技术相比,切割线、磨料及切削液等耗材成本将降低20%以上;此外,将为国产新型多线切割设备的研制及国内现有近8000台进口多线切割设备的升级换代提供借鉴经验。 技术指标 针对太阳能电池市场现状,以8寸多晶硅片(电阻率0.5-5Ω·cm)为例,拟达到的主要技术指标如下: 切片厚度:190±15μm 硅片总厚度误差:<20μm 切缝宽度:小于180μm 切割速度:大于0.5mm/min 良品率:提高5%以上 光电转换效率:提高0.3-0.5% 技术特点 (1)加工原理的创新 在现有多线切割技术基础上,发明了一种硅片的磨削/电解复合

太阳能硅片多线切割技术详解

硅片是半导体和光伏领域的主要生产材料。硅片多线切割技术是目前世界上比较先进的硅片加工技术,它不同于传统的刀锯片、砂轮片等切割方式,也不同于先进的激光切割和内圆切割,它的原理是通过一根高速运动的钢线带动附着在钢丝上的切割刃料对硅棒进行摩擦,从而达到切割效果。在整个过程中,钢线通过十几个导线轮的引导,在主线辊上形成一张线网,而待加工工件通过工作台的下降实现工件的进给。硅片多线切割技术与其他技术相比有:效率高,产能高,精度高等优点。是目前采用最广泛的硅片切割技术。 多线切割技术是硅加工行业、太阳能光伏行业内的标志性革新,它替代了原有的内圆切割设备,所切晶片与内圆切片工艺相比具有弯曲度(BOW)、翘曲度(WARP)小,平行度(TAPER)好,总厚度公差(TTA)离散性小,刃口切割损耗小,表面损伤层浅,晶片表面粗糙度小等等诸多优点。 太阳能硅片的线切割机理就是机器导轮在高速运转中带动钢线,从而由钢线将聚乙二醇和碳化硅微粉混合的砂浆送到切割区,在钢线的高速运转中与压在线网上的工件连续发生摩擦完成切割的过程。 在整个切割过程中,对硅片的质量以及成品率起主要作用的是切割液的粘度、碳化硅微粉的粒型及粒度、砂浆的粘度、砂浆的流量、钢线的速度、钢线的张力以及工件的进给速度等。 一、切割液(PEG)的粘度 由于在整个切割过程中,碳化硅微粉是悬浮在切割液上而通过钢线进行切割的,所以切割液主要起悬浮和冷却的作用。 1、切割液的粘度是碳化硅微粉悬浮的重要保证。由于不同的机器开发设计的系统思维不同,因而对砂浆的粘度也不同,即要求切割液的粘度也有不同。例如瑞士线切割机要求切割液的粘度不低于55,而NTC要求22-25,安永则低至18。只有符合机器要求的切割标准的粘度,才能在切割的过程中保证碳化硅微粉的均匀悬浮分布以及砂浆稳定地通过砂浆管道随钢线进入切割区。

太阳能电池及硅切片技术

太阳能电池简介 太阳能电池根据所用材料的不同,太阳能电池可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转化效率最高,技术也最为成熟,理想转化效率略大于30%,在实验室最高的转化效率为23%,最近实验室转化效率可以达到24.7%,常规地面用商业用直拉单晶硅太阳能电池转化效率可达到18%,期望不久可以达到20%以上。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,弱光特性较差,生产工艺复杂,大幅度降低其成本很困难,为了降低成本,发展多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为16%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。

非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。(2)多元化合物薄膜太阳能电池 多元化合物薄膜太阳能电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。 硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产品。 砷化镓(GaAs)III-V化合物电池的转换效率可达28%,GaAs化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。但是GaAs材料的价格不菲,因而在很大程度上限制了用GaAs 电池的普及。 铜铟硒薄膜电池(简称CIS)适合光电转换,不存在光致衰退问题,转换效率和多晶硅一样。具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。 (3)聚合物多层修饰电极型太阳能电池

太阳能硅片市场调研报告

太阳能硅片市场调研报告 太阳能电池片分为晶硅类和非晶硅类,其中晶硅类电池片又可以分为单晶电池片和多晶电池片;单晶硅的效率较多晶硅也有区别。下面就是小编整理的太阳能硅片市场调研报告,一起来看一下吧。 多晶硅锭铸造及多晶硅片切割业务位于光伏产业链中游,细分行业为太阳能级硅片制造业。太阳能级硅片行业的发展与光伏行业的发展紧密相关,行业景气程度呈现较高的一致性;但由于光伏产业链各环节的不同的技术特点与竞争格局,硅片制造业与光伏行业其他环节也有所不同。 1 、太阳能光伏行业 (1 )全球太阳能光伏行业发展概况 ①整体发展情况 人类的生存与发展离不开能源,石油、煤炭等传统化石能源的稀缺性及其在使用过程中对自然环境的破坏,迫使世界各国积极寻求储量丰富、环境友好的可再生能源。太阳能是可供人类利用的储量最为丰富的清洁能源之一,通过光伏效应将太阳能转换为电能,能够在充分利用太阳能的同时避免对环境的影响,因而世界各国近年来大力发展光伏发电,各国政府纷纷制定产业扶持政策推动光伏产业发展,光伏行业成为全球发展最快的新兴行业之一。

根据欧洲光伏产业协会统计数据,全球光伏累计装机容量由 XX 年的增至 XX 年的 GW,年复合增长率达 %。同时,全球光伏年新增装机容量也保持较快增长趋势,由 XX 年的增至 XX 年的,年复合增长率达 %。XX 年全球光伏新增装机容量,较XX 年的基本持平,主要原因是欧洲受宏观经济环境影响,年新增装机容量自XX年以来首次下降,由XX 年的降至XX 年的,但包括、美国、日本等在内的其他光伏市场仍保持较快速度增长,最终实现全年全球光伏新增装机容量基本持平。XX 年欧洲市场受扶持政策逐步退出影响继续下滑,光伏年新增装机容量降为,显著低于 XX 年的,但日本、、美国市场新增装机容量增长显著,分别较 XX 年增长 245%、237%、45%,并成为太阳能光伏市场新的增长发动机。XX 年全球光伏发电年新增装机容量在、美国、日本以及韩国、澳大利亚等在内的光伏市场迅速发展的带领下保持上涨趋势,达到,而欧洲年新增装机容量再次下降,降至。XX 年、美国和亚太其他地区年新增装机容量继续上升,全球光伏发电年新增装机容量达到,欧洲年新增装机容量自XX 年以来首次实现正增长。 虽然太阳能光伏发电装机容量增长迅速,但在发电总装机容量中所占比重仍然较低,未来发展潜力巨大。根据EPIA 统计,即使以光伏发电发展最早、最成熟的欧盟为例,XX 年、

太阳能电池片生产工艺简介解读

培训资料 前道 一制绒工艺 制绒目的 1?消除表面硅片有机物和金属杂质。 2.去处硅片表面机械损伤层。 3?在硅片表面形成表面组织,增加太阳光的吸收减少反射。 工艺流程 来料,开盒,检查,装片,称重,配液加液,制绒,甩干,制绒后称重,绒面检查,流出。 单晶制绒1号机 2号机 基本原理 1#超声 去除有机物和表面机械损伤层。 目前采用柠檬酸超声,和双氧水与氨水混合超声。

3#4#5#6#制绒 利用NaOH 溶液对单晶硅片进行各向异性腐蚀的特点来制备绒面。当各向异性因子((100) 面与(111)面单晶硅腐蚀速率之比)=10 时,可以得到整齐均匀的金字塔形的角锥体组成的绒面。绒面具有受光面积大,反射率低的特点。可以提高单晶硅太阳能电池的短路电流,从而提高太阳能电池的光转换效率。 化学反应方程式:Si+2NaOH+H 2O=Nasio 3+2H 2 f 影响因素 1.温度 温度过高,首先就是IPA 不好控制,温度一高,IPA 的挥发很快,气泡印就会随之出现,这样就大大减少了PN 结的有效面积,反应加剧,还会出现片子的漂浮,造成碎片率的增加。可控程度:调节机器的设置,可以很好的调节温度。 2.时间金字塔随时间的变化:金字塔逐渐冒出来;表面上基本被小金字塔覆盖,少数开始成长;金字塔密布的绒面已经形成,只是大小不均匀,反射率也降到比较低的情况;金字塔向外扩张兼并,体积逐渐膨胀,尺寸趋于均等,反射率略有下降。可控程度:调节设备参数,可以精确的调节时间。 3.IPA 1.协助氢气的释放。 2.减弱NaOH 溶液对硅片的腐蚀力度,调节各向因子。纯NaOH 溶液在 高温下对原子排列比较稀疏的100 晶面和比较致密的111 晶面破坏比较大,各个晶面被腐蚀而消融,IPA 明显减弱NaOH 的腐蚀强度,增加了腐蚀的各向异性,有利于金字塔的成形。乙醇含量过高,碱溶液对硅溶液腐蚀能力变得很弱,各向异性因子又趋于1。 可控程度:根据首次配液的含量,及每次大约消耗的量,来补充一定量的液体,控制精度不高。 4.NaOH 形成金字塔绒面。NaOH 浓度越高,金字塔体积越小,反应初期,金字塔成核密度近似不受NaOH 浓度影响,碱溶液的腐蚀性随NaOH 浓度变化比较显著,浓度高的NaOH 溶液与硅反映的速度加快,再反应一段时间后,金字塔体积更大。NaOH 浓度超过一定界限时,各向异性因子变小,绒面会越来越差,类似于抛光。 可控程度:与IPA 类似,控制精度不高。 5.Na 2SiO 3 SI 和NaOH 反应生产的Na2SiO3 和加入的Na2SiO3 能起到缓冲剂的作用,使反应不至于很剧烈,变的平缓。Na 2SiO 3使反应有了更多的起点,生长出的金字塔更均匀,更小一点Na2SiO3 多的时候要及时的排掉,Na2SiO3 导热性差,会影响反应,溶液的粘稠度也增加,容易形成水纹、花蓝印和表面斑点。 可控程度:很难控制。 4#酸洗 HCL 去除硅片表面的金属杂质盐酸具有酸和络合剂的双重作用,氯离子能与多种金属离子形成可溶与水的络合物。 6#酸洗 HF 去除硅片表面氧化层,SiO2+6HF=H 2[siF6]+2H 2O。控制点 1.减薄量定义:硅片制绒前后的前后重量差。 控制范围

太阳能硅片切割中薄厚片问题分析

太阳能硅片切割中薄厚片问题分析 在太阳能硅片生产过程中,薄厚片的存在会影响产品的合格率,同时会影响电池片的生产工艺。本文主要对太阳能硅片产生薄厚片的原因进行了分析,以更好地降低和避免薄厚片的产生。 1.引言 切片工序是制备太阳能硅片的一道重要工序,太阳能硅片的切割原理是转动的钢线上携带着大量碳化硅颗粒,同时工作台位置缓慢下降,由于碳化硅的硬度大于多晶硅(晶体硅的莫氏硬度为6.5,碳化硅的莫氏硬度为9.5),依靠碳化硅的棱角不断地对硅块进行磨削,起到切割作用。薄厚片是衡量硅片品质的一个很重要的指标。薄厚片的存在会影响硅片合格率及电池片的生产工艺,因此这对硅片品质提出了更加严格的要求。 2.硅片厚度产生偏差的原理 硅片的切割过程是在导轮上完成的,钢线在导轮上缠绕形成相互平行的均匀线网,并以 10-15m/s的速度运动,砂浆经浆料嘴均匀地流到线网,砂浆中的碳化硅由于悬浮液的悬浮作用裹覆在钢线上,对硅块进行切割。但是随着切割的进行,钢线和碳化硅都会出现不同程度地磨损,钢线的椭圆度增大,携砂能力下降,同时碳化硅的圆度变大,平均粒径减小,切割能力也有所降低,因此,通常在平行工作台运动的方向,硅片入刀点厚度小于出刀点厚度;而和硅块运动方向垂直的方向上,硅片入线侧厚度小于出线侧厚度。硅片厚度有一定的偏差范围,对于180μm厚度的硅片,其偏差范围为±20μm,超过此范围则成为不良品--薄厚片。从根本上讲,薄厚片的产生都是由于各种问题导致线网抖动而造成的。 3.薄厚片原因分析 薄厚片可分为两大类:(1)TV(ThicknessVariation厚度偏差),主要指硅片与硅片之间相同位置之间的厚度偏差,通常存在于同一锯硅片中。(2)TTV(TotalThicknessVariation 整体厚度偏差),指同一片硅片上最厚位置与最薄位置之间的偏差。薄厚片根据其在硅片内的分布位置可以分为四类:整片薄厚(TV);入刀点薄厚(TTV);硅片中部至出刀点薄厚(TTV);单片薄厚不均(TTV)。其产生原因分析如下: (1)整片薄厚: a.导轮槽距不均匀。硅片厚度=槽距-钢线直径-4倍的(碳化硅)D50,根据所需的硅片厚度要求,可以计算出最佳槽距。此外由于在切割过程中,钢线会磨损,钢线直径变小,且端口由圆形变为椭圆形,因此导轮槽距需要根据线损情况进行补偿,以保证硅片厚度均匀。

单晶硅太阳能电池详细工艺

单晶硅太阳能电池 1.基本结构 2.太阳能电池片的化学清洗工艺 切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。 具体来说太阳能硅片表面沾污大致可分为三类: 1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。 2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径≥ 0.4 μm颗粒,利用兆声波可去除≥ 0.2 μm颗粒。 3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。(2)、带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。

1、用 H2O2作强氧化剂,使“电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面。 2、用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。 3、用大量去离子水进行超声波清洗,以排除溶液中的金属离子。 由于SC-1是H2O2和NH4OH的碱性溶液,通过H2O2的强氧化和NH4OH 的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。 另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。 3.太阳能电池片制作工艺流程图 具体的制作工艺说明 (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将 硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备 绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行 扩散,制成PN+结,结深一般为0.3-0.5um。

论金刚线切割硅片技术的前景

论金刚线切割硅片技术的前景

5 金钢线的优势 (1)切割效率高:切割效率高降低了设备厂房及一切折旧、单片人工加工成本; (2)单片成本低:金钢线替代了传统砂浆的切割的碳化硅、悬浮液、钢线,对比三项来说,根据砂浆使用结构线加线回收砂浆系统的单片控制在0.65元算比较前沿的,但不是每一家都可以达到这个程度,金钢线的电镀线切割基本持平,树脂金钢线还可以下潜1毛钱; (3)品质受控:A、从品质管控来说,砂、线、液是是必须分三家供应商,如果在加上二级、三级供应商的话,三项辅材需要设置要达到6-12家,相对金钢线将砂、线综合了,供应商的减少也减少辅料波动性,只需管控一家即可;B、切割过程中的断线,是影响良品率的一大杀手。金刚线的母线采购单价是高于普通直拉钢线几倍的价格,对于直拉钢线的品质要求也要更高,需要经过多次上砂和清洗和修磨工艺;C、金钢线的制造过程,需要经过多道金钢线拉力机的测试,并设立三道品质检验,分别从母线检测、一次成品检测、二次成品检测、需对每卷线都会有一份相应可追溯性检测报告,对表面镀层上砂颗粒数量、破断拉力、突出量等一系列数据进行检测;D、金钢线品质的性能,另外还需要是大量建立实际切割数据基础上,在提供给客户应用之前,现具有规模的金钢线厂家都会添加1台或者多台金钢线多线切割。建议一个具有可示范性、可复制的前沿技术推广应用的生产测试部门,对每批次钢线进行切割和前沿技术的摸索,经过了品质检验和实际生产的测试双向检测;E、金钢线的生产是完全建立数据跟踪系统,对于每卷线数据做到具有可追溯性,这也将品质把控更提高了一步; (4)硅耗降低:因以固结的方式可以参与有效切割的金刚石较多,镀层要比砂浆的混合体要小,刀缝损失也更少,生产加工过程成本的降低; (5)环保:在现中国的时代,工厂对于环保的认知还是太低了,砂浆的COD达到几十万,而金钢线切割液经过纯水稀释加切割液COD在200-1000,对于污水的处理也将大大提升; (6)潜在利于硅粉的回收再利用、回炉再利用,现在还在探索阶段。

硅片多线切割技术详解

硅片多线切割技术详解 太阳能光伏网 2012-4-9 硅片是半导体和光伏领域的主要生产材料。硅片多线切割技术是目前世界上比较先进的硅片加工技术,它不同于传统的刀锯片、砂轮片等切割方式,也不同于先进的激光切割和内圆切割,它的原理是通过一根高速运动的钢线带动附着在钢丝上的切割刃料对硅棒进行摩擦,从而达到切割效果。在整个过程中,钢线通过十几个导线轮的引导,在主线辊上形成一张线网,而待加工工件通过工作台的下降实现工件的进给。硅片多线切割技术与其他技术相比有:效率高,产能高,精度高等优点。是目前采用最广泛的硅片切割技术。 多线切割技术是硅加工行业、太阳能光伏行业内的标志性革新,它替代了原有的内圆切割设备,所切晶片与内圆切片工艺相比具有弯曲度(BOW)、翘曲度(WARP)小,平行度(TAPER)好,总厚度公差(TTA)离散性小,刃口切割损耗小,表面损伤层浅,晶片表面粗糙度小等等诸多优点。 太阳能硅片的线切割机理就是机器导轮在高速运转中带动钢线,从而由钢线将聚乙二醇和碳化硅微粉混合的砂浆送到切割区,在钢线的高速运转中与压在线网上的工件连续发生摩擦完成切割的过程。 在整个切割过程中,对硅片的质量以及成品率起主要作用的是切割液的粘度、碳化硅微粉的粒型及粒度、砂浆的粘度、砂浆的流量、钢线的速度、钢线的张力以及工件的进给速度等。 一、切割液(PEG)的粘度 由于在整个切割过程中,碳化硅微粉是悬浮在切割液上而通过钢线进行切割的,所以切割液主要起悬浮和冷却的作用。 1、切割液的粘度是碳化硅微粉悬浮的重要保证。由于不同的机器开发设计的系统思维不同,因而对砂浆的粘度也不同,即要求切割液的粘度也有不同。例如瑞士线切割机要求切割液的粘度不低于55,而NTC要求22-25,安永则低至18。只有符合机器要求的切割标准的粘度,才能在切割的过程中保证碳化硅微粉的均匀悬浮分布以及砂浆稳定地通过砂浆管道随钢线进入切割区。 2、由于带着砂浆的钢线在切割硅料的过程中,会因为摩擦发生高温,所以切割液的粘度又对冷却起着重要作用。如果粘度不达标,就会导致液的流动性差,不能将温度降下来而造成灼伤片或者出现断线,因此切割液的粘度又确保了整个过程的温度控制。 二、碳化硅微粉的粒型及粒度

太阳能光伏电池硅片切割技术

本文由哈哈5790902贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 太阳能光伏电池硅片切割技术 硅片切割是太阳能光伏电池制造工艺中的关键部分。该工艺用于处理单晶硅或者多晶硅的固体硅锭。线锯首先把硅锭切成方块,然后切成很薄的硅片。(图 1)这些硅片就是制造光伏电池的基板。 图 1.硅片切割的 3 个步骤:切料, 切方和切片 硅片是晶体硅光伏电池技术中最昂贵的部分,所以降低这部分的制造成本对于提高太阳能对传统能源的竞争力至关重要。本文将对硅片切片工艺、制造业的挑战和新一代线锯技术如何降低切片成本做一个概述。 线锯的发展史 第一台实用的光伏切片机台诞生于 1980 年代,它源于 Charles Hauser 博士前沿性的研究和工作。Charles Hauser 博士是瑞士 HCT 切片系统的创办人,也就是现在的应用材料公司 PWS 精确硅片处理系统事业部的前身。这些机台使用切割线配以研磨浆来完成切割动作。今天,主流的用于硅锭和硅片切割的机台的基本结构仍然源于 Charles Hauser 博士最初的机台,不过在处理载荷和切割速度上已经有了显著的提高。 切割工艺 现代线锯的核心是在研磨浆配合下用于完成切割动作的超细高强度切割线。最多可达1000 条切割线相互平行的缠绕在导线轮上形成一个水平的切割线“网“。马达驱动导线轮使整个切割线网以每秒 5 到 25 米的速度移动。切割线的速度、直线运动或来回运动都会在整个切割过程中根据硅锭的形状进行调整。在切割线运动过程中,喷嘴会持续向切割线喷射含有悬浮碳化硅颗粒的研磨浆。 图 2. 硅块通过切割线组成的切割网. 硅块被固定于切割台上,通常一次 4 块。切割台垂通过运动的切割线切割网,使硅块被切割成硅片(图 2)。切割原理看似非常简单,但是实际操作过程中有很多挑战。线锯必须精确平衡和控制切割线直径、切割速度和总的切割面积,从而在硅片不破碎的情况下,取得一致的硅片厚度,并缩短切割时间。 减少硅料消耗 对于以硅片为基底的光伏电池来说,晶体硅(c-Si)原料和切割成本在电池总成本中占据了最大的部分。光伏电池生产商可以通过在切片过程中节约硅原料来降低成本。降低截口损失可以达到这个效果,截口损失主要和切割线直径有关,是切割过程本身所产生的原料损失。切割线直径已经从原来的 180-160μm 降低到了目前普遍使用的 140-100μm 。降低切割线直径还可以在同样的硅块长度下切割出更多的硅片,提升机台产量。 让硅片变得更薄同样可以减少硅原料消耗。在过去的十多年中,光伏硅片的厚度从原来的 330μm 降低到现在普遍的 180-220μm 范围内。这个趋势还将继续,硅片厚度将变成100μm. 减少硅片厚度带来的效益是惊人的, 330μm 从到 130μm,光伏电池制造商最多可以降低总体硅原料消耗量多达 60%。 制造业的挑战 在硅片切割工艺中我们需要面对多项挑战,主要聚焦于线锯的生产力,也就是单位时间内生产的硅片数量。生产力取决于以下几个因素: 1) 切割线直径–更细的切割线意味着更低的截口损失,也就是说同一个硅块可以生产更多的硅片。然而,切割线更细更容易断裂。 2) 荷载–每次切割的总面积,等于硅片面积 X 每次切割的硅块数量 X 每个硅块所切割成的硅片数量。

单晶硅太阳能电池制作工艺

. 单晶硅太阳能电池/DSSC/PERC技术 2015-10-20

单晶硅太阳能电池

2.太阳能电池片的化学清洗工艺切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。 具体来说太阳能硅片表面沾污大致可分为三类: 1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。 2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径≥0.4 μm颗粒,利用兆声波可去除≥0.2 μm颗粒. 3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。(2)、带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。 1、用H2O2作强氧化剂,使“电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面 2、用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。 3、用大量去离子水进行超声波清洗,以排除溶液中的金属离子。由于SC-1是H2O2和NH4OH的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被

排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。 具体的制作工艺说明(1)切片:采用多线切割,将硅棒切割成正方形的硅片。(2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。(3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。(4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0.5um。(5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。(6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。(7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。(8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD 法或喷涂法等。(9)烧结:将电池芯片烧结于镍或铜的底板上。(10)测试分档:按规定参数规范,测试分类。 生产电池片的工艺比较复杂,一般要经过硅片检测、表面制绒、扩散制结、

中国太阳能硅片线切割设备国产化的现状和趋势(20200831060022)

硅片切割设备的现状和发展趋势 一、光伏产业链 作为硅片上游生产的关键技术,切割的质量与规模直接影响到整个产业链的后续生产,切割过程中需要用到刃料(创业板新大新材的产品)、研磨液、切割机床设备等。 硅片加工工艺流程一般经过晶体生长、切断、外径滚磨、平边、切片、倒角、研磨、腐蚀、抛光、清洗、包装等阶段。近年来光伏发电和半导体行业的迅速发展对硅片的加工提出了更高的要求(图1.1): 一方面为了降低制造成本,硅片趋向大直径化。另一方面要求硅片有极高的平面度精度和极小的表面粗糙度。所有这些要求极大的提高了硅片的加工 难度,由于硅材料具有脆、硬等特点,直径增大造成加工中的翘曲变形,加工精度不易保证。厚度增大、芯片厚度减薄造成了材料磨削量大、效率下降等。 图1.1晶片发展趋势 硅片切片作为硅片加工工艺流程的关键工序,其加工效率和加工质量直接关系到整个硅片生产的全局。对于切片工艺技术的原则要求是:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。 目前,硅片切片有两种加工方法:1、内圆切割;2、自由磨粒的多丝切割,大连连城的产品属于后者。 内圆切割是传统的加工方法(图 1.2a),材料的利用率仅为40%?50%左右;同时,由于结构限制,内圆切割无法加工200mn以上的大中直径硅片。 图1.2内圆切割与多丝切割原理示意图 多丝切割技术是近年来崛起的一项新型硅片切割技术,它通过金属丝带动碳化硅研磨料进行研磨加工来切割硅片(图 1.2b )。和传统的内圆切割相比,多丝切割具有切割效率高、材料损耗小、成本降低(例如日进NWS6X型6”多丝切割加工07年较内圆切割每片省15元)、硅片表面质量高、可切割大尺寸材料、方便后续加工等特点(见表1.1)o 表1.1 :内圆切割与多丝切割的对比

硅片切割技术

太阳能硅片切割技术 太阳能硅片的线切割机理就是机器导轮在高速运转中带动钢线,从而由钢线将聚乙二醇和碳化硅微粉混合的砂浆送到切割区,在钢线的高速运转中与压在线网上的工件连续发生摩擦完成切割的过程。 在整个切割过程中,对硅片的质量以及成品率起主要作用的是切割液的粘度、碳化硅微粉的粒型及粒度、砂浆的粘度、砂浆的流量、钢线的速度、钢线的张力以及工件的进给速度等。 一、切割液(PEG)的粘度 由于在整个切割过程中,碳化硅微粉是悬浮在切割液上而通过钢线进行切割的,所以切割液主要起悬浮和冷却的作用。 1、切割液的粘度是碳化硅微粉悬浮的重要保证。由于不同的机器开发设计的系统思维不同,因而对砂浆的粘度也不同,即要求切割液的粘度也有不同。例如瑞士线切割机要求切割液的粘度不低于55,而NTC要求22-25,安永则低至18。只有符合机器要求的切割标准的粘度,才能在切割的过程中保证碳化硅微粉的均匀悬浮分布以及砂浆稳定地通过砂浆管道随钢线进入切割区。 2、由于带着砂浆的钢线在切割硅料的过程中,会因为摩擦发生高温,所以切割液的粘度又对冷却起着重要作用。如果粘度不达标,就会导致液的流动性差,不能将温度降下来而造成灼伤片或者出现断线,因此切割液的粘度又确保了整个过程的温度控制。 二、碳化硅微粉的粒型及粒度 太阳能硅片的切割其实是钢线带着碳化硅微粉在切,所以微粉的粒型及粒度是硅片表片的光洁程度和切割能力的关键。粒型规则,切出来的硅片表明就会光洁度很好;粒度分布均匀,就会提高硅片的切割能力。 三、砂浆的粘度 线切割机对硅片切割能力的强弱,与砂浆的粘度有着不可分割的关系。而砂浆的粘度又取决于硅片切割液的粘度、硅片切割液与碳化硅微粉的适配性、硅片切割液与碳化硅微粉的配比比例、砂浆密度等。只有达到机器要求标准的砂浆粘度(如NTC机器要求250左右)才能在切割过程中,提高切割效率,提高成品率。 四、砂浆的流量 钢线在高速运动中,要完成对硅料的切割,必须由砂浆泵将砂浆从储料箱中打到喷砂咀,再由喷砂咀喷到钢线上。砂浆的流量是否均匀、流量能否达到切割的要求,都对切割能力和切割效率起着很关键的作用。如果流量跟不上,就

太阳能硅片切割技术

优化太阳能硅片切割成本 当太阳能硅片切割行业的利润逐渐趣于稳定,行业内的竞争逐步升温的2009 年到来时,对太阳能硅片切割企业,尤其是中小型切割企业来说,在提高硅片质量的同时进行成本优化已成为一种必然。 由于行业的竞争,使得产品在销售过程中已不可能像经济危机之前那样坐等采购上门来买,并且对硅片的质量提出来极高的要求,因此,尽管太阳能硅片是按张数来卖,但只为增加张数的生产时光已一去不复返了。按常理来讲,要提高并且保持太阳能硅片的质量,就必须在生产环节层层把关,这样,带来的最直接的影响就是生产成本的上升.。对于硅片切割这样的加工型经营模式来讲,在保证质量的前提下,最直接的降低成本的方式莫过于实现规模化生产,但这种成本优化的方式只属于资金以及经营理念超前的赛维LDK、昱辉等大型硅片切割企业。因而,中小型硅片切割企业的成本优化方式,必须是结合生产工艺改进条件下的对切割液、碳化硅微粉、以及钢线等的优化使用。 沙浆的优化使用:在整个硅片切割过程中,最容易做到的首先是对沙浆的优 化使用 由于废沙浆的回收使用已经比较成熟,所以对大多数中小型硅片切割企业来说讲,在保证质量的前提下,降低沙浆的使用成本已经成为一种可能。我们以四台NTC442D线切割机为例,以液砂配比比例1 : 0.95计算,一台机一个月的用量液6吨,砂5.7吨,按市场价液16000元/吨,砂30000元/吨计算,那么四台机一个月的使用成本是1068000 元。如果用回收液和回收砂,为保证回收液和砂的质量,用塞矽做回收,回收比例可以达到液70%,砂50%。液按8000元/吨,砂15000元/吨计算,为保险起见,我们在使用过程中回收液,砂都参50%,那么四台机一个月的使用成本为802000,这样一个月可节省成本266000 元,即一年节省成本3192000 元。 如果技术改进,砂的回收加工费用可降到10000元/吨,并且回收液和砂的 使用比例还可以有大的提升。 可见,如果在工艺许可的范围内,对沙浆的使用进行优化,也可以为硅片切割企业节省大额的成本。 太阳能硅片切割液 太阳能硅片的线切割机理就是机器导轮在高速运转中带动钢线,从而由钢线将聚乙二醇和碳化硅微粉混合的砂浆送到切割区,在钢线的高速运转中与压在线网上的工件连续发生摩擦完成切割的过程。

光伏硅片十大制造商

全球十大太阳能光伏硅片生产商最新排名太阳能硅片企业主要集中于亚洲,尤其是中国大陆和台湾。廉价的劳动力,较低的土 地和资金成本,同时也由于主要客户的存在,使得中国成为世界第一的太阳能硅片生产者。尽管多数多晶硅在欧洲和美国生产,但是中国引导了硅片生产的方式。而半导体硅片主要 在日本、美国和德国这样的发达国家生产。晶体硅行业的结构性的力量在驱动着垂直整合,电池生产商在生产硅片而硅片企业也在生产电池。然而,也有少数一些公司主要集中向电 池片生产商供应硅片。这里是主要的太阳能硅片制造商的列表,过去几年中表现出惊人的 增长。 1)保利协鑫能源控股有限公司--这家中国公司2008年从零开始,2010年底公布达成3.5GW的硅片产能,从而成为最大的多晶硅和硅片生产商之一。它迅速扩产,但并没有涉足太阳能电池和组件的生产。公司仍然在努力成为多晶硅厂商的前3甲,并且通过在接近客户工厂的地方设置硅片厂来扩大产能。已经与世界上大部分大型组件生产商,签订了大 额的长期的交易合同。 2)江西赛维LDK太阳能高科技有限公司--是最大的用在晶体硅组件上的太阳能硅片生产商,但是正在将第一的位置输给保利协鑫。2010年底,其硅片产能达到3GW。它已经扩产到太阳能供应链的其他环节,在接下来的几年里,有望进入太阳能组件生产商前10名。 3)浙江昱辉阳光能源有限公司--在运营和组织结构上非常类似赛维LDK太阳能,这家中国公司是世界上花费成本最低的太阳能硅片生产商,硅片产能达1.5GW,也正在扩展到供应链的其他环节。 4)REC公司--这家挪威的生产商一直是最大的太阳能硅片生产商。直到几年前,将它 的领先地位输给了中国。现在,它正在新加坡扩产,以降低它高昂的成本,并在进行垂直 整合。目前的产能是1.9GW。 5)Solarworld公司--Solarworld公司是德国最大的太阳能电池板生产商,是少数几个仍然在欧洲和美国运营的公司之一,硅片产能在1.25GW。该公司一直饱受低成本竞争的折磨。 6)上海卡姆丹克太阳能--它是一个相对不那么知名的中国硅片制造商,然而它扩产迅速,目前,已经和浙江昱辉拥有同样大的生产能力。 7)绿色能源科技有限公司--这个台湾的太阳能硅片制造商已经在产能增长上远远领先 国内其他竞争者。产品主要面向台湾数量众多的电池制造商,去年产能在1GW左右。 8)中美晶矽(SAS)--中美晶矽是台湾最古老的硅片厂商之一,同时面向半导体和太阳能行业。与其说它在积极扩张,不如说是在稳健地成长,目前拥有800兆瓦产能。 9)MEMC公司--唯一一个大型美国太阳能硅片制造商,产能600MW正在马来西亚建造工厂来降低成本。该公司是半导体硅片方面最大的制造商之一。和保利协鑫一样,它也 扩展太阳能系统方面的业务,而并没有涉足电池片和组件的生产。 10)NEXolon公司--这是一家韩国公司,而且与多晶硅巨头OCI化学公司联系密切。公司的成长主要依赖于像LG、韩华、三星这样的韩国公司的成长。

结构线对硅片切割的影响

结构线对硅片切割的影响 摘要:本文使用结构线替代传统的硅片多线切割用线直钢丝方法,在切割硅块过程中,会增大碳化硅颗粒的附着力,不容易从钢线表面脱落,使钢线携带比较多的砂浆参与硅块的切割。也大大提高了钢线的切割能力。通过使用结构线对硅块进行切割并对试验数据进行跟踪,硅片表面的碳化硅磨削痕迹在3-4um,硅片整体厚度良好保持在180um±10um且TTV<15um。 关键词: 硅片切割、结构线、合格率 0、前言 当前随着社会的发展,太阳能光伏产业逐步成为新的主导产业。在太阳能硅片切割过程中,主要是由钢线带动浆料(浆料由碳化硅粉末和悬浮液按照一定比例进行配置而成),在一定张力的作用下,利用碳化硅颗粒的坚硬特性和锋利菱角将硅块切割成尺寸合格的硅片。钢线在参与整个切割过程中作为一个载体,同时也被高速运动的碳化硅颗粒磨损,线径的变化可能会影响硅片表面的切割质量。 砂浆中的碳化硅莫氏硬度为9.5级,而晶体硅的莫氏硬度为7级,切割过程中主要依靠碳化硅对晶体硅进行磨削切割。钢线携带砂浆的多少直接影响硅块切割的效果。目前太阳能行业普遍使用的切割硅片的钢线主要是横截面为圆形或椭圆形的普通钢线。在切割硅块过程中,碳化硅颗粒由于缺少附着力,容易从钢线表面脱落,钢线在硅块入线口会引起浆料的飞溅,进而携带比较少的砂浆参与硅块的切割。这使得钢线在切割硅片过程中容易磨损,引起断线,也大大降低了钢线的切割能力。本文的结构线可以提高对砂浆的携带能力,从而有助于硅片合格率的提升。 1、目前现状 目前在光伏行业中结构线的主要应用为多晶硅开方使用,在硅片切割中的多线切割中应用较少,主要原因是结构线本身的造价要高于普通的直钢丝,这就使得在钢线耗用量较大的多线切割中成本较高。 整体切片环节成本的主要消耗为碳化硅、悬浮液、钢线,现在整个原材料价格下滑,切割钢线在砂、线、液成本中所占的比例为20%,其中碳化硅和切割液占了主要的部分。实验的主题思路为通过将结构线代替普通直钢丝,提高切割线在纱线液中所在比例,降低碳化硅和切割液的消耗,从而降低纱线液的整体成本。目前0.12*500km型号的结构线价钱现在比普通直钢丝高30%,通过降低砂浆的用量,提高加工设备的工作台速度,提高设备的开机率,最终达到原材料和设备费用的共同降低。

相关主题
文本预览
相关文档 最新文档