当前位置:文档之家› 高中数学双曲线离心率求法专题总结.doc

高中数学双曲线离心率求法专题总结.doc

高中数学双曲线离心率求法专题总结.doc
高中数学双曲线离心率求法专题总结.doc

双曲线离心率求法

一、双曲线离心率的求解

1、直接求出a c ,或求出a 与b 的比值,以求解e 。 在双曲线中,a c e =>1,2222222211()c c a b b b e a a a a a

+====+=+ 1.已知双曲线x 2a 2-y 2

b 2

=1的一条渐近线方程为y =43x ,则双曲线的离心率为 2.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为 3.已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为 4.已知双曲线)0( 1222>=-a y a

x 的一条准线为23=x ,则该双曲线的离心率为__________ 5.已知F 1、F 2是双曲线)0,0(122

22>>=-b a b

y a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1 的中点在双曲线上,则双曲线的离心率是__________

6.设双曲线22

221(0,0)x y a b a b

-=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ?是直角三角形,则双曲线的离心率=e ________.

7.已知双曲线122

22=-b

y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是

8.设1a >,则双曲线22

221(1)

x y a a -=+的离心率e 的取值范围是__________. 9.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 o

,则双曲线C 的离心率为________

10.已知双曲线的渐近线方程为125

y x =±,则双曲线的离心率为_________ 2、构造a c ,的齐次式,解出e 。 1.已知双曲线22

221x y a b

-=(0,0)a b >>的左、右焦点分别为F 1、F 2,P 是准线上一点,且P F 1⊥P F 2, |P F 1|?|P F 2 |=4ab ,则双曲线的离心率是_______

2.过双曲线22

221x y a b

-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________.

3.设1F 和2F 为双曲线22221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为_________

4.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为_______

3、寻找特殊图形中的不等关系或解三角形。

1.已知双曲线22

221,(0,0)x y a b a b

-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为________

2.双曲线22

221x y a b

-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲 线离心率的取值范围为_________

3.设F 1,F 2分别是双曲线22

221x y a b

-=的左、右焦点。若双曲线上存在点A ,使1290F AF ∠=o ,且 |AF 1|=3|AF 2|,则双曲线离心率为_________

4.双曲线22

221x y a b

-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o 的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为___________

5.如图,1F 和2F 分别是双曲线22

221(0,0)x y a b a b

-=f f 的两个焦点, A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个

交点,且△AB F 2是等边三角形,则双曲线的离心率为_____________

6.设点P 是双曲线22

221(0,0)x y a b a b

-=f f 右支上的任意一点,12,F F 分别是其左右焦点,离心率为e ,若12||||PF e PF =,此离心率的取值范围为

二、双曲线离心率取值范围问题

三、作业

1、设点P 在双曲线)0,0(122

22>>=-b a b y a x 的左支上,双曲线两焦点为,已知是点P 到左准

线的距离和

的比例中项,求双曲线离心率的取值范围。

2 、设点P 在双曲线)0,0(122

22>>=-b a b y a x 的右支上,双曲线两焦点,,求双曲

线离心率的取值范围。

3、 已知点在双曲线)0,0(122

22>>=-b a b y a x 的右支上,双曲线两焦点为,2221||||PF PF 最小值是,

求双曲线离心率的取值范围。

椭圆、双曲线离心率难题专题

椭圆、双曲线离心率难题专题 1. (2018学年杭高高三开学考15)已知1F ,2F 分别是椭圆()22 22133 x y a a +=>的左右焦点,A 是椭圆上 一动点,圆C 与1F A 的延长线以及线段2AF 相切,若()2,0M 为一切点,则椭圆的离心率为 . 2. (2018学年杭十四中4月月考2)已知双曲线2221x y a -=的一条渐近线方程是y ,则双曲线的 离心率为( ) A B C D 3. (2018学年浙江名校协作体高三上开学考2)双曲线2 213 x y -=的焦距为( ) A .2 B . C . D .4 4. (2018学年浙江名校协作体高三下开学考12)已知直线l 为双曲线()22 22:10,0x y C a b a b -=>>的一条 渐近线,1F ,2F 是双曲线C 的左、右焦点,点1F 关于直线l 的对称点在双曲线C 的另一条渐近线上,则双曲线C 的渐近线的斜率为 ,离心率e 的值为 . 5. (2018学年浙江重点中学高三上期末热身联考3)已知双曲线2 221y x a -=的一条渐近线方程为y =, 则该双曲线的离心率是( ) A . 3 B C .2 D 6. (2019届超级全能生2月模拟16)已知椭圆()22 2210x y a b a b +=>>的左、右焦点分别为1F ,2F ,椭圆

上点P 满足122PF PF =,射线PM 平分12F PF ∠,过坐标原点O 作PM 的平行线交1PF 于点Q ,且 121 4PQ F F =,则椭圆的离心率是 . 7. (2019届慈溪中学5月模拟6)若椭圆、双曲线均是以直角三角形ABC 的斜边AC 的两端点为焦点 的 曲线,且都过点B ,它们的离心率分别是1e ,2e ,则2212 11 e e +=( ) A . 32 B .2 C .3 D . 52 8. (2019届杭二仿真考16)存在第一象限的点()00,M x y 在椭圆()22 2210x y a b a b +=>>上,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点,02c ?? ??? (c 为椭圆半焦距),则椭圆离心率的取 值范围是 . 9. (2019届杭州4月模拟10)已知椭圆()22 22:10x y a b a b Γ+=>>,直线1x y +=与椭圆Γ交于,M N 两点, 以线段MN 为直径的圆经过原点.若椭圆Γ ,则a 的取值范围为( ) A .( B .? C .? ?? D .? ?? 10. (2019届湖州三校4月模拟17)已知椭圆()22 2210x y a b a b +=>>的两个顶点()(),0,0,A a B b ,过,A B 分别作AB 的垂线交该椭圆于不同的顶点C ,D 两点,若23BD AC =,则椭圆的离心率是 . 11. (2019届稽阳联谊4月模拟16)已知,C F 分别是椭圆22 22:1x y a b Γ+=的左顶点和左焦点,,A B 是椭圆 的下、上顶点,设AF 和BC 交于点D ,若2CD DB =u u u r u u u r ,则椭圆Γ的离心率为 .

双曲线离心率求解的基本方法

双曲线离心率的求法 一、利用双曲线定义 例1.已知椭圆E 上存在点P ,在P 与椭圆E 的两个焦点F 1、F 2构成的△F 1PF 2中, 121221sin :sin :sin 7:10:11.PF F F PF PF F ∠∠∠=则椭圆E 的离心率等于 二、利用平面几何性质 例2 设点P 在双曲线)0b ,0a (1b y a x 22 22>>=-的右支上,双曲线两 焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。 三、利用数形结合 例3 (同例2) 四、利用均值不等式 例4 已知点P 在双曲线)0b ,0a (1b y a x 22 22>>--的右支上,双曲线两焦 点为21F F 、,| PF ||PF |221最小值是a 8,求双曲线离心率的取值范围。 五、利用已知参数的范围 例5 已知梯形ABCD 中,|CD |2|AB |=,点E 分有向线 段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4 332≤λ≤时,求双曲线离心率的取值范围。 六、利用直线与双曲线的位置关系 例6 已知双曲线)0a (1y a x 222 >=-与直线l :1y x =+交于P 、Q 两个不同的点,求双曲线离心率的取值范围。 七、利用点与双曲线的位置关系 例7 已知双曲线)0a (1y a x 222 >=-上存在P 、Q 两点关于直线 1y 2x =+对称,求双曲线离心率的取值范围。 八、利用非负数性质 例8 已知过双曲线)0b ,0a (1b y a x 22 22>>=-左焦点1F 的直线l 交 双曲线于P 、Q 两点,且OQ OP ⊥(O 为原点),求双曲线离心率的取值范围。 九、利用双曲线性质 例9.已知双曲线22 221(0,0)x y a b a b -=>>的左、右焦点分别为12(,0),(,0)F c F c -.若双曲线上存在点P 使1221sin sin PF F a PF F c ∠=∠,则该双曲线的离心率的取值范围是

圆锥曲线离心率专题

. . .. . 圆锥曲线离心率专题训练 1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值围是() A. [,1)B. [,1) C. (0,] D. (0,] 2.二次曲线时,该曲线离心率e的围是() A.B.C.D. 3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的围是() A. [,1)B. (,1) C. [,) D. (0,) 4.双曲线的离心率e∈(1,2),则k的取值围是() A.(﹣∞,0)B.(﹣3,0)C.(﹣12,0)D.(﹣60,﹣12) 5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值围是()A.B.C.D. 6.已知椭圆的接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值围()A.B.C.D. 7.已知椭圆x2+my2=1的离心率,则实数m的取值围是() A.B.C.D. 8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值围为(1,2),则该椭圆的离心率的取值围是() A. (0,)B. (,) C. (,) D. (,1) 9.椭圆的接矩形的最大面积的取值围是[3b2,4b2],则该椭圆的离心率e的取值围是()A.B.C.D.

10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值围为() A.[2,+∞)B.(,+∞)C. [,+∞) D.(,+∞)11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线 的距离之和为S,且S,则离心率e的取值围是() A.B.C.D. 12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭 圆离心率e的取值围是() A.B.C.D. 13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则 的取值围是() A.B.C.D. 14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值围为()A.B.C.D. 15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离 心率的取值围是() A.B.C.(1,2)D. 16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值围是() A. (1,]B. (1,) C. (2,] D.(,2]

双曲线离心率常见求法整理归纳

1 双曲线离心率求法 在双曲线中,1c e a => ,c e a ===== 方法一、直接求出a c ,或求出a 与b 的比值,以求解e 1.已知双曲线22221x y a b -=的一条渐近线方程为43 y x =,则双曲线的离心率为 . 2.已知双曲线22212x y a -= (a >)的两条渐近线的夹角为3 π,则双曲线的离心率为 . 3.已知1F 、2F 是双曲线)0,0(122 22>>=-b a b y a x 的两焦点,以线段12F F 为边作正三角形12MF F ,若边1MF 的中点在双曲线上,则双曲线的离心率是 . 4.设双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ?是直角三角形,则双曲线的离心率=e . 5.已知双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 . 6.设1a >,则双曲线22 221(1) x y a a -=+的离心率e 的取值范围是 . 7.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60,则双曲线C 的离心率为 . 8.已知双曲线的渐近线方程为125y x =±,则双曲线的离心率为 . 9.过双曲线122 22=-b y a x 的一个焦点的直线交双曲线所得的弦长为2a ,若这样的直线有且仅有两条,则离心率为 . 10.双曲线两条渐近线的夹角等于90,则它的离心率为 .

方法二、构造,a c 的齐次式,解出e 1.过双曲线22 221x y a b -=((0,0)a b >>)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________. 2.设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点, 若1F 、2F ,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为________. 3.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为________. 方法三、寻找特殊图形中的不等关系或解三角形 1.已知双曲线22 221,(0,0)x y a b a b -=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为________. 2.双曲线22 221,(0,0)x y a b a b -=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为________. 3.设12,F F 分别是双曲线22 221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=,且12||3||AF AF =,则双曲线离心率为________. 4.双曲线22 221x y a b -=(0a >,0b >)的左、右焦点分别是12,F F ,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为________. 5.如图,1F 和2F 分别是双曲线22 221(0,0)x y a b a b -=>>的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且2F AB ?是等边三角形,则双曲线的离心率为________.

巧解双曲线的离心率

巧解双曲线的离心率 离心率是双曲线的重要性质,也是高考的热点。经常考查:求离心率的值,求离心率的取值范围,或由离心率求参数的值等。下面就介绍一下常见题型和巧解方法。 1、求离心率的值 (1)利用离心率公式a c e = ,先求出c a ,,再求出e 值。 (2)利用双曲线离心率公式的变形: 2)(1a b a c e +==,先整体求出a b ,再求 出e 值。 例1 已知双曲线)0,0(122 22>>=-b a b y a x 的一条渐近线方程为x y 34=,则双曲线的离心 率为__________. 分析:双曲线)0,0(12222>>=-b a b y a x 的渐近线方程为x a b y ±=,由已知可得34 =a b 解答:由已知可得34 =a b ,再由2)(1a b a c e +==,可得35=e . (3)构造关于c a ,的齐次式,再转化成关于e 的一元二次方程,最后求出e 值,即“齐次化e ”。例如:010222=-+?=-+e e a ac c 例2 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线 的一条渐近线垂直,那么此双曲线的离心率为____________. 分析:利用两条直线垂直建立等式,然后求解。 解答:因为两条直线垂直,011)(2222=--?-=?=?-=-?e e a c c a b c b a b 所以2 1 5+= e (负舍) 2、求离心率的取值范围 求离心率的取值范围关键是建立不等关系。 (1)直接根据题意建立c b a ,,的不等关系求解e 的取值范围。 例3 若双曲线22 221x y a b -=(0>>b a ),则双曲线离心率的取值范围是_________. 分析:注意到0>>b a 的条件 解答:),(21)(10102∈+=?>> ?>>a b e a b b a

一题多解求双曲线的离心率

一、典例分析,融合贯通 典例1 【2016年山东卷理科第13题】已知双曲线 )>,>(=:00122 22b a b y -a x E ,若矩形ABCD 的四个顶点在E 上,CD AB ,的中点为E 的两个焦点,且BC 3=AB 2,则E 的离心率为 【解法1】直接法 由题意c 2=BC ,所以3c =AB , 于是点),23(c c 在双曲线E 上,代入方程,得14922 22=b c -a c , 在由2 c b a =+22得E 的离心率为 2== a c e . 【点睛之笔】直接代入,少走弯路! 【解法2】通径法 易得2b A(c,)a ,2b B(c,)a -,所以2 2b |AB |a =,|BC |2c =,由2AB 3BC =,222 c a b =+得离心率e 2=或 1 e 2=- (舍去),所以离心率为 2.e = 【点睛之笔】通径法,此径通幽! 【点睛之笔】几何法,利用图形画出美好未来! 【解后反思】 解法1:直接将数据代入,直奔主题,不走回头路! 解法2:利用通径,减少计算量! 解法3:利用数形结合法,以形助数!

典例2 【2009全国卷Ⅰ,理4】设双曲线12222=-b y a x (a >0, b >0)的渐近线与抛物线y=x 2 +1相切,则该 双曲线的离心率等于( ) A.3 C.5 D.6 【点睛之笔】设而不求法,不求也能求! 【解法2】导数法 设切点00(,)P x y '2,y x = ∴切线斜率02b k x a == ∴02b x a =

∴ 2 002 2 , 2 1, 2 b b y x a a b y a ? == ? ? ? ?? ?=+ ? ??? ? 22 4 b a ∴= . ∴又2222222 ,45 c a b c a a a =+∴=+= 5 c e a ∴==,故选C. 【点睛之笔】导数法,快速确定解题方向! 【解后反思】 解法1:设而不求法,再也不求人! 解法2:利用导数的几何意义,迅速突破难点,确定解题方略! 3.典例3双曲线1 2 2 2 2 = - b y a x 的离心率为e1,双曲线1 2 2 2 2 = - a x b y 的离心率为e2, 则= + 2 2 2 1 1 1 e e _________, e1+e2的最小值为______. e1·e2的最小值为______ . 由双曲线离心率定义知: b b a e a b a e 2 2 2 2 2 1 , + = + = , 故有 22 12 11 1 e e +=. 【点睛之笔】均值不等式,不患寡而患不“均”! 【解法2】换元法

椭圆与双曲线离心率专题

一、直接利用椭圆、双曲线的方程式和离心率公式计算。 二、利用三角形三边的关系建立不等关系(但要注意可以取到等号成立) 三角形的三边关系:两边之和大于第三边,两边之差小于第三边。 三、利用三角函数有界性结合余弦定理建立不等关系 余弦定理: 四、利用圆锥曲线中、x y 的范围建立不等关系 例1:双曲线22 221(0,0)x y a b a b -=>>的两个焦点为12,F F ,若P 为其上一点,且122PF PF =,则 双曲线离心率的取值范围是( ) A .(1,3) B .(1,3] C .(3,)+∞ D .[3,)+∞ 归纳:求双曲线离心率取值范围时可先求出双曲线上一点的坐标,再利用性质:若点P 在双曲线1b y a x 2222=-的左支上则a x -≤;若点p 在双曲线1b y a x 22 22=-的右支上则a x ≥。 五、利用曲线的几何性质数形结合建立不等关系

例2、已知双曲线22 221(0,0)x y a b a b -=>>的左、右焦点分别为12(,0),(,0)F c F c -.若双曲线上存在 点P 使 1221sin sin PF F a PF F c ∠=∠,则该双曲线的离心率的取值范围是 . 六、利用判别式建立不等关系 例5、已知双曲线)0a (1y a x 222 >=-与直线l :1y x =+交于P 、Q 两个不同的点,求双曲线离心 率的取值范围。 七、利用均值不等式建立不等关系 均值不等式:

练习2、已知点P 在双曲线22 221(0,0)x y a b a b -=>>的右支上,双曲线两焦点为21F F 、,| PF ||PF |221最 小值是a 8,则双曲线离心率的取值范围 。 八、利用二次函数的性质建立不等关系 例7、设1 a >,则双曲线2 2 22 1(1)x y a a - =+的离心率e 的取值范围是( ) A.2) B. C.(2,5) D.

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题【重点知识温馨提示】 1.e=c a =1- b2 a2 (01) 2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式, 3. 【典例解析】 例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( ) A. 5 B.2 C. 3 D. 2 例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:

22 22 1(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A ) 1 3 (B ) 12 (C ) 23 (D ) 34 例3 (2015·福建)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直 线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于4 5, 则椭圆E 的离心率的取值范围是( ) A.? ???0, 32 B.????0,34 C.??? ?3 2,1 D.???? 34,1 例4.(2014·江西)设椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与 C 相交于A ,B 两点,F 1B 与y 轴相交于点 D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】 1. (2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆 上,则椭圆的离心率是________. 2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2 n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若 c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A. 33 B.22 C.14 D.1 2 3.已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使 a sin ∠PF 1F 2=c sin ∠PF 2F 1 ,则椭圆的离心率的取值范围为______. 4.过双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条 渐近线交于点B ,若FB →=2F A → ,则此双曲线的离心率为( ) A. 2 B. 3 C .2 D. 5 5.(2015·山东)过双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交 C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.

圆锥曲线离心率专题

圆锥曲线离心率专题训练 1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是() A. [,1)B. [,1) C. (0,] D. (0,] 2.二次曲线时,该曲线离心率e的范围是() A. B. C. D. 3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的范围是() A. [,1) B. (,1) C. [,) D. (0,) 4.双曲线的离心率e∈(1,2),则k的取值范围是() A.(﹣∞,0)B.(﹣3,0) C. (﹣12,0)D. (﹣60,﹣12) 5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是() A. B. C.D. 6.已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围( ) A. B. C. D. 7.已知椭圆x2+my2=1的离心率,则实数m的取值范围是() A. B.C.D. 8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是() A. (0,) B. (,) C. (,) D. (,1) 9.椭圆的内接矩形的最大面积的取值范围是[3b2,4b2],则该椭圆的离心率e的取值范围 是() A. B. C. D.

10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为() A. [2,+∞) B.(,+∞)C. [,+∞) D.(,+∞) 11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线 的距离之和为S,且S,则离心率e的取值范围是() A. B. C. D. 12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离 心率e的取值范围是() A.B. C. D. 13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则的取值范围是( ) A. B. C. D. 14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值范围为() A.B.C. D. 15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离心率的取值范围是() A. B. C. (1,2) D. 16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是() A. (1,]B. (1,) C. (2,] D.(,2]

椭圆和双曲线的离心率的求值与范围问题

椭圆和双曲线的离心率的求值及围求解问题【重点知识温馨提示】 1.e=c a =1- b2 a2 (01) 2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式, 3. 【典例解析】 例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( ) A. 5 B.2 C. 3 D. 2 例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:

22 22 1(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A ) 1 3 (B ) 12 (C ) 23 (D ) 34 例3 (2015·)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l : 3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于4 5,则椭圆 E 的离心率的取值围是( ) A.? ???0, 32 B.????0,34 C.??? ?3 2,1 D.???? 34,1 例4.(2014·)设椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相 交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】 1. (2015·)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆上, 则椭圆的离心率是________. 2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2 n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若 c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A. 33 B.22 C.14 D.1 2 3.已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使 a sin ∠PF 1F 2=c sin ∠PF 2F 1 ,则椭圆的离心率的取值围为______. 4.过双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条 渐近线交于点B ,若FB →=2F A → ,则此双曲线的离心率为( ) A. 2 B. 3 C .2 D. 5 5.(2015·)过双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于 点P .若点P 的横坐标为2a ,则C 的离心率为________.

椭圆双曲线专题离心率

椭圆、双曲线离心率问题 1.已知)0,(),0,(21c F c F -为椭圆122 22=+b y a x 的两个焦点,P 为椭圆上 2 21c PF PF =?,此椭圆离心率的取值范围是 ( ) A .3[ ,1)3 B .11 [,]32 C .32[,]32 D .2(0,]2 2.椭圆1322=+ky x 的一个焦点坐标为)10(,,则其离心率等于 ( ) A. 2 B. 2 1 C. 332 D. 23 3.已知椭圆1C 与双曲线2C 有共同的焦点)0,2(1-F ,)0,2(2F ,椭圆的一个短轴端点为 B ,直线B F 1与双曲线的一条渐近线平行,椭圆1 C 与双曲线2C 的离心率分别为21,e e ,则21e e +取值范围为( ) A.),2[+∞ B. ),4[+∞ C.),4(+∞ D. ),2(+∞ 4.已知双曲线22219y x a -=的两条渐近线与以椭圆22 1259y x +=的左焦点为圆心、半径为16 5 的圆相切,则双曲线的离心率为( ) A .54 B .5 3 C .43 D .65 5.ABC ?是等腰三角形,B ∠=? 120,则以B A ,为焦点且过点C 的双曲线的离心率为 ( ) A. 221+ B. 23 1+ C. 21+ D. 31+

6.已知F 1,F 2是椭圆22 221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且 122 F PF π ∠= 记线段PF 1与y 轴的交点为Q ,O 为坐标原点,若△F 1OQ 与四边形OF 2PQ 的 面积之比为1: 2,则该椭圆的离心率等于 ( ) A .23- B .233- C .423- D .31- 7.已知抛物线22(0)y px p =>的焦点恰好是椭圆22 221(0)x y a b a b +=>>的右焦点 F ,且两条曲线的交点连线也过焦点F ,则椭圆的离心率为 ( ) A.21- B .2(21)- C .51 2- D .22 8.设O 为坐标原点,12,F F 是椭圆22 221(0)x y a b a b +=>>的左、右焦点,若在椭圆上 存在点P 满足123 F PF π ∠= ,且3 ||2 OP a = ,则该椭圆的离心率为( ) A、 12 B、14 C、312 - D、22 9.椭圆)0(122 22>>=+b a b y a x 的左右焦点分别为21,F F ,过焦点1F 的倾斜角为 30直线交 椭圆于A,B 两点,弦长8 =AB ,若三角形ABF2的内切圆的面积为π,则椭圆的离心率为 ( ) A .22 B .63 C .21 D .33 10.与椭圆14 22 =+y x 共焦点且过点P (2,1)的双曲线方程是 ( ) A .14 22 =-y x B .122 2=-y x C .13 322=-y x D .12 2 2 =-y x

高中数学双曲线离心率求解的基本方法

努力成就未来,综合文档 双曲线离心率的求法 一、利用双曲线定义 例1.已知椭圆E 上存在点P ,在P 与椭圆E 的两个焦点F 1、F 2构成的△F 1PF 2中, 121221sin :sin :sin 7:10:11.PF F F PF PF F ∠∠∠=则椭圆E 的离心率等于 二、利用平面几何性质 例2 设点P 在双曲线)0b ,0a (1b y a x 22 22>>=-的右支上,双曲线两 焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。 三、利用数形结合 例3 (同例2) 四、利用均值不等式 例4 已知点P 在双曲线)0b ,0a (1b y a x 22 22>>--的右支上,双曲线两焦 点为21F F 、,| PF ||PF |221最小值是a 8,求双曲线离心率的取值范围。 五、利用已知参数的范围 例5 已知梯形ABCD 中,|CD |2|AB |=,点E 分有向线 段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4 332≤λ≤时,求双曲线离心率的取值范围。 六、利用直线与双曲线的位置关系 例6 已知双曲线)0a (1y a x 222 >=-与直线l :1y x =+交于P 、Q 两个不同的点,求双曲线离心率的取值范围。 七、利用点与双曲线的位置关系 例7 已知双曲线)0a (1y a x 222 >=-上存在P 、Q 两点关于直线 1y 2x =+对称,求双曲线离心率的取值范围。 八、利用非负数性质 例8 已知过双曲线)0b ,0a (1b y a x 22 22>>=-左焦点1F 的直线l 交 双曲线于P 、Q 两点,且OQ OP ⊥(O 为原点),求双曲线离心率的取值范围。 九、利用双曲线性质 例9.已知双曲线22 221(0,0)x y a b a b -=>>的左、右焦点分别为12(,0),(,0)F c F c -.若双曲线上存在点P 使1221sin sin PF F a PF F c ∠=∠,则该双曲线的离心率的取值范围是

高中数学双曲线离心率求法专题(2020年九月整理).doc

双曲线离心率求法 一、双曲线离心率的求解 1、直接求出a c ,或求出a 与b 的比值,以求解e 。 在双曲线中,a c e =>1,c e a ===== 1.已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为 2.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为 3.已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为 4.已知双曲线)0( 1222>=-a y a x 的一条准线为23=x ,则该双曲线的离心率为__________ 5.已知F 1、F 2是双曲线)0,0(122 22>>=-b a b y a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1 的中点在双曲线上,则双曲线的离心率是__________ 6.设双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ?是直角三角形,则双曲线的离心率=e ________. 7.已知双曲线122 22=-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 8.设1a >,则双曲线22 221(1) x y a a -=+的离心率e 的取值范围是__________. 9.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 o ,则双曲线C 的离心率为________ 10.已知双曲线的渐近线方程为125 y x =±,则双曲线的离心率为_________ 2、构造a c ,的齐次式,解出e 。 1.已知双曲线22 221x y a b -=(0,0)a b >>的左、右焦点分别为F 1、F 2,P 是准线上一点,且P F 1⊥P F 2, |P F 1|?|P F 2 |=4ab ,则双曲线的离心率是_______ 2.过双曲线22 221x y a b -=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________.

圆锥曲线离心率问题

圆锥曲线的离心率问题 离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c之间的联系。 一、基础知识: 1、离心率公式:c e a =(其中c为圆锥曲线的半焦距) (1)椭圆:() 0,1 e∈ (2)双曲线:() 1,+ e∈∞ 2、圆锥曲线中,, a b c的几何性质及联系 (1)椭圆:222 a b c =+, ①2a:长轴长,也是同一点的焦半径的和: 122 PF PF a += ②2b:短轴长 ③2:c椭圆的焦距 (2)双曲线:222 c b a =+ ①2a:实轴长,也是同一点的焦半径差的绝对值: 122 PF PF a -= ②2b:虚轴长 ③2:c椭圆的焦距 3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,, a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向: (1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a有关,另一条边为焦距。从而可求解

(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解 2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑: (1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口 (2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可 (3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率 注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、典型例题: 例1:设12,F F 分别是椭圆()22 22:10x y C a b a b +=>>的左、右焦点,点P 在椭 圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( ) A . 3 B .6 C .13 D .1 6 思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为 12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角 三角形12PF F

圆锥曲线中离心率及其范围的求解专题

圆锥曲线中离心率及其范围的求解专题 【高考要求】 1.熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。 2.掌握解析几何中有关离心率及其范围等问题的求解策略; 3.灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想学)解决问题。 【热点透析】 与圆锥曲线离心率及其范围有关的问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的离心率(a,b,c )适合的不等式(组),通过解不等式组得出离心率的变化范围; (3)函数值域求解法:把所讨论的离心率作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求离心率的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标; ② 利用三角函数的有界性及其变形公式来帮助求解范围等问题; (6)构造一个二次方程,利用判别式?≥0。 2.解题时所使用的数学思想方法。 (1)数形结合的思想方法。一是要注意画图,草图虽不要求精确,但必须正确,特别是其中各种量之间的大小和位置关系不能倒置;二是要会把几何图形的特征用代数方法表示出来,反之应由代数量确定几何特征,三要注意用几何方法直观解题。 (2)转化的思想方汉。如方程与图形间的转化、求曲线交点问题与解方程组之间的转化,实际问题向数学问题的转化,动点与不动点间的转化。 (3)函数与方程的思想,如解二元二次方程组、方程的根及根与系数的关系、求最值中的一元二次函数知识等。 (4)分类讨论的思想方法,如对椭圆、双曲线定义的讨论、对三条曲线的标准方程的讨论等。 【题型分析】 1. 已知双曲线22 122:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点, 准线与双曲线1C 的左准线重合,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离 心率为( ) A . B C D . 解:由已知可得抛物线的准线为直线2 a x c =- ,∴ 方程为2 2 4a y x c =;

双曲线的离心率

双曲线的离心率 1.已知双曲线22221x y a b -=(0a >,0b >)的一条渐近线方程为43 y x =,则双曲线的离心率为( ) 2.过双曲线)0,0(122 22>>=-b a b y a x 的右焦点F 作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为( ) 3.过双曲线22221x y a b -=(a >0,b >0)的左焦点F (﹣c ,0)(c >0),作圆2 224a x y +=的切线,切点为E ,延长FE 交双曲线右支于点P ,若2OP OE OF =-u u u r u u u r u u u r ,则双曲线的离心率为( ) 4.若点(2,0)P 到双曲线22 221x y a b -=(0,0)a b >>,则该双曲线的离心率为( ) 5.已知12,F F 是双曲线)0,0(122 22>>=-b a b y a x 的两焦点,以点1F 为直角顶点作等腰直角三角形12MF F ,若边1MF 的中点在双曲线上,则双曲线的离心率是 6.如图,1F 、2F 是双曲线)0,0(122 22>>=-b a b y a x 的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF ?为等边三角形,则双曲线的离心率为 7.当双曲线C 不是等轴双曲线时,我们把以双曲线C 的实轴、虚轴的端点作为顶点的椭圆称为双曲线C 的“伴生 8.已知点P 是双曲线()22 221,0,0x y a b a b -=>> 右支上一点, 12,F F 分别是双曲线的左、右焦点,I 为12PF F ? 的内心,若121212 IPF IPF IF F S S S ???=+成立,则双曲线的离心率为( ) 9.已知21,F F 分别是双曲线)0,0(1:2222>>=-b a b y a x C 的左、右焦点,O 为坐标原点,P 为双曲线右支上的一点,1PF 与以2F 为圆心,2 OF 为半径的圆相切于点Q ,且Q 恰好是1PF 的中点,则双曲线C 的离心率为( ) 10.已知双曲线()22 2210,0x y a b a b -=>>的渐近线与实轴的夹角为30o ,则双曲线的离心率为( ) 11.已知A 是双曲线22 221(0,0)x y a b a b -=>>的左顶点,12,F F 分别为双曲线的左、右焦点,P 为双曲线上一点,G 是12PF F ?的重心,若1GA PF λ=u u u r u u u r ,则双曲线的离心率为

相关主题
文本预览
相关文档 最新文档