当前位置:文档之家› 椭圆、双曲线的离心率问题

椭圆、双曲线的离心率问题

椭圆、双曲线的离心率问题
椭圆、双曲线的离心率问题

椭圆、双曲线的离心率问题

一.回忆:(朝阳0804)已知双曲线22

122:1(0,0)x y C a b a b

-=>>的左、右焦点分别为1F 、

2F ,抛物线2C 的顶点在原点,准线与双曲线1C 的左准线重合,若双曲线1C 与抛物线2C 的

交点P 满足212PF F F ⊥,则双曲线1C 的离心率为 ( )

A

B C

D .解:由已知可得抛物线的准线为直线2a x c =-,∴ 方程为22

4a y x c

=

; 由双曲线可知2(,)b P c a ,∴ 2224()b a c a c =

?,∴ 222

222b b a a

=?=,

∴ 2

12e -=,e =

(教师结合离心率在考纲中的要求、本题所涉及的知识与方法,使同学们明确设计此复习专

题的必要性和重要性.)引出课题. 二.知识方法复习 1.c e a

=

,(数量关系方面) 椭圆中22

21b e a

=-, 双曲线中2221b e a =-.

2.与椭圆、双曲线的图形结合在一起,离心率又如何体现呢?(展示几何动画)

(1)曲线的第二定义体现离心率的几何意义,特征角的三角形函数值; (2)离心率的变化与图形形状之间的内在联系:

椭圆越圆,离心率越小; 椭圆越扁,离心率越大; 双曲线开口越大(阔),离心率越大; 开口越小(窄),离心率越小. 三.典型试题分析

例1.(西城0804)若双曲线22

1x ky +=的离心率是2,则实数k 的值是( B ) A .3- B . 1

3- C .3 D .

13

解析:先将方程化成标准形式,然后确定2

a 、2

b ,再根据22

21b e a =-求出k 的值.

设计意图:考查双曲线的标准方程及22

21b e a

=-的应用.

请同学们思考:

变式:若椭圆221x ky +=的离心率是

1

2

,则实数k 的值是 . 设计意图:通过类似分析求解,让同学们理解和掌握“已知离心率时如何迅速求出方程中所含有的参数的值或参数之间的关系”,同时还训练了同学们的举一反三能力.

例2.椭圆22

221x y a b

+=(0a b >>)的两个焦点分别为F 、2F ,以1F 、2F 为边作正三角

形,若椭圆恰好平分三角形的另两边,则椭圆的离心率e 为 ( B ) A

B

1 C

.4(2 D

解析:设点P 为椭圆上且平分正三角形一边的点,如图,

由平面几何知识可得2112||:||:||2PF PF FF =, 所以由椭圆的定义及c

e a

=

得:

1212||212||||F F c e a PF PF =

===+,故选B . 设计意图:充分利用平面几何中特殊图形的性质,考查椭圆第一定义及离心率e 的基本求法,突出了离心率的大小只和c 与a 的比值有关,而与其大小分别是多少无关,进一步揭示离心率是体现椭圆扁圆程度的基本量.

变式提醒

:如果将椭圆改为双曲线,其它条件不变,不难得出离心率1e =.

例3.(东城0804)已知双曲线)0,0(122

22>>=-b a b

y a x 的左、右焦点分别为21,F F ,若

在双曲线的右支上存在一点P ,使得213PF PF =,则双曲线的离心率e 的取值范围为 . (答案:12e <≤)

解析:方法一:由213PF PF =及双曲线第一定义式

12||||2PF PF a -=,得:

1||3PF a =,2||PF a =,又12||2F F c =.

因为点P 在右支上运动,所以1212||||||PF PF F F +≥, 得42a c ≥,即

2c

a

≤,又1e >,故填12e <≤. 1F 2

F x

O y

P

P

y

x

O

2

F 1

F

方法反思:若改变两个焦半径1PF 、2PF 的倍分关系,同理也可得出相应的离心率的范围.

方法二:若思考满足213PF PF =的动点

P 的几何意义,将会体现出本试题更大的价值! (引导学生思考:到两个定点的距离之比为定值的点的轨迹是什么?同时启动几何画板.) 因1(,0)F c -,2(,0)F c ,根据阿氏圆的定义可得:点P 应在以AB 为直径的圆上,其中

(,0)2

c

A 为有向线段12F F 的内分点,(2,0)

B c

为有向线段12F F 的外分点.所以双曲线上若存在点P 满足题意,必有2

c

a ≥,所以2e ≤. 故12e <≤.

方法反思:通过对条件213PF PF =的转化,

揭示了本题中动点P 的本质属性,从而转化为圆心在x 轴上的圆和双曲线有公共点的问题,体现了模拟试题的综合性,同时也提高了同学们分析问题和解决问题的能力.

例4.(密云0804)已知双曲线22

221x y a b

-=(0,0)a b >>的左、右焦点分别为1F 、2F ,

P 是准线上一点,且12PF PF ⊥,12||||4PF PF ab ?=,则双曲线的离心率是 ( A )

A B C .3 D . 2 引导同学们思考问题变式:若将“准线”改为“双曲线”、“渐近线”呢?

思考作业 (04全国3)双曲线22

22 1 (1, 0)x y a b a b

-=>>的焦距为2c ,直线l 过点(, 0)

a 和(0, )

b ,且点(1, 0)到直线l 的距离与点(1, 0)-到直线l 的距离之和4

5

s c ≥.求双曲线的离心率e 的取值范围. 解:直线l 的方程为

1=+b

y

a x ,即 0

b x a y a b +-=. 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离2

2

1)1(b

a a

b d +-=

同理得到点(-1,0)到直线l 的距离2

2

2)1(b

a a

b d ++=

.222

221c

ab

b a ab d d s =

+=

+= 由,542,54c c ab c s ≥≥得

即 .25222c a c a ≥-

于是得22e ,即4

2

425250e e -+≤.

解不等式,得

.5452≤≤e 由于,01>>e 所以e 的取值范围是2

e ≤≤ (或者利用原点O 到直线的距离满足4

25

d c ≥

直接得出关系式) 四.小结

本节主要结合各区一模试题分析了椭圆、双曲线离心率的求法,能够从数和形两方面理解离心率的定义和意义,希望同学们能掌握其中的思想和方法,并迁移到和离心率有关的其它问题中去,预祝同学们高考成功!

双曲线离心率常见求法整理归纳

1 双曲线离心率求法 在双曲线中,1c e a => ,c e a ===== 方法一、直接求出a c ,或求出a 与b 的比值,以求解e 1.已知双曲线22221x y a b -=的一条渐近线方程为43 y x =,则双曲线的离心率为 . 2.已知双曲线22212x y a -= (a >)的两条渐近线的夹角为3 π,则双曲线的离心率为 . 3.已知1F 、2F 是双曲线)0,0(122 22>>=-b a b y a x 的两焦点,以线段12F F 为边作正三角形12MF F ,若边1MF 的中点在双曲线上,则双曲线的离心率是 . 4.设双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ?是直角三角形,则双曲线的离心率=e . 5.已知双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 . 6.设1a >,则双曲线22 221(1) x y a a -=+的离心率e 的取值范围是 . 7.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60,则双曲线C 的离心率为 . 8.已知双曲线的渐近线方程为125y x =±,则双曲线的离心率为 . 9.过双曲线122 22=-b y a x 的一个焦点的直线交双曲线所得的弦长为2a ,若这样的直线有且仅有两条,则离心率为 . 10.双曲线两条渐近线的夹角等于90,则它的离心率为 .

方法二、构造,a c 的齐次式,解出e 1.过双曲线22 221x y a b -=((0,0)a b >>)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________. 2.设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点, 若1F 、2F ,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为________. 3.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为________. 方法三、寻找特殊图形中的不等关系或解三角形 1.已知双曲线22 221,(0,0)x y a b a b -=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为________. 2.双曲线22 221,(0,0)x y a b a b -=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为________. 3.设12,F F 分别是双曲线22 221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=,且12||3||AF AF =,则双曲线离心率为________. 4.双曲线22 221x y a b -=(0a >,0b >)的左、右焦点分别是12,F F ,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为________. 5.如图,1F 和2F 分别是双曲线22 221(0,0)x y a b a b -=>>的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且2F AB ?是等边三角形,则双曲线的离心率为________.

椭圆、双曲线离心率难题专题

椭圆、双曲线离心率难题专题 1. (2018学年杭高高三开学考15)已知1F ,2F 分别是椭圆()22 22133 x y a a +=>的左右焦点,A 是椭圆上 一动点,圆C 与1F A 的延长线以及线段2AF 相切,若()2,0M 为一切点,则椭圆的离心率为 . 2. (2018学年杭十四中4月月考2)已知双曲线2221x y a -=的一条渐近线方程是y ,则双曲线的 离心率为( ) A B C D 3. (2018学年浙江名校协作体高三上开学考2)双曲线2 213 x y -=的焦距为( ) A .2 B . C . D .4 4. (2018学年浙江名校协作体高三下开学考12)已知直线l 为双曲线()22 22:10,0x y C a b a b -=>>的一条 渐近线,1F ,2F 是双曲线C 的左、右焦点,点1F 关于直线l 的对称点在双曲线C 的另一条渐近线上,则双曲线C 的渐近线的斜率为 ,离心率e 的值为 . 5. (2018学年浙江重点中学高三上期末热身联考3)已知双曲线2 221y x a -=的一条渐近线方程为y =, 则该双曲线的离心率是( ) A . 3 B C .2 D 6. (2019届超级全能生2月模拟16)已知椭圆()22 2210x y a b a b +=>>的左、右焦点分别为1F ,2F ,椭圆

上点P 满足122PF PF =,射线PM 平分12F PF ∠,过坐标原点O 作PM 的平行线交1PF 于点Q ,且 121 4PQ F F =,则椭圆的离心率是 . 7. (2019届慈溪中学5月模拟6)若椭圆、双曲线均是以直角三角形ABC 的斜边AC 的两端点为焦点 的 曲线,且都过点B ,它们的离心率分别是1e ,2e ,则2212 11 e e +=( ) A . 32 B .2 C .3 D . 52 8. (2019届杭二仿真考16)存在第一象限的点()00,M x y 在椭圆()22 2210x y a b a b +=>>上,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点,02c ?? ??? (c 为椭圆半焦距),则椭圆离心率的取 值范围是 . 9. (2019届杭州4月模拟10)已知椭圆()22 22:10x y a b a b Γ+=>>,直线1x y +=与椭圆Γ交于,M N 两点, 以线段MN 为直径的圆经过原点.若椭圆Γ ,则a 的取值范围为( ) A .( B .? C .? ?? D .? ?? 10. (2019届湖州三校4月模拟17)已知椭圆()22 2210x y a b a b +=>>的两个顶点()(),0,0,A a B b ,过,A B 分别作AB 的垂线交该椭圆于不同的顶点C ,D 两点,若23BD AC =,则椭圆的离心率是 . 11. (2019届稽阳联谊4月模拟16)已知,C F 分别是椭圆22 22:1x y a b Γ+=的左顶点和左焦点,,A B 是椭圆 的下、上顶点,设AF 和BC 交于点D ,若2CD DB =u u u r u u u r ,则椭圆Γ的离心率为 .

双曲线离心率求解的基本方法

双曲线离心率的求法 一、利用双曲线定义 例1.已知椭圆E 上存在点P ,在P 与椭圆E 的两个焦点F 1、F 2构成的△F 1PF 2中, 121221sin :sin :sin 7:10:11.PF F F PF PF F ∠∠∠=则椭圆E 的离心率等于 二、利用平面几何性质 例2 设点P 在双曲线)0b ,0a (1b y a x 22 22>>=-的右支上,双曲线两 焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。 三、利用数形结合 例3 (同例2) 四、利用均值不等式 例4 已知点P 在双曲线)0b ,0a (1b y a x 22 22>>--的右支上,双曲线两焦 点为21F F 、,| PF ||PF |221最小值是a 8,求双曲线离心率的取值范围。 五、利用已知参数的范围 例5 已知梯形ABCD 中,|CD |2|AB |=,点E 分有向线 段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4 332≤λ≤时,求双曲线离心率的取值范围。 六、利用直线与双曲线的位置关系 例6 已知双曲线)0a (1y a x 222 >=-与直线l :1y x =+交于P 、Q 两个不同的点,求双曲线离心率的取值范围。 七、利用点与双曲线的位置关系 例7 已知双曲线)0a (1y a x 222 >=-上存在P 、Q 两点关于直线 1y 2x =+对称,求双曲线离心率的取值范围。 八、利用非负数性质 例8 已知过双曲线)0b ,0a (1b y a x 22 22>>=-左焦点1F 的直线l 交 双曲线于P 、Q 两点,且OQ OP ⊥(O 为原点),求双曲线离心率的取值范围。 九、利用双曲线性质 例9.已知双曲线22 221(0,0)x y a b a b -=>>的左、右焦点分别为12(,0),(,0)F c F c -.若双曲线上存在点P 使1221sin sin PF F a PF F c ∠=∠,则该双曲线的离心率的取值范围是

圆锥曲线离心率专题

. . .. . 圆锥曲线离心率专题训练 1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值围是() A. [,1)B. [,1) C. (0,] D. (0,] 2.二次曲线时,该曲线离心率e的围是() A.B.C.D. 3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的围是() A. [,1)B. (,1) C. [,) D. (0,) 4.双曲线的离心率e∈(1,2),则k的取值围是() A.(﹣∞,0)B.(﹣3,0)C.(﹣12,0)D.(﹣60,﹣12) 5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值围是()A.B.C.D. 6.已知椭圆的接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值围()A.B.C.D. 7.已知椭圆x2+my2=1的离心率,则实数m的取值围是() A.B.C.D. 8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值围为(1,2),则该椭圆的离心率的取值围是() A. (0,)B. (,) C. (,) D. (,1) 9.椭圆的接矩形的最大面积的取值围是[3b2,4b2],则该椭圆的离心率e的取值围是()A.B.C.D.

10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值围为() A.[2,+∞)B.(,+∞)C. [,+∞) D.(,+∞)11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线 的距离之和为S,且S,则离心率e的取值围是() A.B.C.D. 12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭 圆离心率e的取值围是() A.B.C.D. 13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则 的取值围是() A.B.C.D. 14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值围为()A.B.C.D. 15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离 心率的取值围是() A.B.C.(1,2)D. 16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值围是() A. (1,]B. (1,) C. (2,] D.(,2]

离心率及范围计算

1.已知椭圆22 221(0)x y a b a b +=>>的左右焦点分别为1F , 2F ,过2F 的直线 与椭圆交于A ,B 两点,若1F AB ?是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( ) A. 63- B. 23- C. 52- D. 2 2 【答案】A 2.椭圆22 22:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,上、下顶点分 别为12B B ,右顶点为A ,直线1AB 与21B F 交于点D .若1123AB B D =,则C 的离心率等于__________. 【答案】 14 3.已知双曲线的左、右焦点分别为,为双曲线上的一 点,若, ,则双曲线的离心率是__________. 【答案】 4.已知双曲线22 221(0,0)x y a b a b -=>>的左、右两个焦点分别为12,F F ,以线 段12F F 为直径的圆与双曲线的渐近线在第一象限的交点为M ,若 122MF MF b -=,该双曲线的离心率为e ,则2e =( ) A. 2 B. 212 C. 322+51 + 【答案】D

5.已知F 1,F 2是椭圆的左、右焦点,点P 在椭圆上,且 ,线段PF 1与y 轴的交点为Q ,O 为坐标原点,若△F 1OQ 与四边形OF 2PQ 的 面积之比为1: 2,则该椭圆的离心率等于 ( ) A. B. C. D. 【解析】由题意设 与四边形 的面积之比为 与 的面 积 之 比 为 又 ,即 将 和 代入椭圆方程得 即 解得 故选 C 6.若12,F F 分别是双曲线22 221(0,0)x y a b a b -=>>的左右焦点, O 为坐标原点, 点P 在双曲线的左支上,点M 在双曲线的右准线上,且满足1 FO PM =, 11OF OM OP OF OM λ?? ?=+ ??? (0)λ>,则该双曲线的离心率为( ) A. 2 B. 3 C. 2 D. 3

椭圆与双曲线离心率专题

一、直接利用椭圆、双曲线的方程式和离心率公式计算。 二、利用三角形三边的关系建立不等关系(但要注意可以取到等号成立) 三角形的三边关系:两边之和大于第三边,两边之差小于第三边。 三、利用三角函数有界性结合余弦定理建立不等关系 余弦定理: 四、利用圆锥曲线中、x y 的范围建立不等关系 例1:双曲线22 221(0,0)x y a b a b -=>>的两个焦点为12,F F ,若P 为其上一点,且122PF PF =,则 双曲线离心率的取值范围是( ) A .(1,3) B .(1,3] C .(3,)+∞ D .[3,)+∞ 归纳:求双曲线离心率取值范围时可先求出双曲线上一点的坐标,再利用性质:若点P 在双曲线1b y a x 2222=-的左支上则a x -≤;若点p 在双曲线1b y a x 22 22=-的右支上则a x ≥。 五、利用曲线的几何性质数形结合建立不等关系

例2、已知双曲线22 221(0,0)x y a b a b -=>>的左、右焦点分别为12(,0),(,0)F c F c -.若双曲线上存在 点P 使 1221sin sin PF F a PF F c ∠=∠,则该双曲线的离心率的取值范围是 . 六、利用判别式建立不等关系 例5、已知双曲线)0a (1y a x 222 >=-与直线l :1y x =+交于P 、Q 两个不同的点,求双曲线离心 率的取值范围。 七、利用均值不等式建立不等关系 均值不等式:

练习2、已知点P 在双曲线22 221(0,0)x y a b a b -=>>的右支上,双曲线两焦点为21F F 、,| PF ||PF |221最 小值是a 8,则双曲线离心率的取值范围 。 八、利用二次函数的性质建立不等关系 例7、设1 a >,则双曲线2 2 22 1(1)x y a a - =+的离心率e 的取值范围是( ) A.2) B. C.(2,5) D.

高中数学专题三 求椭圆及双曲线的离心率 的方法

求圆锥曲线离心率的专题 求离心率问题有三种思路,一是求出,,a b c 三个量中的任何两个,然后利用离心率的计算公 式求解;二是求出,a c 或,a b 或,c b 之间关系,然后利用离心率的计算公式求解;三是构造出 关于离心率e 的方程来求解.此题中关键是灵活的应用椭圆和双曲线的定义构造出方程即可求解,一般是依据题设寻求一个关于,,a b c 的等量关系,再利用,,a b c 的关系消去b ,得到关于,a c 的等式,再转化为关于离心率e 的方程,解方程求出e 的值,最后根据椭圆或双曲线的 离心率的取值范围,给出离心率的值. 1.(2016全国丙卷理11)已知O 为坐标原点,F 是椭圆:C 22 221(0)x y a b a b +=>>的左焦 点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ). A. 13 B. 12 C. 2 3 D. 3 4 2.已知双曲线:E 22 221x y a b -=()0,0a b >>,若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率是_______.

【解析】 由题意,2BC c =,又因为23AB BC =,则3AB c =,于是点3, 2c c ?? ??? 在双曲线E 上,代入方程22221x y a b -=,得2222914c c a b -=,再由2 c b a =+22得E 的离心率为 2c e a = =. 考点1.利用题设条件求出,a c 的值 【例1】已知双曲线 22 219x y b -=(0)b >,过其右焦点F 作圆229x y +=的两条切线,切点记作C ,D ,双曲线的右顶点为E ,0150CED ∠=,其双曲线的离心率为( ) 3 2 【解析】由题意3a =,易得OD OE =,075CEO OCE ∠=∠=,所以0 30=∠COE ,在 Rt OCF ?中, ?=+=0230cos 93b OF OC 33 212322==?=?=a c e c b 【例2】已知抛物线2 4y x =的准线与双曲线22 214 x y a - =交于,A B 两点,点F 为抛物线的交点,若FAB ?为正三角形,则双曲线的离心率是 . 【解析】根据已知条件画出图形(如右图),FAB ? R t A K F ?中,30,2,AFK KF ∠=?= tan 30AK KF A ?∴=?= ∴- ? ?2 2114a ??∴-=,解得234a =,又24b =,故双曲线离心率c e a = == .

求离心率的取值范围方法总结

求离心率的取值范围 求离心率的取值范围 椭圆的离心率 ,双曲线的离心率 ,抛物线的离心率。求椭圆与双曲线离 心率的范围是圆锥曲线这一章的重点题型。求离心率的取值范围涉及到解析几何、平面几何、代数等多个知识点,综合性强方法灵活,解题关键是挖掘题中的隐含条件,构造不等式。 下面从几个方面浅谈如何确定椭圆、双曲线离心率e的范围。 一、利用曲线的范围,建立不等关系 例1.设椭圆的左右焦点分别为、,如果椭圆上存在点P, 使,求离心率e的取值范围。 例2.已知椭圆 22 22 1(0) x y a b a b +=>>右顶为A,点P在椭圆上,O为坐标原点,且OP垂直于PA, 求椭圆的离心率e的取值范围。二、利用曲线的平面几何性质,建立不等关系 例1.已知 12 、 F F 是椭圆的两个焦点,满足的点P总在椭圆内部,则椭圆离心率 的取值范围是() A.(0,1)B. 1 (0,] 2 C. D. 例2.直线L 过双曲线的右焦点,斜率k=2。若L与双曲线的两个交点分别在左、右两支上,求双曲线离心率的取值范围。 例3. 已知F1、F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点。若△ABF2是锐角三角形,求双曲线的离心率的取值范围。 例4.设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1,B1和A2,B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是( ). A . 2 ? ? ?? B . 2 ? ?? ?? C . ? +∞?? ?? D . ? +∞?? ?? 例5.过双曲线的左焦点 1 F且与双曲线的实轴垂直的直线交双曲线于A、B两点,若在双曲线的虚轴所在直线上存在一点C,使得0 90 ACB ∠=,双曲线的离心率e的取值范围为_______________

椭圆和双曲线综合

椭圆和双曲线综合练习卷 1. 设椭圆122 22=+n y m x , 双曲线122 22=-n y m x ,(其中0>>n m )的离心率分别为12e ,e ,则( ) A .121e ,e > B .121e ,e < C .121e ,e = D .12e ,e 与1大小不确定 【答案】B m n m e 2 21-= , m n m e 2 22+= ,所以1144 2 4421<-=-=m n m n m e e ,故选B. 2. 已知双曲线:C 22 221(0,0)x y a b a b -=>>的左焦点为F ,过点F 作双曲线C 的一条渐近线的垂 线,垂足为H ,点P 在双曲线上,且3FP FH =,则双曲线的离心率为( ) A . D 【答案】C 设H 在渐近线b y x a =-上,直线FH 方程为()a y x c b =+,由()b y x a a y x c b ?=-????=+??,得 2 a x c ab y c ?=-??? ?=?? ,即2(,)a ab H c c -,由3FP FH =,得233(2,)a ab P c c c -+,因为P 在双曲线上,所以 2222222 (23)91c a a a c c --=,化简得22 413c a = ,2c e a ==.故选C . 3. 已知0,>b a ,若圆2 2 2 b y x =+与双曲线122 22=-b y a x 有公共点,则该双曲线离心率的取值范围 是( ) A .),2[+∞ B .]2,1( C .)3,1( D .)2,2( 【答案】A 由圆及双曲线的对称性可知,当a b ≥,即 1≥a b 时,圆222b y x =+与双曲线

巧解双曲线的离心率

巧解双曲线的离心率 离心率是双曲线的重要性质,也是高考的热点。经常考查:求离心率的值,求离心率的取值范围,或由离心率求参数的值等。下面就介绍一下常见题型和巧解方法。 1、求离心率的值 (1)利用离心率公式a c e =,先求出c a ,,再求出e 值。 (2)利用双曲线离心率公式的变形: 2)(1a b a c e +==,先整体求出a b ,再求出e 值。 例1 已知双曲线)0,0(12222>>=-b a b y a x 的一条渐近线方程为x y 3 4=,则双曲线的离心率为__________. 分析:双曲线)0,0(12222>>=-b a b y a x 的渐近线方程为x a b y ±=,由已知可得3 4=a b 解答:由已知可得3 4=a b ,再由2)(1a b a c e +==,可得35=e . (3)构造关于c a ,的齐次式,再转化成关于e 的一元二次方程,最后求出e 值,即“齐次化e ”。例如:010222=-+?=-+e e a ac c 例2 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为____________. 分析:利用两条直线垂直建立等式,然后求解。 解答:因为两条直线垂直,011)(2222=--?-=?=?-=-?e e a c c a b c b a b 所以2 15+=e (负舍) 2、求离心率的取值范围 求离心率的取值范围关键是建立不等关系。 (1)直接根据题意建立c b a ,,的不等关系求解e 的取值范围。 例3 若双曲线22 221x y a b -=(0>>b a ),则双曲线离心率的取值范围是_________. 分析:注意到0>>b a 的条件 解答:),(21)(10102∈+=?>>?>>a b e a b b a

椭圆和双曲线的离心率的求值与范围问题

椭圆和双曲线的离心率的求值及围求解问题 【重点知识温馨提示】 1.e =c a = 1- b2a2(01) 2.确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,c 的方程或不等式,进而得到关于e 的方程或不等式, 3. 【典例解析】 例1.(2015·新课标全国Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D. 2 例2.【2016高考新课标3文数】已知O 为坐标原点,F 是椭圆C : 22 22 1(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则 C 的离心率为( ) (A ) 13 (B ) 12 (C ) 23 (D ) 3 4 例3 (2015·)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线 l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45 ,则 椭圆E 的离心率的取值围是( ) A.? ????0, 32 B.? ????0,34 C.???? ??32,1 D.??????34,1 例4.(2014·)设椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.

椭圆、双曲线的离心率取值范围求解方法[2]

椭圆、双曲线的离心率取值范围求解方法 一、利用三角形三边的关系建立不等关系(但要注意可以取到等号成立) 例1:双曲线()2 222y x 1a 0,b 0a b -=>>的两个焦点为12F ,F ,若P 为其上一点,且12PF 2PF =, 则双曲线离心率的取值范围为( )A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 【解析】12PF 2PF =,12PF PF 2a -=,1212PF PF FF +≥(当且仅当12P F F ,,三点共线等号成立) c 6a 2c e 3,e 1a ∴≥?= ≤>又(]e 1,3∴∈,选B 例2、如果椭圆()2 222y x 1a b 0a b +=>>上存在一点P ,使得点P 到左准线的距离与它到右焦 点的距离相等,那么椭圆的离心率的取值范围为 ( )A .(0,21]- B . [21,1) - C .(0,31]- D .[31,1)- [解析]设2PF m =,由题意及椭圆第二定义可知1PF me =122a PF PF m(e 1)2a m e 1 ∴+=+=?= + 2112PF PF F F -≤Q (当且仅当12P F F ,,三点共线等号成立)m me 2c ∴-≤,把2a m e 1 = +代入化简可得 ()2a 1e 2c e 1 -≤+2e 2e 10e 21?+-≥?≥-又e 1<) e 21,1?∴∈-?,选B 二、利用三角函数有界性结合余弦定理建立不等关系 例1:双曲线22 221(0,0)x y a b a b -=>>的两个焦点为12,F F ,若P 为其上一点,且122PF PF =, 则双曲线离心率的取值范围是( )A.(1,3) B.(1,3] C.(3,)+∞ D.[3,)+∞ 【解析】设2PF m =,12(0)F PF θθπ∠=<≤,当P 点在右顶点处θπ=, 222(2)4cos 254cos 2m m m c e a θθ+-===-.11,(1,3]e θ-≤<∴∈Q . 三、利用曲线的几何性质数形结合建立不等关系 例1:双曲线()2 222y x 1a 0,b 0a b -=>>的两个焦点为12F ,F ,若P 为其上一点,且12PF 2PF =, 则双曲线离心率的取值范围为( )A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 解:12PF PF 2a -=Q ,2PF 2a ∴=,即在双曲线右支上恒存在点P 使得2PF 2a =可知 222AF PF ,OF OA c a 2a ≤∴-=-≤,c c 3a e 3a ∴≤?= ≤又e 1>(]e 1,3∴∈,选B 例2.已知双曲线22 221(0,0)x y a b a b -=>>的左、右焦点分别是F 1、F 2,P 是双曲线右支上一 点,P 到右准线的距离为d ,若d 、|PF 2|、|PF 1|依次成等比数列,求双曲线的离心率的取值范围。 解:由题意得因为,所以,从而 ,

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题【重点知识温馨提示】 1.e=c a =1- b2 a2 (01) 2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式, 3. 【典例解析】 例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( ) A. 5 B.2 C. 3 D. 2 例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:

22 22 1(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A ) 1 3 (B ) 12 (C ) 23 (D ) 34 例3 (2015·福建)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直 线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于4 5, 则椭圆E 的离心率的取值范围是( ) A.? ???0, 32 B.????0,34 C.??? ?3 2,1 D.???? 34,1 例4.(2014·江西)设椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与 C 相交于A ,B 两点,F 1B 与y 轴相交于点 D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】 1. (2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆 上,则椭圆的离心率是________. 2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2 n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若 c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A. 33 B.22 C.14 D.1 2 3.已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使 a sin ∠PF 1F 2=c sin ∠PF 2F 1 ,则椭圆的离心率的取值范围为______. 4.过双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条 渐近线交于点B ,若FB →=2F A → ,则此双曲线的离心率为( ) A. 2 B. 3 C .2 D. 5 5.(2015·山东)过双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交 C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.

圆锥曲线离心率专题

圆锥曲线离心率专题训练 1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是() A. [,1)B. [,1) C. (0,] D. (0,] 2.二次曲线时,该曲线离心率e的范围是() A. B. C. D. 3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的范围是() A. [,1) B. (,1) C. [,) D. (0,) 4.双曲线的离心率e∈(1,2),则k的取值范围是() A.(﹣∞,0)B.(﹣3,0) C. (﹣12,0)D. (﹣60,﹣12) 5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是() A. B. C.D. 6.已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围( ) A. B. C. D. 7.已知椭圆x2+my2=1的离心率,则实数m的取值范围是() A. B.C.D. 8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是() A. (0,) B. (,) C. (,) D. (,1) 9.椭圆的内接矩形的最大面积的取值范围是[3b2,4b2],则该椭圆的离心率e的取值范围 是() A. B. C. D.

10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为() A. [2,+∞) B.(,+∞)C. [,+∞) D.(,+∞) 11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线 的距离之和为S,且S,则离心率e的取值范围是() A. B. C. D. 12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离 心率e的取值范围是() A.B. C. D. 13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则的取值范围是( ) A. B. C. D. 14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值范围为() A.B.C. D. 15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离心率的取值范围是() A. B. C. (1,2) D. 16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是() A. (1,]B. (1,) C. (2,] D.(,2]

椭圆与双曲线离心率专题

教学内容: 一、直接利用椭圆、双曲线的方程式和离心率公式计算。 二、利用三角形三边的关系建立不等关系(但要注意可以取到等号成立) 三角形的三边关系:两边之和大于第三边,两边之差小于第三边 三、利用三角函数有界性结合余弦定理建立不等关系 余弦定理: 四、利用圆锥曲线中x、y 的范围建立不等关系22 例1:双曲线x2 y2 1(a 0,b 0)的两个焦点为F1, F2 ,若P为其上一点,且PF1 2 PF2 ,则ab 双曲线离心率的取值范围是( ) A.(1,3) B .(1,3] C .(3, ) D .[3, ) 归纳:求双曲线离心率取值范围时可先求出双曲线上一点的坐标,再利用性质:若点P在双曲线 x 2 y 2 x 2 y 2 x 2y 2 1的左支上则x a;若点p在双曲线x2y2 1的右支上则x a 。 a b a b 五、利用曲线的几何性质数形结合建立不等关系

例2、已知双曲线x2y2 1(a 0,b 0) 的左、右焦点分别为F1( c,0),F2(c,0) .若双曲线上存在ab 22 点P 使sin PF1F2 a,则该双曲线的离心率的取值范围是sin PF2F1 c 六、利用判别式建立不等关系 2 例5、已知双曲线x2 y2 1(a 0)与直线l:x y 1交于P、Q 两个不同的点,求双曲线离心a 率的取值范围 七、利用均值不等式建立不等关系 均值不等式: 22 例6、已知椭圆x2y2 1(a> b> 0)的两个焦点为F1,F2,P为椭圆上一点,∠ F1PF2=60°则椭ab 圆离心率 e 的取值范围

练习2、已知点P在双曲线x2y2 1(a 0,b 0)的右支上,双曲线两焦点为F1、F2,| PF1 |最 a b |PF2 | 小值是8a ,则双曲线离心率的取值范围 八、利用二次函数的性质建立不等关系 22 例7、设a 1,则双曲线x2y2 1的离心率 e 的取值范围是( ) a2 (a 1)2 A.( 2,2) B.( 2, 5) C.(2,5) D.(2, 5)

椭圆和双曲线的离心率的求值与范围问题

椭圆和双曲线的离心率的求值及围求解问题【重点知识温馨提示】 1.e=c a =1- b2 a2 (01) 2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式, 3. 【典例解析】 例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( ) A. 5 B.2 C. 3 D. 2 例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:

22 22 1(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A ) 1 3 (B ) 12 (C ) 23 (D ) 34 例3 (2015·)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l : 3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于4 5,则椭圆 E 的离心率的取值围是( ) A.? ???0, 32 B.????0,34 C.??? ?3 2,1 D.???? 34,1 例4.(2014·)设椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相 交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】 1. (2015·)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆上, 则椭圆的离心率是________. 2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2 n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若 c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A. 33 B.22 C.14 D.1 2 3.已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使 a sin ∠PF 1F 2=c sin ∠PF 2F 1 ,则椭圆的离心率的取值围为______. 4.过双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条 渐近线交于点B ,若FB →=2F A → ,则此双曲线的离心率为( ) A. 2 B. 3 C .2 D. 5 5.(2015·)过双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于 点P .若点P 的横坐标为2a ,则C 的离心率为________.

椭圆双曲线专题离心率

椭圆、双曲线离心率问题 1.已知)0,(),0,(21c F c F -为椭圆122 22=+b y a x 的两个焦点,P 为椭圆上 2 21c PF PF =?,此椭圆离心率的取值范围是 ( ) A .3[ ,1)3 B .11 [,]32 C .32[,]32 D .2(0,]2 2.椭圆1322=+ky x 的一个焦点坐标为)10(,,则其离心率等于 ( ) A. 2 B. 2 1 C. 332 D. 23 3.已知椭圆1C 与双曲线2C 有共同的焦点)0,2(1-F ,)0,2(2F ,椭圆的一个短轴端点为 B ,直线B F 1与双曲线的一条渐近线平行,椭圆1 C 与双曲线2C 的离心率分别为21,e e ,则21e e +取值范围为( ) A.),2[+∞ B. ),4[+∞ C.),4(+∞ D. ),2(+∞ 4.已知双曲线22219y x a -=的两条渐近线与以椭圆22 1259y x +=的左焦点为圆心、半径为16 5 的圆相切,则双曲线的离心率为( ) A .54 B .5 3 C .43 D .65 5.ABC ?是等腰三角形,B ∠=? 120,则以B A ,为焦点且过点C 的双曲线的离心率为 ( ) A. 221+ B. 23 1+ C. 21+ D. 31+

6.已知F 1,F 2是椭圆22 221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且 122 F PF π ∠= 记线段PF 1与y 轴的交点为Q ,O 为坐标原点,若△F 1OQ 与四边形OF 2PQ 的 面积之比为1: 2,则该椭圆的离心率等于 ( ) A .23- B .233- C .423- D .31- 7.已知抛物线22(0)y px p =>的焦点恰好是椭圆22 221(0)x y a b a b +=>>的右焦点 F ,且两条曲线的交点连线也过焦点F ,则椭圆的离心率为 ( ) A.21- B .2(21)- C .51 2- D .22 8.设O 为坐标原点,12,F F 是椭圆22 221(0)x y a b a b +=>>的左、右焦点,若在椭圆上 存在点P 满足123 F PF π ∠= ,且3 ||2 OP a = ,则该椭圆的离心率为( ) A、 12 B、14 C、312 - D、22 9.椭圆)0(122 22>>=+b a b y a x 的左右焦点分别为21,F F ,过焦点1F 的倾斜角为 30直线交 椭圆于A,B 两点,弦长8 =AB ,若三角形ABF2的内切圆的面积为π,则椭圆的离心率为 ( ) A .22 B .63 C .21 D .33 10.与椭圆14 22 =+y x 共焦点且过点P (2,1)的双曲线方程是 ( ) A .14 22 =-y x B .122 2=-y x C .13 322=-y x D .12 2 2 =-y x

相关主题
文本预览
相关文档 最新文档