当前位置:文档之家› 一题多解求双曲线的离心率

一题多解求双曲线的离心率

一题多解求双曲线的离心率
一题多解求双曲线的离心率

一、典例分析,融合贯通

典例1 【2016年山东卷理科第13题】已知双曲线

)>,>(=:00122

22b a b

y -a x E ,若矩形ABCD 的四个顶点在E 上,CD AB ,的中点为E 的两个焦点,且BC 3=AB 2,则E 的离心率为 【解法1】直接法

由题意c 2=BC ,所以3c =AB ,

于是点),23(c c 在双曲线E 上,代入方程,得14922

22=b c -a c ,

在由2

c b a =+22得E 的离心率为

2==

a c

e .

【点睛之笔】直接代入,少走弯路! 【解法2】通径法

易得2b A(c,)a ,2b B(c,)a -,所以2

2b |AB |a =,|BC |2c =,由2AB 3BC =,222

c a b =+得离心率e 2=或

1

e 2=-

(舍去),所以离心率为 2.e =

【点睛之笔】通径法,此径通幽!

【点睛之笔】几何法,利用图形画出美好未来! 【解后反思】

解法1:直接将数据代入,直奔主题,不走回头路! 解法2:利用通径,减少计算量! 解法3:利用数形结合法,以形助数!

典例2 【2009全国卷Ⅰ,理4】设双曲线122

22=-b

y a x (a >0, b >0)的渐近线与抛物线y=x 2+1相切,则

该双曲线的离心率等于( )

A.3

B.2

C.5

D.6

【点睛之笔】设而不求法,不求也能求! 【解法2】导数法 设切点00(,)P x y

'2,y x =

∴切线斜率02b k x a

== ∴02b x a

=

20022

0,21,2b b y x a a b y a ?==??

????=+ ?????

224b a ∴= .

又2222222

,45c a b c a a a =+∴=+=

c

e a

∴=

=,故选C. 【点睛之笔】导数法,快速确定解题方向! 【解后反思】

解法1:设而不求法,再也不求人!

解法2:利用导数的几何意义,迅速突破难点,确定解题方略!

3. 典例3双曲线12222=-b y a x 的离心率为e 1,双曲线122

22=-a

x b y 的离心率为e 2, 则

=+22

211

1e e _________, e 1+e 2 的最小值为______. e 1·e 2的最小值为______ . 由双曲线离心率定义知:b b a e a

b a e 2222

21,+=+=

, 故有2212

11

1e e +=.

【点睛之笔】均值不等式,不患寡而患不“均”! 【解法2】换元法

不妨设1,121>=>=y e x e ,则问题相当于:

,11

122=+y

x 求y x +、xy 的最小值。 由均值不等式得:

xy y

x y x 2

1121112

222=?≥+= ,∴ 2≥xy ,等号成立,当且仅当y x = ,即 21e e =,进而推出 ,b a =即122e e ==.而 8

22222)(2

2

2

2

2

2

=?+≥+=++=+xy y x xy y x y x 82222=?+≥,∴ 22≥+y x ,等号成立,当且仅当122e e ==时取等号(由

,11

12

2=+y x 去分母可得:2222y x y x =+) .

故答案依次为:1,22,2 .

【点睛之笔】换元法,换了都说好! 【解后反思】

解法1:一正二定三相等,解起题来不需等! 解法2:换元法,越换越简练,越换越明了! 二、精选试题,能力升级

1.【2018辽宁省八中模拟】已知双曲线22

221(0,0)x y a b a b

-=>>的左、右焦点为1F 、2F ,在双曲线上存

在点P 满足12122PF PF F F +≤,则此双曲线的离心率e 的取值范围是( ) A. 12e <≤ B. 2e ≥ C. 12e <≤ D. 2e ≥

【答案】B

2.【2018广东省海珠区一模】已知双曲线22

22:1(0,0)x y C a b a b -=>>的两条渐近线均与圆

22650x y x +-+=相切,且双曲线的右焦点为该圆的圆心,则C 的离心率为( )

A.

63 B. 62 C. 355 D. 5

2

【答案】C

【解析】双曲线()222210,0x y a b a b -=>>的渐近线方程为b

y x a =±,即0bx ay ±=,圆

22:650C x y x +-+=化为标准方程()()2

234,3,0x y C -+=∴,半径为2,

双曲线

()2222

10,0x y a b a b -=>>的两条渐近线均和圆22

:650C x y x +-+=相切, 22222

32,944b b b a b a =∴=++

222,944b b a =∴=+()222222224,54b a b c a c a a ∴==-∴-=, 223595,5

c a c e a ∴=∴=

=, ∴双曲线离心35

,故选C. 3.【2018广西柳州市一模】若双曲线22

221x y a b

-= (0,0)a b >>上存在一点P 满足以OP 为边长的正方形

的面积等于2ab (其中O 为坐标原点),则双曲线的离心率的取值范围是( )

A. 51,

2?? ? ?? B. 71,2??

? ?? C. 5,2??+∞????? D. 7,2??+∞?????

【答案】C

4.【2018湖南省永州市一模】已知点P 为双曲线22

221(0,0)x y a b a b

-=>>右支上一点, 12,F F 分别为双

曲线的左右焦点,点I 为12PF F ?的内心(三角形内切圆的圆心),若恒有12121

2

IPF IPF IF F S S S ???-≥成立,则双曲线的离心率取值范围为( )A. (]1,2 B. ()1,2 C. (]0,2 D. (]

2,3 【答案】A

【解析】

如图,设圆I 与12F F ?的三边12F F 、1PF 、2PF 分别相切于点,,E F G ,连接IE 、IF 、IG ,则

1212,,IE F F IF PF IG PF ⊥⊥⊥,它们分别是1212,,IF F IPF IPF ???的高

12112211,2222IPF IPF r r S PF IF PF S PF IG PF ??∴=??==??=, 121212

122

IF F r

S F F IE F F ?=??=其中r 是12PF F ?的内切圆的半径,因为121212IPF IPF IF F S S S ???-≥所以1212224

r r r

PF PF F F -≥,两边约去

2r 得1212121211

,22

PF PF F F PF PF F F =+∴-=,根据双曲线定义,得12122,2PF PF a F F c -==, 2a c ∴≥?离心率为2c

e a

=≤,双曲线的离心率取值范围为(]1,2,故选A.

5.【2018陕西西工大附中六模】已知双曲线22221(0,0)x y a b a b

-=>>的两条渐近线与抛物线2

8y x =-的

准线分别交于,A B 两点, O 为坐标原点,若ABO ?的面积为43,则双曲线的离心率为( ) A.

7

B. 2

C. 13

D. 4 【答案】B

6.【2013课标全国Ⅰ,理4】已知双曲线C :22

22=1x y a b

-(a >0,b >0)的离心率为52C 的渐近线方

程为( ).A .y =14x ± B .y =13x ± C .y =1

2

x ± D .y =±x

【答案】:C

【解析】:∵52c e a ==,∴ 222222

54c a b e a a +===.∴a 2=4b 2,1=2b a ±.∴渐近线方程为12

b y x x a =±±. 7.【2011全国新课标,理7】设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,

B 两点,|AB |为

C 的实轴长的2倍,则C 的离心率为( )

A .

2

B 3

C . 2

D . 3

【答案】B 【解析】

8.【2015高考新课标1,理5】已知M (00,x y )是双曲线C :2

212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF ?<,则0y 的取值范围是( )

(A )(-

33,33) (B )(-36,36) (C )(223-,223) (D )(2323

) 【答案】A

【解析】由题知12(3,0),(3,0)F F -,2

2

0012

x y -=,所以12MF MF ?= 0000(3,)(3,)x y x y --?- =222

0003310x y y +-=-<,解得03333

y -

<<,故选A. 9.【2018湖南两市九月调研】已知F 为双曲线22

221(0,0)x y a b a b

-=>>的左焦点,定点A 为双曲线虚轴

的一个端点,过,F A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若3AB FA =,则此双曲

线的离心率为__________. 【答案】

43

10.【2008全国1,理21】双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点

F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、

、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;

(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.

双曲线离心率求解的基本方法

双曲线离心率的求法 一、利用双曲线定义 例1.已知椭圆E 上存在点P ,在P 与椭圆E 的两个焦点F 1、F 2构成的△F 1PF 2中, 121221sin :sin :sin 7:10:11.PF F F PF PF F ∠∠∠=则椭圆E 的离心率等于 二、利用平面几何性质 例2 设点P 在双曲线)0b ,0a (1b y a x 22 22>>=-的右支上,双曲线两 焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。 三、利用数形结合 例3 (同例2) 四、利用均值不等式 例4 已知点P 在双曲线)0b ,0a (1b y a x 22 22>>--的右支上,双曲线两焦 点为21F F 、,| PF ||PF |221最小值是a 8,求双曲线离心率的取值范围。 五、利用已知参数的范围 例5 已知梯形ABCD 中,|CD |2|AB |=,点E 分有向线 段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4 332≤λ≤时,求双曲线离心率的取值范围。 六、利用直线与双曲线的位置关系 例6 已知双曲线)0a (1y a x 222 >=-与直线l :1y x =+交于P 、Q 两个不同的点,求双曲线离心率的取值范围。 七、利用点与双曲线的位置关系 例7 已知双曲线)0a (1y a x 222 >=-上存在P 、Q 两点关于直线 1y 2x =+对称,求双曲线离心率的取值范围。 八、利用非负数性质 例8 已知过双曲线)0b ,0a (1b y a x 22 22>>=-左焦点1F 的直线l 交 双曲线于P 、Q 两点,且OQ OP ⊥(O 为原点),求双曲线离心率的取值范围。 九、利用双曲线性质 例9.已知双曲线22 221(0,0)x y a b a b -=>>的左、右焦点分别为12(,0),(,0)F c F c -.若双曲线上存在点P 使1221sin sin PF F a PF F c ∠=∠,则该双曲线的离心率的取值范围是

椭圆、双曲线离心率难题专题

椭圆、双曲线离心率难题专题 1. (2018学年杭高高三开学考15)已知1F ,2F 分别是椭圆()22 22133 x y a a +=>的左右焦点,A 是椭圆上 一动点,圆C 与1F A 的延长线以及线段2AF 相切,若()2,0M 为一切点,则椭圆的离心率为 . 2. (2018学年杭十四中4月月考2)已知双曲线2221x y a -=的一条渐近线方程是y ,则双曲线的 离心率为( ) A B C D 3. (2018学年浙江名校协作体高三上开学考2)双曲线2 213 x y -=的焦距为( ) A .2 B . C . D .4 4. (2018学年浙江名校协作体高三下开学考12)已知直线l 为双曲线()22 22:10,0x y C a b a b -=>>的一条 渐近线,1F ,2F 是双曲线C 的左、右焦点,点1F 关于直线l 的对称点在双曲线C 的另一条渐近线上,则双曲线C 的渐近线的斜率为 ,离心率e 的值为 . 5. (2018学年浙江重点中学高三上期末热身联考3)已知双曲线2 221y x a -=的一条渐近线方程为y =, 则该双曲线的离心率是( ) A . 3 B C .2 D 6. (2019届超级全能生2月模拟16)已知椭圆()22 2210x y a b a b +=>>的左、右焦点分别为1F ,2F ,椭圆

上点P 满足122PF PF =,射线PM 平分12F PF ∠,过坐标原点O 作PM 的平行线交1PF 于点Q ,且 121 4PQ F F =,则椭圆的离心率是 . 7. (2019届慈溪中学5月模拟6)若椭圆、双曲线均是以直角三角形ABC 的斜边AC 的两端点为焦点 的 曲线,且都过点B ,它们的离心率分别是1e ,2e ,则2212 11 e e +=( ) A . 32 B .2 C .3 D . 52 8. (2019届杭二仿真考16)存在第一象限的点()00,M x y 在椭圆()22 2210x y a b a b +=>>上,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点,02c ?? ??? (c 为椭圆半焦距),则椭圆离心率的取 值范围是 . 9. (2019届杭州4月模拟10)已知椭圆()22 22:10x y a b a b Γ+=>>,直线1x y +=与椭圆Γ交于,M N 两点, 以线段MN 为直径的圆经过原点.若椭圆Γ ,则a 的取值范围为( ) A .( B .? C .? ?? D .? ?? 10. (2019届湖州三校4月模拟17)已知椭圆()22 2210x y a b a b +=>>的两个顶点()(),0,0,A a B b ,过,A B 分别作AB 的垂线交该椭圆于不同的顶点C ,D 两点,若23BD AC =,则椭圆的离心率是 . 11. (2019届稽阳联谊4月模拟16)已知,C F 分别是椭圆22 22:1x y a b Γ+=的左顶点和左焦点,,A B 是椭圆 的下、上顶点,设AF 和BC 交于点D ,若2CD DB =u u u r u u u r ,则椭圆Γ的离心率为 .

离心率的五种求法专题

离心率的求法 椭圆的离心率10<e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e 已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式a c e = 来解决。 例1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( ) A. 4 3 B. 3 2 C. 2 1 D. 4 1 变式练习:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( ) A. 23 B. 2 6 C. 23 D 2 二、构造a 、c 的齐次式,解出e 根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。 例2:已知1F 、2F 是双曲线 12 22 2=- b y a x (0,0>>b a ) 的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是( ) A. 324+ B. 13- C. 2 13+ D. 13+ 变式练习1:双曲线虚轴的一个端点为M ,两个焦点为1F 、2F ,021120=∠MF F ,则双曲线的离心率为( )A 3 B 2 6 C 3 6 D 3 3 变式练习2.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .3 1B . 3 3 C .2 1D . 2 3 变式练习3:设双曲线12 22 2=- b y a x (b a <<0)的半焦距为c ,直线L 过()0,a ,()b ,0两点.已知原点到 直线的距离为 c 4 3,则双曲线的离心率为( )A. 2 B. 3 C. 2 D. 3 32 三、采用离心率的定义以及椭圆的定义求解 例3:设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若21PF F ?为等腰直角三角形,则椭圆的离心率是________。 变式练习1:设1F 、2F 分别是双曲线 12 22 2=- b y a x 的左、 右焦点,若双曲线上存在点A ,使0 2190=∠AF F ,且213AF AF =,则双曲线离心率为( )A 2 5 B 2 10 C 2 15 D 5 四、构建关于e 的不等式,求e 的取值范围 例4:已知双曲线 12 22 2=- b y a x (0,0>>b a )的右焦点为F ,若过点F 且倾斜角为0 60的直线与双曲线 的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A []2,1 B ()2,1 C [)+∞,2 D ()+∞,2 变式练习1.已知点1F ,2F 分别是双曲线 2 2 22 1 (0,0)x y a b a b -=>>的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若2A B F ?是锐角三角形,则该双曲线离心率的取值范围是 .

双曲线离心率常见求法整理归纳

1 双曲线离心率求法 在双曲线中,1c e a => ,c e a ===== 方法一、直接求出a c ,或求出a 与b 的比值,以求解e 1.已知双曲线22221x y a b -=的一条渐近线方程为43 y x =,则双曲线的离心率为 . 2.已知双曲线22212x y a -= (a >)的两条渐近线的夹角为3 π,则双曲线的离心率为 . 3.已知1F 、2F 是双曲线)0,0(122 22>>=-b a b y a x 的两焦点,以线段12F F 为边作正三角形12MF F ,若边1MF 的中点在双曲线上,则双曲线的离心率是 . 4.设双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ?是直角三角形,则双曲线的离心率=e . 5.已知双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 . 6.设1a >,则双曲线22 221(1) x y a a -=+的离心率e 的取值范围是 . 7.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60,则双曲线C 的离心率为 . 8.已知双曲线的渐近线方程为125y x =±,则双曲线的离心率为 . 9.过双曲线122 22=-b y a x 的一个焦点的直线交双曲线所得的弦长为2a ,若这样的直线有且仅有两条,则离心率为 . 10.双曲线两条渐近线的夹角等于90,则它的离心率为 .

方法二、构造,a c 的齐次式,解出e 1.过双曲线22 221x y a b -=((0,0)a b >>)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________. 2.设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点, 若1F 、2F ,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为________. 3.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为________. 方法三、寻找特殊图形中的不等关系或解三角形 1.已知双曲线22 221,(0,0)x y a b a b -=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为________. 2.双曲线22 221,(0,0)x y a b a b -=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为________. 3.设12,F F 分别是双曲线22 221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=,且12||3||AF AF =,则双曲线离心率为________. 4.双曲线22 221x y a b -=(0a >,0b >)的左、右焦点分别是12,F F ,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为________. 5.如图,1F 和2F 分别是双曲线22 221(0,0)x y a b a b -=>>的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且2F AB ?是等边三角形,则双曲线的离心率为________.

巧解双曲线的离心率

巧解双曲线的离心率 离心率是双曲线的重要性质,也是高考的热点。经常考查:求离心率的值,求离心率的取值范围,或由离心率求参数的值等。下面就介绍一下常见题型和巧解方法。 1、求离心率的值 (1)利用离心率公式a c e =,先求出c a ,,再求出e 值。 (2)利用双曲线离心率公式的变形: 2)(1a b a c e +==,先整体求出a b ,再求出e 值。 例1 已知双曲线)0,0(12222>>=-b a b y a x 的一条渐近线方程为x y 3 4=,则双曲线的离心率为__________. 分析:双曲线)0,0(12222>>=-b a b y a x 的渐近线方程为x a b y ±=,由已知可得3 4=a b 解答:由已知可得3 4=a b ,再由2)(1a b a c e +==,可得35=e . (3)构造关于c a ,的齐次式,再转化成关于e 的一元二次方程,最后求出e 值,即“齐次化e ”。例如:010222=-+?=-+e e a ac c 例2 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为____________. 分析:利用两条直线垂直建立等式,然后求解。 解答:因为两条直线垂直,011)(2222=--?-=?=?-=-?e e a c c a b c b a b 所以2 15+=e (负舍) 2、求离心率的取值范围 求离心率的取值范围关键是建立不等关系。 (1)直接根据题意建立c b a ,,的不等关系求解e 的取值范围。 例3 若双曲线22 221x y a b -=(0>>b a ),则双曲线离心率的取值范围是_________. 分析:注意到0>>b a 的条件 解答:),(21)(10102∈+=?>>?>>a b e a b b a

一题多解求双曲线的离心率

一、典例分析,融合贯通 典例1 【2016年山东卷理科第13题】已知双曲线 )>,>(=:00122 22b a b y -a x E ,若矩形ABCD 的四个顶点在E 上,CD AB ,的中点为E 的两个焦点,且BC 3=AB 2,则E 的离心率为 【解法1】直接法 由题意c 2=BC ,所以3c =AB , 于是点),23(c c 在双曲线E 上,代入方程,得14922 22=b c -a c , 在由2 c b a =+22得E 的离心率为 2== a c e . 【点睛之笔】直接代入,少走弯路! 【解法2】通径法 易得2b A(c,)a ,2b B(c,)a -,所以2 2b |AB |a =,|BC |2c =,由2AB 3BC =,222 c a b =+得离心率e 2=或 1 e 2=- (舍去),所以离心率为 2.e = 【点睛之笔】通径法,此径通幽! 【点睛之笔】几何法,利用图形画出美好未来! 【解后反思】 解法1:直接将数据代入,直奔主题,不走回头路! 解法2:利用通径,减少计算量! 解法3:利用数形结合法,以形助数!

典例2 【2009全国卷Ⅰ,理4】设双曲线12222=-b y a x (a >0, b >0)的渐近线与抛物线y=x 2 +1相切,则该 双曲线的离心率等于( ) A.3 C.5 D.6 【点睛之笔】设而不求法,不求也能求! 【解法2】导数法 设切点00(,)P x y '2,y x = ∴切线斜率02b k x a == ∴02b x a =

∴ 2 002 2 , 2 1, 2 b b y x a a b y a ? == ? ? ? ?? ?=+ ? ??? ? 22 4 b a ∴= . ∴又2222222 ,45 c a b c a a a =+∴=+= 5 c e a ∴==,故选C. 【点睛之笔】导数法,快速确定解题方向! 【解后反思】 解法1:设而不求法,再也不求人! 解法2:利用导数的几何意义,迅速突破难点,确定解题方略! 3.典例3双曲线1 2 2 2 2 = - b y a x 的离心率为e1,双曲线1 2 2 2 2 = - a x b y 的离心率为e2, 则= + 2 2 2 1 1 1 e e _________, e1+e2的最小值为______. e1·e2的最小值为______ . 由双曲线离心率定义知: b b a e a b a e 2 2 2 2 2 1 , + = + = , 故有 22 12 11 1 e e +=. 【点睛之笔】均值不等式,不患寡而患不“均”! 【解法2】换元法

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题【重点知识温馨提示】 1.e=c a =1- b2 a2 (01) 2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式, 3. 【典例解析】 例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( ) A. 5 B.2 C. 3 D. 2 例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:

22 22 1(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A ) 1 3 (B ) 12 (C ) 23 (D ) 34 例3 (2015·福建)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直 线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于4 5, 则椭圆E 的离心率的取值范围是( ) A.? ???0, 32 B.????0,34 C.??? ?3 2,1 D.???? 34,1 例4.(2014·江西)设椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与 C 相交于A ,B 两点,F 1B 与y 轴相交于点 D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】 1. (2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆 上,则椭圆的离心率是________. 2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2 n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若 c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A. 33 B.22 C.14 D.1 2 3.已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使 a sin ∠PF 1F 2=c sin ∠PF 2F 1 ,则椭圆的离心率的取值范围为______. 4.过双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条 渐近线交于点B ,若FB →=2F A → ,则此双曲线的离心率为( ) A. 2 B. 3 C .2 D. 5 5.(2015·山东)过双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交 C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.

高中数学破题致胜方法构造齐次方程求双曲线的离心率

今天我们研究构造齐次方程求双曲线的离心率。双曲线的几何性质中,离心率问题是重点。根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。 先看例题: 例:已知1F 、2F 是双曲线12222=-b y a x (0,0>>b a )的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是( ) A. 324+ B. 13- C. 213+ D. 13+ 解:如图,设1MF 的中点为P ,则P 的横坐标为2 c -,由焦半径公式a ex PF p --=1, 即a c a c c -??? ??-?-=2,得0222=-?? ? ??-??? ??a c a c ,解得 31+==a c e (31-舍去),故选D 整理:

用齐次方程的方法求双曲线的离心率: 列出关于a ,b ,c 的方程, 222b c a -=消去b 转化成关于e 的齐次方程求解. 再看一个例题,加深印象: 例:设双曲线122 22=-b y a x (b a <<0)的半焦距为c ,直线L 过()0,a ,()b ,0两点.已知原点到直线的距离为c 4 3,则双曲线的离心率为( ) A. 2 B. 3 C. 2 D. 332 解:由已知,直线L 的方程为0=-+ab ay bx ,由点到直线的距离公式,得 c b a ab 432 2=+, 又222b a c +=, ∴234c ab =,两边平方,得() 4222316c a c a =-,整理得 01616324=+-e e , 得42=e 或342 =e ,又b a <<0 ,∴2122222222>+=+==a b a b a a c e ,∴42=e ,∴2=e ,故选A 总结: 1.根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系.

椭圆和双曲线的离心率的求值与范围问题

椭圆和双曲线的离心率的求值及围求解问题【重点知识温馨提示】 1.e=c a =1- b2 a2 (01) 2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式, 3. 【典例解析】 例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( ) A. 5 B.2 C. 3 D. 2 例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:

22 22 1(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A ) 1 3 (B ) 12 (C ) 23 (D ) 34 例3 (2015·)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l : 3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于4 5,则椭圆 E 的离心率的取值围是( ) A.? ???0, 32 B.????0,34 C.??? ?3 2,1 D.???? 34,1 例4.(2014·)设椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相 交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】 1. (2015·)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆上, 则椭圆的离心率是________. 2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2 n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若 c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A. 33 B.22 C.14 D.1 2 3.已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使 a sin ∠PF 1F 2=c sin ∠PF 2F 1 ,则椭圆的离心率的取值围为______. 4.过双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条 渐近线交于点B ,若FB →=2F A → ,则此双曲线的离心率为( ) A. 2 B. 3 C .2 D. 5 5.(2015·)过双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于 点P .若点P 的横坐标为2a ,则C 的离心率为________.

高中数学双曲线离心率求解的基本方法

努力成就未来,综合文档 双曲线离心率的求法 一、利用双曲线定义 例1.已知椭圆E 上存在点P ,在P 与椭圆E 的两个焦点F 1、F 2构成的△F 1PF 2中, 121221sin :sin :sin 7:10:11.PF F F PF PF F ∠∠∠=则椭圆E 的离心率等于 二、利用平面几何性质 例2 设点P 在双曲线)0b ,0a (1b y a x 22 22>>=-的右支上,双曲线两 焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。 三、利用数形结合 例3 (同例2) 四、利用均值不等式 例4 已知点P 在双曲线)0b ,0a (1b y a x 22 22>>--的右支上,双曲线两焦 点为21F F 、,| PF ||PF |221最小值是a 8,求双曲线离心率的取值范围。 五、利用已知参数的范围 例5 已知梯形ABCD 中,|CD |2|AB |=,点E 分有向线 段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4 332≤λ≤时,求双曲线离心率的取值范围。 六、利用直线与双曲线的位置关系 例6 已知双曲线)0a (1y a x 222 >=-与直线l :1y x =+交于P 、Q 两个不同的点,求双曲线离心率的取值范围。 七、利用点与双曲线的位置关系 例7 已知双曲线)0a (1y a x 222 >=-上存在P 、Q 两点关于直线 1y 2x =+对称,求双曲线离心率的取值范围。 八、利用非负数性质 例8 已知过双曲线)0b ,0a (1b y a x 22 22>>=-左焦点1F 的直线l 交 双曲线于P 、Q 两点,且OQ OP ⊥(O 为原点),求双曲线离心率的取值范围。 九、利用双曲线性质 例9.已知双曲线22 221(0,0)x y a b a b -=>>的左、右焦点分别为12(,0),(,0)F c F c -.若双曲线上存在点P 使1221sin sin PF F a PF F c ∠=∠,则该双曲线的离心率的取值范围是

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题 【重点知识温馨提示】 1.e =c a = 1- b2a2(01) 2.确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,c 的方程或不等式,进而得到关于e 的方程或不等式, 3. 【典例解析】 例1.(2015·新课标全国Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D. 2 例2.【2016高考新课标3文数】已知O 为坐标原点,F 是椭圆C : 22 22 1(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A ) 1 3 (B ) 12 (C ) 23 (D ) 34 例3 (2015·福建)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直 线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于4 5, 则椭圆E 的离心率的取值范围是( ) A.? ???0, 32 B.????0,34 C.??? ?3 2,1 D.???? 34,1 例4.(2014·江西)设椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与 C 相交于A ,B 两点,F 1B 与y 轴相交于点 D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.

离心率的求法总结[精]

圆锥曲线中的离心率问题 离心率两大考点:求值、求范围 求值: 1. 利用a与c的关系式(或齐次式) 2. 几何法 3. 与其它知识点结合 、不等关系求解. 求范围: 1. 利用圆锥曲线相关性质建立a c 、不等关系求解 2. 运用数形结合建立a c 3. 利用曲线的范围,建立不等关系 4. 运用函数思想求解离心率 5. 运用判别式建立不等关系求解离心率 一、求离心率的值 1. 利用a与c的关系式(或齐次式) 题1:(成都市2010第二次诊断性检测)已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF 的中点,则该椭圆的离心率为.

题2:已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60°,则双曲线C 的离心率为 6 2 题3:设双曲线()222200x y a b a b -=1>,>的渐近线与抛物线2 1y =x + 相切,则该双曲线的离心率等于( ) (A )3 (B )2 (C )5 (D )6 解:由题双曲线()22 2200x y a b a b -=1>,>的一条渐近线方程为a bx y =,代入抛物线方程 整理得02=+-a bx ax ,因渐近线与抛物线相切,所以0422=-a b ,即 5522=?=e a c ,故选择C 。 题4:(2009浙江理) 过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为-1的直线,该 直线与双曲线的两条渐近线的交点分别为B ,C .若1 2 AB BC =,则双曲线的离心率是( ) (A )2 (B )3 (C )5 (D )10 2. 几何法 题1: 以椭圆的右焦点F ,为圆心作圆,使这圆过椭圆的中心,且交椭圆于点M ,若直线MF l (F l 为左焦点)是圆F2的切线,M 是切点,则椭圆的离心率是

(新)高中数学双曲线离心率求法专题

双曲线离心率求法 一、双曲线离心率的求解 1、直接求出a c ,或求出a 与b 的比值,以求解e 。 在双曲线中,a c e =>1,c e a ===== 1.已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为 2.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为 3.已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为 4.已知双曲线)0( 1222>=-a y a x 的一条准线为23=x ,则该双曲线的离心率为__________ 5.已知F 1、F 2是双曲线)0,0(122 22>>=-b a b y a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1 的中点在双曲线上,则双曲线的离心率是__________ 6.设双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ?是直角三角形,则双曲线的离心率=e ________. 7.已知双曲线122 22=-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 8.设1a >,则双曲线22 221(1) x y a a -=+的离心率e 的取值范围是__________. 9.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 o ,则双曲线C 的离心率为________ 10.已知双曲线的渐近线方程为125 y x =±,则双曲线的离心率为_________ 2、构造a c ,的齐次式,解出e 。 1.已知双曲线22 221x y a b -=(0,0)a b >>的左、右焦点分别为F 1、F 2,P 是准线上一点,且P F 1⊥P F 2, |P F 1|?|P F 2 |=4ab ,则双曲线的离心率是_______ 2.过双曲线22 221x y a b -=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________.

圆锥曲线离心率问题

圆锥曲线的离心率问题 离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c之间的联系。 一、基础知识: 1、离心率公式:c e a =(其中c为圆锥曲线的半焦距) (1)椭圆:() 0,1 e∈ (2)双曲线:() 1,+ e∈∞ 2、圆锥曲线中,, a b c的几何性质及联系 (1)椭圆:222 a b c =+, ①2a:长轴长,也是同一点的焦半径的和: 122 PF PF a += ②2b:短轴长 ③2:c椭圆的焦距 (2)双曲线:222 c b a =+ ①2a:实轴长,也是同一点的焦半径差的绝对值: 122 PF PF a -= ②2b:虚轴长 ③2:c椭圆的焦距 3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,, a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向: (1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a有关,另一条边为焦距。从而可求解

(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解 2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑: (1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口 (2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可 (3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率 注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、典型例题: 例1:设12,F F 分别是椭圆()22 22:10x y C a b a b +=>>的左、右焦点,点P 在椭 圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( ) A . 3 B .6 C .13 D .1 6 思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为 12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角 三角形12PF F

双曲线离心率求解的基本方法

精品文档 双曲线离心率的求法 、利用双曲线定义 例1.已知椭圆E 上存在点P ,在P 与椭圆E 的两个焦点F 、F 2构成的△ FPF 2中, sin. PF 1F 2 : si n. FfF 2:si n. PF 2F 1 ^7 :10 :11.则椭圆 E 的离心率等于 ________ 二、利用平面几何性质 2 2 例2 设点P 在双曲线 冷-爲=1(a . 0,b . 0)的右支上,双曲线两 a b 焦点F 、F 2, I PF I=4| PF 2 I ,求双曲线离心率的取值范围。 三、 利用数形结合 例3 (同例2) 四、 利用均值不等式 2 2 务一笃_1(a . 0,b . 0)的右支上,双曲线两焦 a b 六、 利用直线与双曲线的位置关系 2 X 2 例6已知双曲线—-y = 1(a . 0)与直线I : x ? y = 1交于P 、Q a 两个不同的点,求双曲线离心率的取值范围。 七、 利用点与双曲线的位置关系 2 例7已知双曲线■X 〒一 y 2 = 1(a > 0)上存在p 、Q 两点关于直线 a x - 2y =1对称,求双曲线离心率的取值范围。 八、 利用非负数性质 2 2 例8已知过双曲线 务-花-1(a ■ 0,b . 0)左焦点R ,的直线I 交 a b 双曲线于 P Q 两点,且OP_OQ ( O 为原点),求双曲线离心率的取值范围。 九、 利用双曲线性质 2 2 例9.已知双曲线务-首-1(a 0,b 0)的左、右焦点分别为 F i (-c,0), F 2(C ,0) ?若双曲 a b 线上存在点P 使si n PF i F 2朋,则该双曲线的离心率的取值范围是 __________________________ sin /PF 2F 1 c 精品文档 例4已知点P 在双曲线 点为斤、F 2 , |一丄最小值是8a ,求双曲线离心率的取值范围。 |PF 2| 五、利用已知参数的范围 例5已知梯形ABCD 中, |AB | = 2|CD |,点E 分有向线 段AC 所成的比为,,双曲线过 C 、D E 三点,且以 A B 为焦点,当 <3 - 4 <- 求双曲线离心率的取值范围。 D y

双曲线的离心率

双曲线的离心率 1.已知双曲线22221x y a b -=(0a >,0b >)的一条渐近线方程为43 y x =,则双曲线的离心率为( ) 2.过双曲线)0,0(122 22>>=-b a b y a x 的右焦点F 作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为( ) 3.过双曲线22221x y a b -=(a >0,b >0)的左焦点F (﹣c ,0)(c >0),作圆2 224a x y +=的切线,切点为E ,延长FE 交双曲线右支于点P ,若2OP OE OF =-u u u r u u u r u u u r ,则双曲线的离心率为( ) 4.若点(2,0)P 到双曲线22 221x y a b -=(0,0)a b >>,则该双曲线的离心率为( ) 5.已知12,F F 是双曲线)0,0(122 22>>=-b a b y a x 的两焦点,以点1F 为直角顶点作等腰直角三角形12MF F ,若边1MF 的中点在双曲线上,则双曲线的离心率是 6.如图,1F 、2F 是双曲线)0,0(122 22>>=-b a b y a x 的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF ?为等边三角形,则双曲线的离心率为 7.当双曲线C 不是等轴双曲线时,我们把以双曲线C 的实轴、虚轴的端点作为顶点的椭圆称为双曲线C 的“伴生 8.已知点P 是双曲线()22 221,0,0x y a b a b -=>> 右支上一点, 12,F F 分别是双曲线的左、右焦点,I 为12PF F ? 的内心,若121212 IPF IPF IF F S S S ???=+成立,则双曲线的离心率为( ) 9.已知21,F F 分别是双曲线)0,0(1:2222>>=-b a b y a x C 的左、右焦点,O 为坐标原点,P 为双曲线右支上的一点,1PF 与以2F 为圆心,2 OF 为半径的圆相切于点Q ,且Q 恰好是1PF 的中点,则双曲线C 的离心率为( ) 10.已知双曲线()22 2210,0x y a b a b -=>>的渐近线与实轴的夹角为30o ,则双曲线的离心率为( ) 11.已知A 是双曲线22 221(0,0)x y a b a b -=>>的左顶点,12,F F 分别为双曲线的左、右焦点,P 为双曲线上一点,G 是12PF F ?的重心,若1GA PF λ=u u u r u u u r ,则双曲线的离心率为

圆锥曲线离心率的求法总结

圆锥曲线离心率的求法总结 求离心率问题有三种思路,一是求出,,a b c 三个量中的任何两个,然后利用离心率的计算公式求解;二是求出,a c 或,a b 或,c b 之间关系,然后利用离心率的计算公式求解;三是构造出关于离心率e 的方程来求解.此题中关键是灵活的应用椭圆和双曲线的定义构造出方程即可求解,一般是依据题设寻求一个关于,,a b c 的等量关系,再利用,,a b c 的关系消去b ,得到关于,a c 的等式,再转化为关于离心率e 的方程,解方程求出e 的值,最后根据椭圆或双曲线的离心率的取值范围,给出离心率的值. 1.(2016全国丙卷理11)已知O 为坐标原点,F 是椭圆:C 22 221(0)x y a b a b +=>>的左焦 点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ). A. 13 B. 12 C. 2 3 D. 3 4 2.已知双曲线:E 22 221x y a b -=()0,0a b >>,若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率是_______. 【解析】 由题意,2BC c =,又因为23AB BC =,则3AB c =,于是点3, 2c c ?? ??? 在双曲线E 上,代入方程22221x y a b -=,得2222914c c a b -=,再由2 c b a =+22得E 的离心率为 2c e a = =. 考点1.利用题设条件求出,a c 的值

双曲线的渐近线和离心率问题

第30练 双曲线的渐近线和离心率问题 [题型分析·高考展望] 双曲线作为圆锥曲线三大题型之一,也是高考热点,其性质是考查的重点,尤其是离心率与渐近线.考查形式除常考的解答题外,也会在填空题中考查,一般为中等难度.熟练掌握两种性质的求法、用法是此类问题的解题之本. 常考题型精析 题型一 双曲线的渐近线问题 例1 (1)(2015·重庆)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点是F ,左,右顶点分别是A 1, A 2,过F 作A 1A 2的垂线与双曲线交于 B , C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为________. (2)(2014·江西)如图,已知双曲线C :x 2a 2-y 2 =1(a >0)的右焦点为F .点A ,B 分别在C 的两条 渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点). ①求双曲线C 的方程; ②过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =3 2相 交于点N .证明:当点P 在C 上移动时,MF NF 恒为定值,并求此定值. 点评 (1)在求双曲线的渐近线方程时要掌握其简易求法.由y =±b a x ?x a ±y b =0?x 2a 2-y 2 b 2=0,所 以可以把标准方程x 2a 2-y 2 b 2=1(a >0,b >0)中的“1”用“0”替换即可得出渐近线方程. (2)已知双曲线渐近线方程:y =b a x ,可设双曲线方程为x 2a 2-y 2 b 2=λ (λ≠0),求出λ即得双曲线 方程.

相关主题
文本预览
相关文档 最新文档