当前位置:文档之家› 求二次函数最值的几种形式

求二次函数最值的几种形式

求二次函数最值的几种形式
求二次函数最值的几种形式

二次函数的三种表达形式

二次函数地三种表达形式:①一般式: (≠、、为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出、、地值. ②顶点式: ()(≠、、为常数),顶点坐标为对称轴为直线,顶点地位置特征和图像地开口方向与函数地图像相同,当时,最值. 有时题目会指出让你用配方法把一般式化成顶点式. 例:已知二次函数地顶点()和另一任意点(),求地解析式. 解:设(),把()代入上式,解得(). 注意:与点在平面直角坐标系中地平移不同,二次函数平移后地顶点式中,>时,越大,图像地对称轴离轴越远,且在轴正方向上,不能因前是负号就简单地认为是向左平移. 具体可分为下面几种情况: 当>时,()地图象可由抛物线向右平行移动个单位得到; 当<时,()地图象可由抛物线向左平行移动个单位得到; 当>>时,将抛物线向右平行移动个单位,再向上移动个单位,就可以得到()地图象; 当><时,将抛物线向右平行移动个单位,再向下移动个单位可得到()地图象; 当<>时,将抛物线向左平行移动个单位,再向上移动个单位可得到()地图象; 当<<时,将抛物线向左平行移动个单位,再向下移动个单位可得到()地图象.

③交点式: ()() (≠) [仅限于与轴即有交点时地抛物线,即≥] . 已知抛物线与轴即有交点(,)和(,),我们可设()(),然后把第三点代入、中便可求出. 由一般式变为交点式地步骤: 二次函数 ∵,(由韦达定理得), ∴ () [()] ()(). 重要概念: ,,为常数,≠,且决定函数地开口方向.>时,开口方向向上; <时,开口方向向下.地绝对值可以决定开口大小. 地绝对值越大开口就越小,地绝对值越小开口就越大. 能灵活运用这三种方式求二次函数地解析式; 能熟练地运用二次函数在几何领域中地应用; 能熟练地运用二次函数解决实际问题.b5E2R。 二次函数解释式地求法: 就一般式++(其中,,为常数,且≠)而言,其中含有三个待定地系数,,.求二次函数地一般式时,必须要有三个独立地定量条件,来建立关于,,地方

《用配方法解二次函数的相关问题》练习教学内容

-1 - 4 资料收集于网络,如有侵权请联系网站删除 用配方法解二次函数的相关问题的导练案一、选择题 1.下列函数中①y=3x+1;②y=4x2-3x;③y=4 x2+x2; ④y=5-2x2,二次函数的 有() A.②B.②③④C.②③D.②④ 2.抛物线y=-3x2-4的开口方向和顶点坐标分别是() A.向下,(0,4)B.向下,(0,-4)C.向上,(0,4)D.向上,(0,-4) 3.抛物线y=-1x2-x的顶点坐标是() 2 A.(1,1) 2B.(-1,)C.(1,1)D.(1,0) 22 4.二次函数y=ax2+x+1的图象必过点() A.(0,a)B.(-1,-a)C.(-1,a)D.(0,-a) 5、已知方程x2-6x+q=0可配方成(x-p)2=7的形式,那么x2-6x+q=2可配方成下列的() A.(x-p)2=5B.(x-p)2=9C.(x-p+2)2=9D.(x-p+2)2=5 6、把方程x2+3x-4=0左边配成一个完全平方式后,所得方程是() 2 A.(x+3)2=-73B.(x+3)2=-15C.(x+3)2=15D.(x+3)2=73 416242416二、填空题 1.把二次函数y=ax2+bx+c(a≠0)配方成y=a(x-h)2+k形式 为,顶点坐标是,对称轴是直线.当x=时,y最值=;当a<0时,x时,y随x增大而减小;x时,y随x 增大而增大.

2.抛物线y=2x2-3x-5的顶点坐标为.当x=时,y有最______值是,与x轴的交点坐标是,与y轴的交点坐标是,当x时,y随x增大而减小,当x时,y随x增大而增大. 3.抛物线y=3-2x-x2的顶点坐标是,它与x轴的交点坐标是,与y轴的交点坐标是. 4.把二次函数y=x2-4x+5配方成y=a(x-h)2+k的形式,得,这个函数的图象有最点,这个点的坐标为. 5.已知二次函数y=x2+4x-3,当x=时,函数y有最值是,当x时,函数y随x的增大而增大,当x=时,y=0.6.抛物线y=ax2+bx+c与y=3-2x2的形状大小完全相同,只是位置不同,则a=. 7.抛物线y=2x2先向平移个单位就得到抛物线y=2(x-3)2,再向平移个单位就得到抛物线y=2(x-3)2+4. 三、解答题 1.已知二次函数y=2x2+4x-6. (1)将其化成y=a(x-h)2+k的形式;

二次函数求最值之高级求法 (1)

二次函数求最值之高级求法 问题阐述: 对于二次函数2 y ax bx c =++(0a ≠),我们都知道当0a >时,有最小值2 44ac b a -;当0a <时,有最大值2 44ac b a -。但是,我们真的在求最值过程中很少用这个公式直接计算,因为这里计算量比较大。 因此,大多数人在求解最值过程中用的最多的方法便是配方法求最值,这也是普遍能够接受的方法。那有没有更快的方法来求解二次函数的最值呢?答案是肯定的,今天,我们用一种高级一点的方法来快速求解二次函数的最值。 首先,我们来看一个基本的不等式()2 0a b -≥恒成立,因此得到222a b ab +≥,两边加上一个2ab ,得到()24a b ab +≥,即2 2a b ab +??≤ ???,当a b =时,这里就取到等号。 求二次函数的最值问题时,我们要保证a b +是一个定值,然后就可以利用刚刚证明的一个基本不等式2 2a b ab +??≤ ??? 来求二次函数的最大值或最小值。 【求最大值】 例1:求二次函数246y x x =-++的最大值。 解:原式化为,()46y x x =-+, 因为()44x x +-=是一个定值, 所以原式()2 4646102x x y +-??≤+=+= ???

32解:原式化为,71623y x x ??=-+ ???,到此,我们发现现在不能用基本不等式求出最大值,因为x 与7123 x -的和并不是定值,因此我们陷入了困境。实际上我们可以换一个角度思考,既然要出现和为定值,那么我们就只需要配出一个和为定值的形式即可。 因此,原式可以这样变形:17136323y x x ????=?-+ ??????? , 这里就有1717=3232 x x ??+- ???为定值了, 那么我们就可以利用基本不等式求解二次函数的最大值了, 所以原式2 171492433233636=21616x x y ????+- ? ??? ?≤+=?+ ? ??? 【求最小值】 例3:求二次函数246y x x =++的最小值。 解:原式化为,()46y x x =++,因为()442x x x ++=+并不是一个定值,那么我们就不能够直接运用基本不等式求最值,那么我们就得从例2的求解方法中采用的配凑思想,因为()44x x -++=是定值. 因此原式()()46y x x =--++, 由基本不等式22a b ab +??≤ ??? ,两边添一个负号, 不等号改变方向,即2 2a b ab +??-≥- ??? 。 所以原式()2464622x x y -++??≥-+=-+= ???

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数知识点与典型试题

二次函数知识点总结与典型试题 二次函数知识点: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2 y ax c =+的性质: 结论:上加下减。 总结: 3. y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质:总结:

二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配 方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般 我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都 可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 七、二次函数的图象与各项系数之间的关系 1. 二次项系数a

二次函数配方法练习

二次函数配方法练习 The latest revision on November 22, 2020

1.抛物线y =2x 2-3x -5配方后的解析式为顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大 . 2.抛物线y =3-2x -x 2的顶点坐标是______,配方后为 它与x 轴的交点坐标是______,与y 轴的交点坐标是______. 3.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______. 4.已知二次函数y =x 2+4x -3,配方后为当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0. 5.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______. 6.抛物线y =2x 2如何变化得到抛物线y =2(x -3)2+4.请用两种方法变换。 7.抛物线y =-3x 2-4的开口方向和顶点坐标分别是() A .向下,(0,4) B .向下,(0,-4) C .向上,(0,4) D .向上,(0,-4) 8.抛物线x x y --=221 的顶点坐标是() A .)21,1(- B .)21,1(- C .)1,21 (- D .(1,0)

二次函数的三种表达形式.

二次函数的三种表达形式: ①一般式: y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c =a(x2+b/ax+c/a) =a[x2-(x1+x2)x+x1?x2] =a(x-x1)(x-x2). 重要概念: a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。 a的绝对值越大开口就越小,a的绝对值越小开口就越大。 能灵活运用这三种方式求二次函数的解析式;

二次函数表达式三种形式练习题

二次函数表达式三种形式 一.选择题(共12小题) 1.(2015?永春县校级质检)把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.(2014?XX模拟)将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为()A.B. C.D. 3.(2015秋?XX校级期中)与y=2(x﹣1)2+3形状相同的抛物线解析式为() A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.(2015秋?XX校级月考)一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.(2015秋?禹城市校级月考)已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3

6.(2014秋?岳池县期末)顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.(2014秋?招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.(2013秋?青羊区校级期中)若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.(2013秋?江北区期末)如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是() A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.(2014?XX县校级模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的 值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.(2015?XX模拟)二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125B.4 C.2 D.0 12.(2015?宜城市模拟)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣

第一讲 二次函数与待定系数法、配方法

第一讲 二次函数的认识与待定系数法、配方法 【问题探索】 某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,多种一棵树,平均每棵树就会少结5个橙子. (1)假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子? (2)如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式. 答案:(1)共有(100)x +棵橙子树,平均每棵树结(6005)x -个橙子; (2)y 与x 之间的关系式为:(100)(6005)y x x =+-化简得:2 510060000y x x =-++。 【新课引入】 提问: 1、在式子2 510060000y x x =-++中,y 是x 的函数吗?若是,与我们以前学过的函数相同吗?若不相同,那是什么函数呢? 答案:根据函数的定义,可知y 是x 的函数,与以前学过的一次函数和反比例函数不同,猜想它是二次函数。 2、请写一个一次函数关系式和一个反比例函数关系式,通过比较三个函数关系式,猜想 2510060000y x x =-++是什么函数,并说出该函数的式子特征。 (其中) 答案:比较结果见上表,由表格可猜想该函数是二次函数,该式子的特征是①含两个变量x (自变量)、y (因变量);②式子右边有三项:二次项、一次项、常数项,最高次项是2次。 总结:一般地,形如2 y ax bx c =++(,,a b c 是常数,0a ≠)的函数叫做x 的二次函数. 注意:定义中只要求二次项系数a 不为零(必须存在二次项),一次项系数b 、常数项c 可以为零。因此,最简单的二次函数形式是2 (0)y ax a =≠ 举例:2 510060000y x x =-++和2 100200100y x x =++都是二次函数.我们以前学过的正方形面积A 与边长a 的关系2A a =,圆面积S 与半径r 的关系2 S r π=等,都是二次函数. 3、(100)(6005)y x x =+-是二次函数吗? 答案:是,因为化简能变成2 y ax bx c =++(0a ≠)的形式。

二次函数表达式三种形式的联系与区别

二次函数表达式三种形式的联系与区别 二次函数的表达式有三种形式,即一般式、顶点式、交点式。它们之间各不相同,而又相互联系。 一、一般式:)0(2≠++=a c bx a y x 优点:二次项系数a ,一次项系数b ,常数项c ,三系数一目了然。 缺点:不容易看出顶点坐标和对称轴 二、顶点式:)0(4422)2(≠-+=+a a ac a y b a b x 优点:很容易看出顶点坐标和对称轴 缺点:不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 三、交点式:))((2 1x x x x a y --= 优点:很容易看出图像与x 轴的交点坐标(x 1,0)和(x 2 ,0) 缺点:(1)不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 (2)当图像不与x 轴相交时,此式不成立。 四、三种表达式之间的联系 (1)一般式转化为顶点式 利用配方法转化(一提、二配、三整理) a ac a a ac a a c a x a b a x a b a x a b a c bx a y b a b x b a b x a b a b x x x x 44444][[)2222222222)2()2()2()2(-+=+-=+-++=++ =+ =++=++(

(2)顶点式转化为一般式 展开整理即可 c bx a a ac bx a a ac a bx a a ac x a b a a a ac a y x x b b x b a b x b a b x ++=++=-+++=-+++=≠-+=+222222222224444444)4()0(44)2( (3)交点式转化为一般式 展开,利用韦达定理整理可得 二次函数)0(2≠++=a c bx a y x 与x 轴有两交点(x 1,0)和(x 2,0) 则x 1 和x 2为方程02=++c bx a x 的两个根 ] )([)())((212122121221x x x x x x x x x x x x x a x x a x x a y ++-=+--=--= 由韦达定理得: a c a b x x x x =-=+2121 代入得: c bx a a c x a b a x a y x x x x x x x ++=+--=++-=2221212])([] )([ 三种表达式视情况而定; (1)不知道特殊点的坐标时,常用一般式来表示; (2)知道顶点坐标,常用顶点式来表示; (3)如果知道图像与x 轴的交点坐标,常用交点式来表示。 上述三种情况要灵活运用才能更好地理解二次函数的解析式。

二次函数之配方法求顶点式以及与一元二次方程的关系

§6.2二次函数的图像与性质⑸ 【课前自习】 1. 根据y 2 2.抛物线y =2(x +2)2+1的开口向 ,对称轴是 ;顶点坐标是 , 说明当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 3.抛物线y =-2(x -2)2-1的开口向 ,对称轴是 ;顶点坐标是 , 说明当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 4.抛物线y =-1 2(x +1)2-3与抛物线 关于x 轴成轴对称; 抛物线y =-1 2(x +1)2-3 与抛物线 关于y 轴成轴对称; 抛物线y =-1 2(x +1)2-3与抛物线 关于原点对称. 5. y =a (x +m )2+n 被我们称为二次函数的 式. 一、探索归纳: 1.问题:你能直接说出函数y =x 2+2x +2 的图像的对称轴和顶点坐标吗? . 2.你有办法解决问题①吗? y =x 2+2x +2的对称轴是 ,顶点坐标是 . 3.像这样我们可以把一个一般形式的二次函数用 的方法转化为 式,从而直接得到它的图像性质. 练习1.用配方法把下列二次函数化成顶点式: ①y =x 2-2x -2 ②y =x 2+3x +2 ③y =2x 2+2x +2

④y =ax 2+bx +c (a ≠0) 4.归纳:二次函数的一般形式y =ax 2+bx +c (a ≠0)可以被整理成顶点式: , 说明它的对称轴是 ,顶点坐标公式是 . 练习2.用公式法把下列二次函数化成顶点式: ①y =2x 2-3x +4 ②y =-3x 2+x +2 ③y =-x 2-2x 二、典型例题: 例1、用描点法画出y =1 2x 2+2x -1的图像. ⑴用 法求顶点坐标: ⑶在下列平面直角坐标系中描出表中各点,并把这些点连成平滑的曲线: ⑷观察图像,该抛物线与y 轴交与点 ,与x 轴有 个交点. 例2、已知抛物线y =x 2-4x +c 的顶点A 在直线y =-4x -1上 ,求抛物线的顶点坐标.

二次函数中面积最值问题

课题:二次函数中面积最值问题(复习课) 教学目标:利用二次函数的最值求面积最值问题 教学重点:利用二次函数的顶点公式或者配方法求解面积的最值 教学难点:利用二次函数的性质和自变量取值范围求面积的最值 教学过程:复习巩固:小题热身:1.二次函数 142--=x x y 的顶点是_________ 2.当x= 时, y=3(x-5)2+6 有最___值为________ . 3.当x= 时,y=-2x2+8x-7有最___值为_______ . 引入: 王爷爷要用60米长的竹篱笆围矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成, 如何围才能使养鸡场的面积最大?最大面积是多少? 变一变 王爷爷要用60米长的竹篱笆围矩形养鸡场,养鸡场一面用砖砌成,(墙长10米)另三面用竹篱笆围成, 如何围才能使养鸡场的面积最大?最大面积是多少? 巩固:(2016?绍兴) 课本中有一个例题: 有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m ,如何设计这个窗户,使透光面积最大? 1.这个例题的答案是:当窗户半圆的半径约为0.35m 时,透光面积最大值约为1.05m2. 2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m ,利用图3,解答下列问题: (1)若AB 为1m ,求此时窗户的透光面积? (2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大? 请通过计算说明. 归纳总结:运用二次函数求几何图形面积最值一般步骤 1.审题 2.引入自变量 3.用含自变量的代数式分别表示与所求几何图形相关的量 4.根据几何图形的特征,列出其面积的计算公式,并且用函数表示这个面积,并求得自变量的取值范围. 5.根据函数关系式,求出最值及取得最值时自变量的值. 6.检验结果的合理性

二次函数—配方法

二次函数图像和性质(5) 学习目标: 1.配方法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 2.熟记二次函数y =ax 2+bx +c 的顶点坐标公式; 3.会画二次函数一般式y =ax 2+bx +c 的图象. 学习重点:配方法或公式法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 学习难点:配方法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 学习过程: 一、复习引入 1、()k h x a y +-=2 的图像和性质填表: 2.抛物线()1222 ++=x y 的开口向 ,对称轴是 ;顶点坐标是 , 当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 是由抛物线2 2x y =先向 平移 个单位,再向 平移 个单位得到的。 二、自主探究 探究一:配方法求顶点坐标、对称轴 (1)问题:你能直接说出函数222++=x x y 的图像的对称轴和顶点坐标吗? (2)你有办法解决问题①吗? 222++=x x y 222++=x x y 的对称轴是 ,顶点坐标是 . (3)像这样我们可以把一个一般形式的二次函数用 的方法转化为 式, 从而直接得到它的图像性质. (4)用配方法把下列二次函数化成顶点式: ①222+-=x x y ②232 ++=x x y ③ y =12 x 2-6x +21 对称轴 对称轴 对称轴 顶点 顶点 顶点 ④4322 +-=x x y ⑤232 ++-=x x y ⑥x x y 22 --= 对称轴 对称轴 对称轴 顶点 顶点 顶点

探究二:用公式法求顶点坐标、对称轴 c bx ax y ++=2 = 对称轴 顶点坐标 用公式法把下列二次函数的顶点坐标、对称轴: ①4322 +-=x x y ②232 ++-=x x y ③x x y 22 --= 三、合作交流 根据c bx ax y ++=2的图象和性质填表: 四、精讲点拨 1、抛物线2 2()y x m n =++(m n ,是常数)的顶点坐标是( ) A .()m n , B .()m n -, C .()m n -, D .()m n --, 2、二次函数2 365y x x =--+的图象的顶点坐标是( ) A .(18)-, B .(18), C .(12)-, D .(14)-, 3、在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为 A .222-=x y B .222+=x y C .2)2(2-=x y D .2)2(2+=x y 4、抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3) 5、二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D . 2 3 6、将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+ B .22(1)y x =- C .221y x =+ D .221y x =- 7、抛物线1822-+-=x x y 的顶点坐标为 (A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9) 8、把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 3212 12 +??? ??-=x y 9、把抛物线2 y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .2 (1)3y x =--- B .2 (1)3y x =-+- C .2(1)3y x =--+ D .2 (1)3y x =-++

二次函数配方法练习

精品文档 1抛物线y = 2x2—3x—5配方后的解析式为 点坐标为______ .当x= ________ 时,y有最_______ 值是 _____ , 与x轴的交点是_______ ,与y轴的交点是______ ,当x _____ 时,y随x增大而减小,当x ______ 时,y随x增大而增大. 2. ____________________________________ 抛物线y = 3 —2x —x2的顶点坐标是___________________________ ,配方后为它与x轴的交点坐标是_______ ,与y轴的交点坐标是_______ . 3. 把二次函数y=x2—4x+ 5配方成y= a(x —h)2+ k的形式,得 ______ ,这个函数的图象有最________ 点,这个点的坐标为 4. 已知二次函数y = x2+ 4x—3,配方后为当x = ______ 时,函数y有最值____ ,当x 时,函数y随x 的增大而增 大,当x= __________________ 时,y= 0. 5. ____________ 抛物线y = ax2+bx+ c与y= 3—2x2的形状完全相同,只是位置不同,则a= . 6. 抛物线y= 2x2如何变化得到抛物线y = 2( x —3)2+ 4.请用两种 方法变换。 7. 抛物线y= —3x2—4的开口方向和顶点坐标分别是() A. 向下,(0 , 4) B. 向下,(0,—4) C. 向上,(0, 4) D.向 上,(0,—4)

8 .抛物线y -x2x的顶点坐标是() 2 A. (1, 1) B.( 1,2) C. (1, 1) D. (1 , 0)

专题09 一元二次函数的三种表示方式(解析版)

专题09 一元二次函数的三种表示方式 一、知识点精讲 通过上一小节的学习,我们知道,一元二次函数可以表示成以下三种形式: 1.一般式:y=ax2+bx+c(a≠0); 2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k). 除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式, 我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数. 当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.① 并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac 存在下列关系: (1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立. (2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立. (3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0), 则x1,x2是方程ax2+bx+c=0的两根,所以x1+x2= b a -,x1x2= c a ,即 b a =-(x1+x2), c a =x1x2.所 以,y=ax2+bx+c=a(2b c x x a a ++) = a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论: 若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法: 3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标. 今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题. 二、典例精析 【典例1】已知某一元二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),

二次函数最值问题复习专题

二次函数之最值问题研究 成都市天府新区籍田中学 吴磊 【教学目标】 建立二次函数数学模型,并用数学模型求最值; 【教学重点】 根据题意建立数学模型运用适当的数学思想方法解决问题; 【教学难点】 建立二次函数的数学模型,运用数学思想方法解决问题; 一、知识回顾 求最值问题的基本解题步骤: 1.审题.读懂问题,分析问题各个量之间的关系; 2.列数学表达式.用数学方法表示它们之间的关系,即建立二次函数关系式; 3.求值.利用顶点坐标公式24,24b ac b a a ??-- ??? (对称轴法)或配方法求得最值; 对称轴法:(1)把2b x a =- 代入2y ax bx c =++即可求出其最值; (2)自变量不能够取得2b x a =-时, ①当0a >时,离对称轴越远函数值越大,离对称轴越近,函数值越小; ②当0a <时,离对称轴越远函数值越小,离对称轴越近,函数值越大. 配方法:将二次函数2y ax bx c =++转化为2()y a x h k =-+的形式,对称轴为x h =. (1)当0a >时,y 有最小值,即当x =h 时,=y k 最小值; (2)当0a <时,y 有最大值,即当x =h 时,=y k 最大值. 4.检验.检验结果的合理性.(函数求最值需考虑实际问题的自变量的取值范围) 二、分类问题处理: 第一类 常规求最值问题 【例1】(1) 抛物线y=23 x 2-4x +21的最小值是( ) A.21 B.-21 C. 15 D.-15 (2)二次函数281y x x k =++-的最小值是5,则k 的值是( ) A.22 B -22 C.21 D.-21 〖变式训练〗 (1)抛物线21432 y x x =--+的最大值是( ) A.3 B.-3 C. -11 D.11 (2)抛物线24y x ax =--的最大值是( ) A.24a B.2 4a - C.4 D.-4 第二类 含自变量取值限制的求最值问题 【例2】(1)二次函数245y x x =-++,求当61x -≤≤的最值。 练习:1、二次函数2614y x x =--,求当19x -≤≤的最值。

二次函数配方法练习

二次函数配方法练习 This model paper was revised by the Standardization Office on December 10, 2020

1.抛物线y =2x 2-3x -5配方后的解析式为 顶点坐标为 ______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大. 2.抛物线y =3-2x -x 2的顶点坐标是______,配方后为 它与x 轴的交点坐标是______,与y 轴的交点坐标是______. 3.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______. 4.已知二次函数y =x 2+4x -3,配方后为 当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0. 5.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______. 6.抛物线y =2x 2如何变化得到抛物线y =2(x -3)2+4.请用两种方法变换。 7.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( ) A .向下,(0,4) B .向下,(0,-4) C .向上,(0,4) D .向上,(0,-4) 8.抛物线x x y --=22 1的顶点坐标是( )

二次函数表达式三种形式练习题

1.把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为() A.B.C.D. 3.与y=2(x﹣1)2+3形状相同的抛物线为()A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3 6.顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是()A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 12.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣ 13.如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它 的解析式为. 14.二次函数的图象如图所示,则其解析式为. 15.若函数y=(m2﹣4)x4+(m﹣2)x2的图象是顶点在原点,对称轴是y轴的抛物线,则 m=. 16.二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x轴的距离为2, 则该二次函数的解析式为. 17.如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0), 那么它对应的函数解析式是. 18.二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(0,﹣3)、C(4,5)三点,求出 抛物线解析式. 19.二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为. 20.如图,一个二次函数的图象经过点A,C,B三点,点A的坐标为(﹣1,0),点B的坐标为 (4,0),点C在y轴的正半轴上,且AB=OC.则这个二次函数的解析式是. 21.坐标平面内向上的抛物线y=a(x+2)(x﹣8)与x轴交于A、B两点,与y轴交于C点,若 ∠ACB=90°,则a的值是.

相关主题
文本预览
相关文档 最新文档