当前位置:文档之家› 二次函数的几种形式

二次函数的几种形式

二次函数的几种形式
二次函数的几种形式

二次函数的几种形式

一、本节学习指导

二次函数这一章虽然比较难,但如果我们抓住几个关键部分的话,学起来还是比较轻松的。不管什么形式的二次函数顶点、对称轴、开口方向都是被关注的主要对象。本节中我们重点放在观察不同形式二次函数的性质特征上并理解加以记忆。本节有配套免费学习视频。

二、知识要点

一、二次函数概念:

1、二次函数的概念:一般地,形如

的函数,叫做二次函数。

注意:和一元二次方程类似,二次项系数a≠0,而b,c可以为零。二次函数的定义域是全体实数。定义域即x的取值范围,全体实数就是说二次函数中x可以取任和值。

2. 二次函数的结构特征:

⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

⑵a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项。

二、二次函数

的基本形式

1、二次函数基本形式:

的性质:a 的绝对值越大,抛物线的开口越小。

注意:a>0时,开口向上,所以顶点时最低点,这时有最小值。a<0时,开口向下,所以顶点时最高点,这时有最大值。

二次函数的三种表达形式

二次函数地三种表达形式:①一般式: (≠、、为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出、、地值. ②顶点式: ()(≠、、为常数),顶点坐标为对称轴为直线,顶点地位置特征和图像地开口方向与函数地图像相同,当时,最值. 有时题目会指出让你用配方法把一般式化成顶点式. 例:已知二次函数地顶点()和另一任意点(),求地解析式. 解:设(),把()代入上式,解得(). 注意:与点在平面直角坐标系中地平移不同,二次函数平移后地顶点式中,>时,越大,图像地对称轴离轴越远,且在轴正方向上,不能因前是负号就简单地认为是向左平移. 具体可分为下面几种情况: 当>时,()地图象可由抛物线向右平行移动个单位得到; 当<时,()地图象可由抛物线向左平行移动个单位得到; 当>>时,将抛物线向右平行移动个单位,再向上移动个单位,就可以得到()地图象; 当><时,将抛物线向右平行移动个单位,再向下移动个单位可得到()地图象; 当<>时,将抛物线向左平行移动个单位,再向上移动个单位可得到()地图象; 当<<时,将抛物线向左平行移动个单位,再向下移动个单位可得到()地图象.

③交点式: ()() (≠) [仅限于与轴即有交点时地抛物线,即≥] . 已知抛物线与轴即有交点(,)和(,),我们可设()(),然后把第三点代入、中便可求出. 由一般式变为交点式地步骤: 二次函数 ∵,(由韦达定理得), ∴ () [()] ()(). 重要概念: ,,为常数,≠,且决定函数地开口方向.>时,开口方向向上; <时,开口方向向下.地绝对值可以决定开口大小. 地绝对值越大开口就越小,地绝对值越小开口就越大. 能灵活运用这三种方式求二次函数地解析式; 能熟练地运用二次函数在几何领域中地应用; 能熟练地运用二次函数解决实际问题.b5E2R。 二次函数解释式地求法: 就一般式++(其中,,为常数,且≠)而言,其中含有三个待定地系数,,.求二次函数地一般式时,必须要有三个独立地定量条件,来建立关于,,地方

二次函数的三种表达形式.

二次函数的三种表达形式: ①一般式: y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c =a(x2+b/ax+c/a) =a[x2-(x1+x2)x+x1?x2] =a(x-x1)(x-x2). 重要概念: a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。 a的绝对值越大开口就越小,a的绝对值越小开口就越大。 能灵活运用这三种方式求二次函数的解析式;

二次函数表达式三种形式练习题

二次函数表达式三种形式 一.选择题(共12小题) 1.(2015?永春县校级质检)把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.(2014?XX模拟)将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为()A.B. C.D. 3.(2015秋?XX校级期中)与y=2(x﹣1)2+3形状相同的抛物线解析式为() A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.(2015秋?XX校级月考)一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.(2015秋?禹城市校级月考)已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3

6.(2014秋?岳池县期末)顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.(2014秋?招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.(2013秋?青羊区校级期中)若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.(2013秋?江北区期末)如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是() A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.(2014?XX县校级模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的 值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.(2015?XX模拟)二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125B.4 C.2 D.0 12.(2015?宜城市模拟)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣

二次函数表达式三种形式的联系与区别

二次函数表达式三种形式的联系与区别 二次函数的表达式有三种形式,即一般式、顶点式、交点式。它们之间各不相同,而又相互联系。 一、一般式:)0(2≠++=a c bx a y x 优点:二次项系数a ,一次项系数b ,常数项c ,三系数一目了然。 缺点:不容易看出顶点坐标和对称轴 二、顶点式:)0(4422)2(≠-+=+a a ac a y b a b x 优点:很容易看出顶点坐标和对称轴 缺点:不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 三、交点式:))((2 1x x x x a y --= 优点:很容易看出图像与x 轴的交点坐标(x 1,0)和(x 2 ,0) 缺点:(1)不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 (2)当图像不与x 轴相交时,此式不成立。 四、三种表达式之间的联系 (1)一般式转化为顶点式 利用配方法转化(一提、二配、三整理) a ac a a ac a a c a x a b a x a b a x a b a c bx a y b a b x b a b x a b a b x x x x 44444][[)2222222222)2()2()2()2(-+=+-=+-++=++ =+ =++=++(

(2)顶点式转化为一般式 展开整理即可 c bx a a ac bx a a ac a bx a a ac x a b a a a ac a y x x b b x b a b x b a b x ++=++=-+++=-+++=≠-+=+222222222224444444)4()0(44)2( (3)交点式转化为一般式 展开,利用韦达定理整理可得 二次函数)0(2≠++=a c bx a y x 与x 轴有两交点(x 1,0)和(x 2,0) 则x 1 和x 2为方程02=++c bx a x 的两个根 ] )([)())((212122121221x x x x x x x x x x x x x a x x a x x a y ++-=+--=--= 由韦达定理得: a c a b x x x x =-=+2121 代入得: c bx a a c x a b a x a y x x x x x x x ++=+--=++-=2221212])([] )([ 三种表达式视情况而定; (1)不知道特殊点的坐标时,常用一般式来表示; (2)知道顶点坐标,常用顶点式来表示; (3)如果知道图像与x 轴的交点坐标,常用交点式来表示。 上述三种情况要灵活运用才能更好地理解二次函数的解析式。

专题09 一元二次函数的三种表示方式(解析版)

专题09 一元二次函数的三种表示方式 一、知识点精讲 通过上一小节的学习,我们知道,一元二次函数可以表示成以下三种形式: 1.一般式:y=ax2+bx+c(a≠0); 2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k). 除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式, 我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数. 当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.① 并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac 存在下列关系: (1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立. (2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立. (3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0), 则x1,x2是方程ax2+bx+c=0的两根,所以x1+x2= b a -,x1x2= c a ,即 b a =-(x1+x2), c a =x1x2.所 以,y=ax2+bx+c=a(2b c x x a a ++) = a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论: 若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法: 3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标. 今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题. 二、典例精析 【典例1】已知某一元二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),

二次函数表达式三种形式练习题

1.把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为() A.B.C.D. 3.与y=2(x﹣1)2+3形状相同的抛物线为()A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3 6.顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是()A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 12.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣ 13.如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它 的解析式为. 14.二次函数的图象如图所示,则其解析式为. 15.若函数y=(m2﹣4)x4+(m﹣2)x2的图象是顶点在原点,对称轴是y轴的抛物线,则 m=. 16.二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x轴的距离为2, 则该二次函数的解析式为. 17.如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0), 那么它对应的函数解析式是. 18.二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(0,﹣3)、C(4,5)三点,求出 抛物线解析式. 19.二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为. 20.如图,一个二次函数的图象经过点A,C,B三点,点A的坐标为(﹣1,0),点B的坐标为 (4,0),点C在y轴的正半轴上,且AB=OC.则这个二次函数的解析式是. 21.坐标平面内向上的抛物线y=a(x+2)(x﹣8)与x轴交于A、B两点,与y轴交于C点,若 ∠ACB=90°,则a的值是.

二次函数的三种表达形式

?二次函数的三种表达形式: ?①一般式: ?y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] ?把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c 的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到; 当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;

当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c

二次函数解析式的几种常见形式

二次函数解析式的几种常见形式 二次函数解析式的几种形式 (1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0). (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0). (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0. 说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点 如果图像经过原点,并且对称轴是y轴,则设y=ax^2;如果对称轴是y 轴,但不过原点,则设y=ax^2+k 1.7定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越 小,IaI越小开口就越大。) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 x是自变量,y是x的函数 二次函数的三种表达式 ①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) ②顶点式[抛物线的顶点P(h,k)]:y=a(x-h)^2+k ③交点式[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]:y=a(x-x1)(x-x2) 以上3种形式可进行如下转化: ①一般式和顶点式的关系

对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即 h=-b/2a=(x1+x2)/2 k=(4ac-b^2)/4a ②一般式和交点式的关系 x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式) 注意事项 ?二次函数知识点总是与图形相对应,这也是函数的特点之一,我们在学习二次函数的时候,一定要注重代数与几何的双重锤炼,做到真正的数形结合,同时,也能够让自己对二次函数知识点理解更深刻。

二次函数表达式三种形式练习试题.docx

1.把二次函数 y=x 2﹣ 4x+5 化成 y=a( x﹣ h)2+k(a≠0)的形式,结果正确的是()A. y=( x﹣2)2+5 B. y=( x﹣2)2+1 C. y= ( x﹣2)2 +9 D. y=( x﹣1)2 +1 2.将 y=(2x﹣ 1) ?( x+2)+1 化成 y=a( x+m)2 +n 的形式为() A. B.C. D . 2 形状相同的抛物线为(22 C. y=( x﹣ 1) 22 3.与 y=2( x﹣ 1) +3) A.y=1+x B . y=( 2x+1) D . y=2x 4.二次函数的图象的顶点坐标是(2,4),且过另一点( 0,﹣ 4),则这个二次函数的解析式为() A. y=﹣ 2(x+2)2 B . y= ﹣ 2( x﹣ 2) 22 D. y=2( x﹣ 2 +4+4 C. y=2( x+2)﹣ 42)﹣ 4 5.已知某二次函数的图象如图所示,则这个二次函数的解析式为() A. y=﹣ 3(x﹣ 1)2+3B. y=3( x﹣ 1)2+3C.y=﹣ 3( x+1)2+3D.y=3( x+1)2+3 6.顶点为( 6, 0),开口向下,开口的大小与函数y=x 2的图象相同的抛物线所对应的函数是() A. y=( x+6)2B. y=(x﹣ 6)2C.y= ﹣( x+6)2D. y=﹣( x﹣ 6)2 7.已知二次函数的图象经过点(﹣1,﹣ 5),(0,﹣ 4)和( 1, 1),则这二次函数的表达式为() A. y=﹣ 6x 2+3x+4B. y=﹣2x2 +3x﹣ 4C. y=x2+2x﹣ 4D. y=2x2+3x﹣ 4 8.若二次函数 y=x 2﹣ 2x+c 图象的顶点在x 轴上,则 c 等于() A.﹣ 1 B . 1 C .D. 2 9.如果抛物线经过点A( 2,0)和 B(﹣ 1, 0),且与 y 轴交于点 C,若 OC=2.则这条抛物线的解析式是()A. y=x 2﹣ x﹣ 2 B . y= ﹣ x2﹣ x﹣ 2 或 y=x 2+x+2C. y=﹣ x2+x+2D.y=x 2﹣x﹣ 2 或 y= ﹣ x2+x+2 10.如果抛物线 y=x2﹣ 6x+c﹣ 2 的顶点到 x 轴的距离是3,那么 c 的值等于() A. 8 B . 14C. 8 或 14D.﹣ 8 或﹣ 14 11.二次函数的图象如图所示,当﹣ 1≤x≤0时,该函数的最大值是() A. B . 4 C . 2D. 0 12.当﹣ 2≤x≤1时,二次函数y= ﹣( x﹣ m)22 3,则实数 m的值为()+m+1 有最大值 A.或﹣B.或﹣C. 2 或﹣D.或﹣ 13.如果一条抛物线经过平移后与抛物线y=﹣ x2+2 重合,且顶点坐标为(4,﹣ 2),则它的解析式为.14.二次函数的图象如图所示,则其解析式为. 242 y 轴的抛物线,则m=. 15.若函数 y= ( m﹣ 4) x +( m﹣2) x 的图象是顶点在原点,对称轴是 16.二次函数图象的开口向上,经过(﹣ 3,0)和( 1,0),且顶点到 x 轴的距离为2,则该二次函数的解析式为. 17.如图,已知抛物线 2 x=1,且与 x 轴的一个交点为( 3,0),那么它对应的函数解析y=﹣ x +bx+c 的对称轴为直线 式是. 18.二次函数 y=ax 2+bx+c 的图象经过 A(﹣ 1,0)、B( 0,﹣ 3)、C( 4,5)三点,求出抛物线解析式.19.二次函数图象过点(﹣ 3,0)、( 1, 0),且顶点的纵坐标为4,此函数关系式为. 20.如图,一个二次函数的图象经过点A, C, B 三点,点 A 的坐标为(﹣1,0),点 B 的坐标为( 4, 0),点 C在 y 轴的正半轴上,且AB=OC.则这个二次函数的解析式是. 21.坐标平面内向上的抛物线y=a( x+2)( x﹣ 8)与 x 轴交于 A、 B 两点,与 y 轴交于 C点,若∠ ACB=90°,则a 的值是. 22.平面直角坐标系中,正方形OABC的边长为4,顶点 A、C分别在 x 轴、 y 轴的正半轴,抛物线y=﹣ x2+bx+c 经过B、 C 两点,点 D 为抛物线的顶点,连接AC、 BD、 CD. ( 1)求此抛物线的解析式. ( 2)求此抛物线顶点D的坐标和四边形ABCD的面积. 2 P(﹣ 3,1),对称轴是经过(﹣ 1,0)且平行于 y 轴的直线. 23.已知二次函数 y=x +mx+n的图象经过点 ( 1)求 m、 n 的值; ( 2)如图,一次函数y=kx+b 的图象经过点P,与 x 轴相交于点 A,与二次函数的图象相交于另一点B,点 B 在点 P 的右侧, PA: PB=1:5,求一次函数的表达式.

一元二次函数解析式的8种求法

二次函数解析式的8种求法 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变. 例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.

初中数学二次函数的三种表示方式

2.2.2 二次函数的三种表示方式 通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式: 1.一般式:y=ax2+bx+c(a≠0); 2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k). 除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数. 当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有 ax2+bx+c=0.① 并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系: (1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立. (2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立. (3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx +c(a≠0)与x轴没有交点,则Δ<0也成立. 于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以 x1+x2= b a -,x1x2= c a , 即b a =-(x1+x2), c a =x1x2. 所以,y=ax2+bx+c=a(2b c x x a a ++) = a[x2-(x1+x2)x+x1x2] =a(x-x1) (x-x2). 由上面的推导过程可以得到下面结论: 若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0). 这样,也就得到了表示二次函数的第三种方法: 3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.

二次函数解析式常用的有三种形式:

二次函数解析式常用的有三种形式: 1、二次函数解析式 (1)一般式:_______________ (a≠0) (2)顶点式:_______________ (a≠0) (3)交点式:_______________ (a≠0) (1)当已知抛物线上任意三点时,通常设为一般式 y=ax2+bx+c 形式。 (2)当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式 y=a(x-h)2+k 形式。 (3)当已知抛物线与 x 轴的交点或交点横坐标时,通常设为两根式 y=a(x-x1)(x-x2)。 2、根据下列条件求二次函数解析式 (1)已知一个二次函数的图象经过了点 A(0,-1),B(1,0),C(-1,2); (2)已知抛物线顶点 P(-1,-8),且过点 A(0,-6); (3)二次函数图象经过点 A(-1,0),B(3,0),C(4,10); (4)已知二次函数的图象经过点(4,-3),并且当 x=3 时有最大值 4; (5)已知二次函数的图象经过一次函数 y=-—x+3 的图象与 x 轴、轴的交点, y 且过(1,2 (6)已知抛物线顶点(1,16),且抛物线与 x 轴的两交点间的距离为 8; (7)如图所示,、已知抛物线的对称轴是直线 x=3,它与 x 轴交于 A、 B 两点,与 y 轴交于 C 点,点 A、C 的坐标分别是(8,0)(0,4),求这个抛物线的解析式。 3、布置作业拓展升华 1、已知二次函数的图象经过(0,0),(1,2),(-1,-4)三点,那么这个二次函数的解析式是_______________。 2、已知二次函数的图象顶点是(-1,2),且经过(1,-3),那么这个二次函数的解析式是_______________。 3、已知二次函数 y=x2 +px+q 的图象的顶点是(5,-2),那么这个二次函数解析式是 _______________。 4、已知二次函数 y=ax2+bx+c 的图象过 A(0,-5),B(5,0)两点,它的对称轴为直线 x =2,那么这个二次函数的解析式是_______________。 5、已知二次函数图象与 x 轴交点(2,0)(-1,0)与 y 轴交点是(0,-1),那么这个二次函数的解析式是_______________。 6、已知抛物线 y=ax2+bx+c 与 x 轴交于 A、B 两点,它们的横坐标为-1 和 3,与 y 轴的交点 C 的纵坐标为 3,那么这个二次函数的解析式是_______________。 7、已知直线 y=x-3 与 x 轴交于点 A,与 y 轴交于点 B,二次函数的图象经过 A、B 两点,且对称轴方程为 x=1,那么这个二次函数的解析式是_______________。 8、已知一抛物线与 x 轴的交点是 A(-2,0)、B(1,0),且经过点 C(2,8),那么这个二次函数的解析式是_______________。 9、在平面直角坐标系中, AOB 的位置如图所示,已知∠AOB=90°,AO=BO,点 A 的坐标为(-3,1)。(1)求点 B 的坐标。(2)求过 A,O,B 三点的抛物线的解析式;(3)设点 B 关于抛物线的对称轴的对称点为 B1,求Δ AB1B 的面积。

二次函数的九种类型

如图所示,抛物线y=-12x 2-32x+2和直线y=12x+2相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在抛物线的对称轴上是否存在点P,使得△PBC 为直角三角形,如果存在请求出P 点坐标,如果不存在,请说明理由。 此类问题分别以三角形的三条边为斜边(或三个顶点为直角顶点)分三种情况进行讨论,其中要应用勾股定理等知识。 类型三:直角三角形的分类讨论: 如图所示,抛物线y=-122-32x+2和直线y=12x+2相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在抛物线的对称轴上是否存在点P,使得△PBC 的周长最小,如果存在请求出P 点坐标,如果不存在,请说明理由。此类问题有一个动点在一条直线上运动,在直线的一侧有两个定点,先找出其中一个定点关于这条直线的对称点,然后连接这个对称点和另一个定点,与已知直线有个交点,这个交点就是使得这个动点到两个定点距离之和最小的点。 类型二:将军饮马问题: 如图所示,抛物线y=-12x 2-32x+2和直线y=12x+2相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在直线AC 的上方的抛物线上是否存在点P,使得△PAC 的面积最大,如果存在请求出P 点坐标,如果不存在,请说明理由。 把图形面积用二次函数表达式表示出来,然后利用函数表达式求最值补充知识:平面直角坐 标系中三角形的面积一般用铅直高乘以水平宽 再乘以二分之一来求。 类型一:利用二次函数表达式求最大值的问题 如图所示,抛物线y=-12x 2-32x+2和直线y=12x+2相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在抛物线的对称轴上是否存在点P,使得△PBC 为等腰三角形,如果存在请求出P 点坐标,如果不存在,请说明理由。 此类问题分别以三角形的三条边为底边分三种情况进行讨论, 其中要应用两点之间的距离公式等知识。 类型四:等腰三角形的分类讨论:

(完整word版)二次函数压轴题类型方法总结

二次函数压轴题总结:(凡解析几何问题,均是以几何性质探路,代数书写竣工。) 已知、 y=322--x x (以下几种分类的函数解析式就是这个) 1、和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标 在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标 解决方案:识别模型,A 、若为过河问题模型,根据“异侧和最小,同侧差最大,根据问题同侧异侧相互转化”;B 、若有绝对值符号或不隶属于过河问题,可将问题形式平方,构建函数,转化为求函数最值问题(若表达式中含有根式等形式,可考虑用换元法求最值)。 2、求面积最大 连接AC,在第四象限抛物线上找一点P ,使得ACP ?面积最大,求出P 坐标 解决方案:熟悉基本图形的面积公式【或根据拼图思想,采用割补法求面积(注意不重不漏)。】,根据问题,灵活选择面积公式,务必使表达式简单,变量的最值好求,讲变量的最值问题转化为:”定值+变量的最值“ 3、讨论直角三角 连接AC,在对称轴上找一点P ,使得ACP ?为直角三角形,求出P 坐标 或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形. 解决方案:此类问题是分类讨论思想能力的考察,由于直角三角形的”直角边“”和“斜边”不确定而展开讨论。在不忘三角形满足三边关系的条件下,勿忘“等腰直角三角形”。 4、讨论等腰三角 连接AC,在对称轴上找一点P ,使得ACP ?为等腰三角形,求出P 坐标 解决方案:分析同上4,在能组成△的大前提下,根据谁作为腰,谁作为底边展开讨论。 5、讨论平行四边形 1、点E 在抛物线的对称轴上,点F 在抛物线上,且以B ,A ,F ,E 四点为顶点的四 边形为平行四边形,求点F 的坐标 解决方案:从平行四边形的性质入手,已知三点求另外一点,分析其位置情况(分别以3点中任一已知两点的线段为平行四边形的边或其对角线来展开所有的情况的讨论)。 6、相似三角形 问抛物线上是否存在一动点D ,使得△ABD ∽△ABC 。 解决方案:从边的关系找相似(勿忘全等△)或从角的关系找相似,建立数量关系,解方程并验证是否合符题意。 7、与圆有关的问题【关系:由不在同一直线上的三点可确定唯一一个圆(三角形外接圆)且在直角坐标系中,三个不同的点可确定一条唯一的抛物线】:判断点与圆的位置关系;判断圆与直线的位置关系;判断圆与圆的位置关系; 解决方案:抓住圆的必要条件:圆心和半径,根据圆的性质,涉及到根与系数的关系(中点问题--->圆心有关)勿忘韦达定理。 A 、直线和圆的位置关系 B 、圆换圆的位置关系 1.五种位置关系及判定与性质:(重点:相切) d>R d=R dR+r d=R+r R-r

二次函数解析式常用的有三种形式

二次函数解析式常用的有三种形式: (1)一般式:_______________ (a ≠0) (2)顶点式:_______________ (a ≠0) (3)交点式:_______________ (a ≠0) (1)当已知抛物线上任意三点时,通常设为一般式y =ax 2+bx +c 形式。(2)当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y =a(x -h)2+k 形式。(3)当已知抛物线与x 轴的交点或交点横坐标时,通常设为两根式y =a(x -x 1)(x -x 2)。 根据下列条件求二次函数解析式 (1)已知一个二次函数的图象经过了点A (0,-1),B (1,0),C (-1,2); (2)已知抛物线顶点P(-1,-8),且过点A(0,-6); (3)二次函数图象经过点A (-1,0),B (3,0),C (4,10); (4)已知二次函数的图象经过点(4,-3),并且当x=3时有最大值4; (5)已知二次函数的图象经过一次函数y =-—x+3的图象与x 轴、 y 轴的交点,且过(1,1); (6)已知抛物线顶点(1,16),且抛物线与x 轴的两交点间的距离为8; (7)、如图所示,已知抛物线的对称轴是直线x=3,它与x 轴交于A 、 3 2

B两点,与y轴交于C点,点A、C的坐标分别是(8,0)(0,4),求这个抛物线的解析式。 布置作业拓展升华 1、已知二次函数的图象经过(0,0),(1,2),(-1,-4)三点,那么这个二次函数的解析式是_______________。 2、已知二次函数的图象顶点是(-1,2),且经过(1,-3),那么这个二次函数的解析式是_______________。 3、已知二次函数y=x2+px+q的图象的顶点是(5,-2),那么这个二次函数解析式是_______________。 4、已知二次函数y=ax2+bx+c的图象过A(0,-5),B(5,0)两点,它的对称轴为直线x =2,那么这个二次函数的解析式是_______________。 5、已知二次函数图象与x轴交点(2,0)(-1,0)与y轴交点是(0,-1),那么这个二次函数的解析式是_______________。 6、已知抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标为-1和3,与y轴的交点C的纵坐标为3,那么这个二次函数的解析式是_______________。 7、已知直线y=x-3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,那么这个二次函数的解析式是_______________。 8、已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8),那么这个二次函数的解析式是_______________。 9、在平面直角坐标系中,AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A 的坐标为(-3,1)。 (1)求点B的坐标。 (2)求过A,O,B三点的抛物线的解析式; (3)设点B关于抛物线的对称轴的对称点为B1,求ΔAB1B的 面积。

二次函数的三种表达形式

二次函数的三种表达形式: ①一般式: y=ax2+bx+c(a ≠0,a、b、C为常数),顶点坐标为] 把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、C的值 ②顶点式: y=a(x-h)2+k(a ≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax 2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2 ,把(3,10)代入上式,解得y=2(x-1)2+2 。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在X轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到; 当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动Ihl个单位得到; 当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单 位,就可以得到y=a(x-h)2+k 的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单 位可得到y=a(x-h)2+k 的图象;当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k 的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动Ihl个单位,再向下移动Ikl个单位可得到

相关主题
文本预览
相关文档 最新文档