当前位置:文档之家› 智能状态监测与故障诊断

智能状态监测与故障诊断

智能状态监测与故障诊断
智能状态监测与故障诊断

智能状态监测与故障诊断

测控一班

高青春

第一章

绪论

在现代化的机械设备的生产和发展中,滚动轴承占很大的地位,同时它的故障诊断与监测技术也随着不断地发展,国内外学者对轴承的故障诊断做了大量的研究工作,各种方法与技巧不断产生、发展和完善,应用领域不断扩大,诊断精度也不断提高。时至今日,故障诊断技术己成为一门独立的跨学科的综合信息处理技术,它以可靠性理论、信息论、控制论、系统论为理论基础,以现代测试仪器和计算机为技术手段,总的来说,轴承故障诊断的发展经历了以下几个阶段:第一段:利用通用的频谱分析仪诊断轴承故障。第二阶段:利用冲击脉冲技术诊断轴承故障。第三阶段:利用共振解调技术诊断轴承故障。第四阶段:以计算机为中心的故障诊断。

国外的滚动轴承的故障诊断与监测技术要先于中国,而且这项技术的发展趋势啊已经趋向智能化状态,因为它机械化迅速,技术和设备都比较先进些,目前的技术也比较完善。但是总体来看,这其中的距离在不断拉近,我们相信不久的将来,中国也会使机械完善大国,也会完善和提高技术的精密度和准确度。【2】【3】

1.1轴承监测与故障诊断的意义

滚动轴承是机械各类旋转机械中最常用的通用零件部件之一,也是旋转机械易损件之一,在机械生产中的作用不可取代,据统计旋转机械的故障有30%是由轴承故障引起的,它的好坏对机器的工作状态影响极大,轴承的缺陷会导致机器剧烈振动和产生噪音,甚至会引起设备的损坏,因此,对重要用途的轴承进行状态监测与故障诊断是非常必要的【3】而且,可以生产系统的安全稳定运行和提高产品质量的重要手段和关键技术,在连续生产系统中,如果某台设备因故障而不能继续工作,往往会影响全厂的生产系正常统运行,从而会造成巨大的经济损失,甚至可能导致机毁人亡的严重后果。未达到设计寿命而出现故障的轴承没有被及时的发现,直到定期维修时才被拆下来报废,使得机器在轴承出现故障后和报废前这段时间内工作精度降低,或者未到维修时间就出现严重故障,导致整部机器陷于瘫痪状态。因此,进行滚动轴承工作状态及故障的早期检测与故障诊断,对于设备安全平稳运行具有重要的实际意义。【14】

1.2滚动轴承故障的分类:

滚动轴承的故障多种多样,有生产过程中产生的也有使用过程中后天造成一系列故障,其失效形式有:

1.2.1疲劳剥落: 指滚动体或滚道表剥落或脱皮在表面上,形成不规则

凹坑等甚至会一定深度下形成能裂纹,继扩展到接触表面发生剥落坑,最后大面积剥落,造成失效。【12】

故障诊断专家系统及其发展

综述与评论 计算机测量与控制.2008.16(9) C omputer Measurement &Control 1217 中华测控网https://www.doczj.com/doc/e612207329.html, 收稿日期:2008-06-08; 修回日期:2008-07-16。 作者简介:安茂春(1967-),山东莱阳人,副研究员,主要从事测试与故障诊断技术的管理工作。 文章编号:1671-4598(2008)09-1217-03 中图分类号:TP182 文献标识码:A 故障诊断专家系统及其发展 安茂春 (北京系统工程研究所,北京 100101) 摘要:文章对主要的故障诊断专家系统进行了系统的归纳和分类,主要关注故障诊断专家系统在军事领域的应用;重点讨论了基于规则的诊断专家系统、基于模型的诊断专家系统、基于人工神经网络的诊断专家系统、基于模糊推理的诊断专家系统和基于事例的诊断专家系统的技术要点、发展现状、优缺点及其在军事方面的应用;最后,对该学科的发展做出了预测,指出基于多种模型结合的诊断专家系统、分布式诊断专家系统、实时诊断专家系统是今后的发展方向。 关键词:专家系统;故障诊断;军事应用;基于规则推理;建模技术;人工神经网络;模糊推理;基于事例推理 A Survey on Fault Diagnosis Expert Systems An M ao chun (Beijing Institute o f System and Eng ineering ,Beijing 100101,China) Abstract:In this article w e present a s urvey of fault diagnosis expert system s,and categorize them into 5different types according to know ledge organiz ation m ethod and reasoning m ech anis m,w hich are ru le-b as ed fault diagn osis expert system,model-based fault diagnosis ex pert system,n eural netw ork fault diagnosis exp ert sy stem,fuz zy fault diagn osis expert system and cas e-based fault diagn os is expert sys -tem,for each type w e describ e its techn ical pr op erties,curren t status,ad vantag es and disadvantages,and application s in military field.At the end of th is article,w e point out that hybrid model-based,distributed and real-time diagnosis expert sys tems are fu tu re direction s. Key words:ex pert sys tem;fault diagnosis ;military application;rule -b as ed reasoning;modelin g;artificial neural netw or k;fuzzy reasonin g;ease-b as ed reasoning 1 故障诊断专家系统及其分类 专家系统(Ex per t Sy st em,ES)是人工智能技术(A rt if-i cial I ntelligence,A I)的一个重要分支,其智能化主要表现为能够在特定的领域内模仿人类专家思维来求解复杂问题。专家系统必须包含领域专家的大量知识,拥有类似人类专家思维的推理能力,并能用这些知识来解决实际问题。 故障诊断技术是一门应用型边缘学科,其理论基础涉及多门学科,如现代控制理论、计算机工程、数理统计、模糊集理论、信号处理、模式识别等。故障诊断的任务是在系统发生故障时,根据系统中的各种量(可测的或不可测的)或其中部分量表现出的与正常状态不同的特性,找出故障的特征描述并进行故障的检测与隔离。 故障诊断专家系统是将专家系统应用到故障诊断之中,可以利用领域知识和专家经验提高故障诊断的效率[1]。目前专家系统在故障诊断领域的应用非常广泛,如美空军研制的用于飞机喷气发动机故障诊断专家系统XM AN [2],N A SA 与M IT 合作开发的用于动力系统诊断的专家系统,英国某公司为英美军方开发的直升机发动机转子监控与诊断专家系统[3]等,此外在电力、机械、化工、船舶等许多领域中也大量应用了故障诊断专家系统。 根据知识组织方式与推理机制的不同,可将目前常用的故障诊断专家系统大致分为基于规则的诊断专家系统、基于模型 的诊断专家系统、基于人工神经网络的诊断专家系统、基于模糊推理的诊断专家系统和基于事例的诊断专家系统。 2 故障诊断专家系统对比分析 2 1 基于规则的诊断专家系统 在基于规则的诊断专家系统中,领域专家的知识与经验被 表示成产生式规则,一般形式是:if<前提>then<结论>其中前提部分表示能与数据匹配的任何模型,结论部分表示满足前提时可以得出的结论。基于规则的推理是先根据推理策略从规则库中选择相应的规则,再匹配规则的前提部分,最后根据匹配结果得出结论。 基于规则的诊断知识表达方式直观、形式统一,在求解小规模问题时效率较高,并且具有易于理解与实现的优点,因而取得了一定成功。20世纪90年代,国外在军用水压系统、电力供应网络等方面进行了应用。 但是,对于复杂系统,所观测到的症状与对应的诊断之间的联系是相当复杂的,通过归纳专家经验来获取规则有着相当的难度,且诊断时只能对事先预想到的并能与规则前提匹配的事件进行推理,存在知识获取的瓶颈问题。2 2 基于模型的诊断专家系统 在基于模型的诊断专家系统中,领域专家的专业知识包含在建立的系统模型中,这种基于模型的诊断更多地利用系统的结构、功能与行为等知识。相比基于规则的诊断专家系统,这种诊断方式能够处理预先没有想到的情况,并且可能检测到系统存在的潜在故障。这类系统的知识库相对容易建立并且具有一定的灵活性,已应用于航天器动力燃烧系统故障诊断等方面。

故障诊断技术发展现状

安全检测与故障诊断 题目:故障诊断技术发展现状 导师:魏秀琨 学生姓名:刘典 学号:14114263

目录 1 引言 (3) 2 故障诊断的研究现状 (3) 1.1基于物理和化学分析的诊断方法 (3) 1.2基于信号处理的诊断方法对 (3) 1.3基于模型的诊断方法 (3) 1.4基于人工智能的诊断方法 (4) 2故障诊断研究存在的问题 (6) 2.1故障分辨率不高 (7) 2.2信息来源不充分 (7) 2.3自动获取知识能力差 (7) 2.4知识结合能力差 (7) 2.5对不确定知识的处理能力差 (7) 3发展方向 (8) 3.1多源信息的融合 (8) 3.2经验知识与原理知识紧密结合 (8) 3.3混合智能故障诊断技术研究 (9) 3.4基于物联网的远程协作诊断技术研究 (9) 4发展方向 (9)

1 引言 故障可以定义为系统至少有一个特性或参数偏离正常的范围,难于完成系统预期功能的行为。故障诊断技术是一种通过监测设备的状态参数,发现设备的异常情况,分析设备的故障原因,并预测预报设备未来状态的技术,其宗旨是运用当代一切科技的新成就发现设备的隐患,以达到对设备事故防患于未然的目的,是控制领域的一个热点研究方向。它包括故障检测、故障分离和故障辨识。故障诊断能够定位故障并判断故障的类型及发生时刻,进一步分析后可确定故障的程度。故障检测与诊断技术涉及多个学科,包括信号处理、模式识别、人工智能、神经网络、计算机工程、现代控制理论和模糊数学等,并应用了多种新的理论和算法。 2 故障诊断的研究现状 1.1基于物理和化学分析的诊断方法 通过观察故障设备运行过程中的物理、化学状态来进行故障诊断,分析其声、光、气味及温度的变化,再与正常状态进行比较,凭借经验来判断设备是否故障。如对柴油机常见的诊断方法有油液分析法,运用铁谱、光谱等分析方法,分析油液中金属磨粒的大小、组成及含量来判断发动机磨损情况。对柴油机排出的尾气(包含有NOX,COX 等气体) 进行化学成分分析,即可判断出柴油机的工作状态。 1.2基于信号处理的诊断方法对 故障设备工作状态下的信号进行诊断,当超出一定的范围即判断出现了故障。信号处理的对象主要包括时域、频域以及峰值等指标。运用相关分析、频域及小波分析等信号分析方法,提取方差、幅值和频率等特征值,从而检测出故障。如在发动机故障领域中常用的检测信号是振动信号和转速波动信号。如以现代检测技术、信号处理及模式识别为基础,在频域范围内,进行快速傅里叶变换分析等方法,描述故障特征的特征值,通过采集到的发动机振动信号,确定了试验测量位置,利用加速传感器、高速采集卡等采集了发动机的振动信号,并根据小波包技术,提取了发动机故障信号的特征值。该诊断方法的缺点在于只能对单个或者少数的振动部件进行分析和诊断。而发动机振动源很多,用这种方法有一定的局限性。 1.3基于模型的诊断方法 基于模型的诊断方法,是在建立诊断对象数学模型的基础上,根据模型获得的预测形态和所测量的形态之间的差异,计算出最小冲突集即为诊断系统的最小诊断。其中,最小诊断就是关于故障元件的假设,基于模型的诊断方法具有不依赖于被诊断系统的诊断实例和经验。将系统的模型和实际系统冗余运行,通过对比产生残差信号,可有效的剔除控制信号对

故障诊断方法与应用

课程名称:故障诊断方法与应用报告题目:内圈故障诊断实验报告学生班级;研152 学生姓名: 任课教师: 学位类别:

设备故障诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。安装合适的传感器可以获得故障的特征信号,通过信号反映故障产生原因。滚动轴承是机械中的易损元件,据统计旋转机械的故障有30%是由轴承引起的,它的好坏对机器的工作状态影响极大。轴承的缺陷会导致机器剧烈振动和产生噪声,甚至会引起设备的损坏。滚动轴承的振动可由于外部的振源引起,也可由于轴承本身的结构特点及缺陷引起。而随着科学技术不断发展和工业化程度的不断提高,机械设备精密程度、复杂程度及自动化程度不断提高,凭个人的感观经验对机械设备进行诊断己经远远不够,因此轴承的状态检测和故障诊断是十分必要的,已经成为机械设备故障诊断技术的重要内容。滚动轴承故障监测诊断方法有很多种,它们各具特点,其中振动信号法应用最广泛。本次实验就是采用振动信号法对滚动轴承故障实验平台的滚动轴承的故障信号进行分析。

1 绪论 (1) 2 轴承内圈故障特征频率 (2) 3 时域无量纲参数分析 (2) 3.1 时域波形 (2) 3.2 傅里叶变换运算分析故障 (3) 4通过自相关、互相关、功率谱运算分析故障 (4) 4.1 自相关分析 (4) 4.2 互相关运算分析故障 (5) 4.3功率谱密度 (6) 5 Haar小波分析 (7) 5.1小波分解 (7) 5.2 小波降噪 (9)

1 绪论 随着对滚动轴承的运动学、动力学的深入研究,对于轴承振动信号中的频率成分和轴承零件的几何尺寸及缺陷类型的关系有了比较清楚的了解,加之快速傅里叶变换技术的发展。开创了用频域分析方法来检测和诊断轴承故障的新领域。其中最具代表性的有对钢球共振频率的研究,对轴承圈自由共振频率的研究。本文主要着重于对滚动轴承内圈磨损的故障研究,主要研究方法为傅里叶变换,功率谱,自相关以及互相关,小波理论。 滚动轴承在运行过程中可能会因为各种原因出现故障,如安装不当、异物入侵、润滑不良、腐蚀和剥落等都会导致轴承出现故障。安装不当会导致轴承不对中,使得轴承在运行中,产生一种附加弯矩,给轴承增加附加载荷,形成附加激励,引起几组强烈振动,严重时会导致转子严重磨损、轴弯曲、联轴器和轴承断裂等严重后果。即使轴承安装正确,在长期的运行中,由于异物的入侵或则负荷的作用下,接触面会出现不同程度的金属剥落、裂痕等现象,进而导致旋转部件与故障区域接触时产生强烈振动。本次实验主要针对潜在危害很大的裂痕故障信号进行分析研究。滚动轴承在出现裂痕故障后,随着轴承的旋转,由于旋转部件与裂痕周期性的碰撞会产生周期性的冲击信号,且周期可以通过轴承结构计算得出。图1.1所示为滚动轴承基本结构。 图1.1 滚动轴承基本结构 d:滚动体直径 D:轴承节径(滚动体所在圆的直径) R:内圈直径 i R:外圈直径 o :接触角(滚动体受力方向与轴承径向平面的夹角) Z:滚动体个数

智能状态监测与故障诊断教程文件

智能状态监测与故障诊断 测控一班 高青春 20091398

第一章 绪论 在现代化的机械设备的生产和发展中,滚动轴承占很大的地位,同时它的故障诊断与监测技术也随着不断地发展,国内外学者对轴承的故障诊断做了大量的研究工作,各种方法与技巧不断产生、发展和完善,应用领域不断扩大,诊断精度也不断提高。时至今日,故障诊断技术己成为一门独立的跨学科的综合信息处理技术,它以可靠性理论、信息论、控制论、系统论为理论基础,以现代测试仪器和计算机为技术手段,总的来说,轴承故障诊断的发展经历了以下几个阶段:第一段:利用通用的频谱分析仪诊断轴承故障。第二阶段:利用冲击脉冲技术诊断轴承故障。第三阶段:利用共振解调技术诊断轴承故障。第四阶段:以计算机为中心的故障诊断。 国外的滚动轴承的故障诊断与监测技术要先于中国,而且这项技术的发展趋势啊已经趋向智能化状态,因为它机械化迅速,技术和设备都比较先进些,目前的技术也比较完善。但是总体来看,这其中的距离在不断拉近,我们相信不久的将来,中国也会使机械完善大国,也会完善和提高技术的精密度和准确度。【2】【3】

1.1轴承监测与故障诊断的意义 滚动轴承是机械各类旋转机械中最常用的通用零件部件之一,也是旋转机械易损件之一,在机械生产中的作用不可取代,据统计旋转机械的故障有30%是由轴承故障引起的,它的好坏对机器的工作状态影响极大,轴承的缺陷会导致机器剧烈振动和产生噪音,甚至会引起设备的损坏,因此,对重要用途的轴承进行状态监测与故障诊断是非常必要的【3】而且,可以生产系统的安全稳定运行和提高产品质量的重要手段和关键技术,在连续生产系统中,如果某台设备因故障而不能继续工作,往往会影响全厂的生产系正常统运行,从而会造成巨大的经济损失,甚至可能导致机毁人亡的严重后果。未达到设计寿命而出现故障的轴承没有被及时的发现,直到定期维修时才被拆下来报废,使得机器在轴承出现故障后和报废前这段时间内工作精度降低,或者未到维修时间就出现严重故障,导致整部机器陷于瘫痪状态。因此,进行滚动轴承工作状态及故障的早期检测与故障诊断,对于设备安全平稳运行具有重要的实际意义。【14】 1.2滚动轴承故障的分类: 滚动轴承的故障多种多样,有生产过程中产生的也有使用过程中后天造成一系列故障,其失效形式有: 1.2.1疲劳剥落: 指滚动体或滚道表剥落或脱皮在表面上,形成不规则 凹坑等甚至会一定深度下形成能裂纹,继扩展到接触表面发生剥落坑,最后大面积剥落,造成失效。【12】

智能故障诊断技术知识总结复习课程

智能故障诊断技术知 识总结

智能故障诊断技术知识总结 一、绪论 □智能: ■智能的概念 智能是指能随内、外部条件的变化,具有运用知识解决问题和确定正确行为的能力。 ■低级智能和高级智能的概念 低级智能——感知环境、做出决策和控制行为 高级智能——不仅具有感知能力,更重要的是具有学习、分析、比较 和推理能力,能根据复杂环境变化做出正确决策和适应 环境变化 ■智能的三要素及其含义 三个基本要素:推理、学习、联想 推理——从一个或几个已知的判断(前提),逻辑地推断出一个新判断(结论)的思维形式 学习——根据环境变化,动态地改变知识结构 联想——通过与其它知识的联系,能正确地认识客观事物和解决实际问题 □故障: ■故障的概念 故障是指设备在规定条件下不能完成其规定功能的一种状态。可分为以下几种情况:

1.设备在规定的条件下丧失功能; 2.设备的某些性能参数达不到设计要求,超出允许范围; 3.设备的某些零部件发生磨损、断裂、损坏等,致使设备不能正常工作; 4.设备工作失灵,或发生结构性破坏,导致严重事故甚至灾难性事故。 ■故障的性质及其理解 1层次性——系统是有层次的,故障的产生对应于系统的不同层次表 现出层次性。一般可分为系统级、子系统级、部件级、 元件级等多个层次;高层故障可由低层故障引起,而低 层故障必定引起高层故障。诊断时可采用层次诊断模型 和诊断策略。 2相关性——故障一般不会孤立存在,它们之间通常相互依存和相互 影响,如系统故障常常由相关联的子系统传播所致。表 现为,一种故障可能对应多种征兆,而一种征兆可能对 应多种故障。这种故障与征兆间的复杂关系导致了故障 诊断的困难。 3随机性——故障的发生常常是一个与时间相关的随机过程,突发性 故障的出现通常都没有规律性,再加上某些信息的模糊 性和不确定性,就构成了故障的随机性。

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述 发表时间:2016-06-30T14:34:41.580Z 来源:《电力设备》2016年第9期作者:李艳君蒋杰李玉玲李飞翔 [导读] 在电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展和改革,现今已经较为成熟,而电力系统层面的故障才刚刚开始。 李艳君蒋杰李玉玲李飞翔 (国网新疆检修公司新疆乌鲁木齐 830000) 摘要:常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。基于此,本文就针对电力系统故障的智能诊断进行分析。 关键词:电力系统;故障;智能诊断 引言 文章对电力系统故障的智能诊断进行了详细的阐述,通过对电力系统的简介,和对故障诊断的发展阶段进行了简要的分析,并阐述了电力系统故障的智能诊断实际应用存在的问题及对策,文章最后指出了电力系统故障的智能诊断的发展趋势。望文章的阐述推动电力系统故障的智能诊断的发展。 1电力系统概述 电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。电力系统的主要功能是将自然界中的能源,通过先进的发电动力装置,将能源转换为电能。在通过输电线路和变压系统,将电能传送到各个用户。为了实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。 2电力系统故障智能诊断技术及发展现状 2.1智能故障诊断技术 传统的故障诊断方法分为基于信号处理和基于数据模型,均需要人工进行信息的处理和分析,缺乏自主学习能力。随着人工智能技术这一新方法的产生及发展,为故障诊断提供了初步的自动分析和学习的途径。人工智能技术能够存储和利用故障诊断长期积累的专家经验,通过模拟人大脑的逻辑思维进行推理,从而解决复杂的诊断问题。 目前在电网故障诊断领域出现了包括专家系统、人工神经网络、决策树理论、数据挖掘、模糊理论、粗糙集理论、贝叶斯网络、支持向量机及多智能体系统等技术以及上述方法的综合应用。 目前,在对电网故障智能诊断领域的研究中,依靠单一智能技术的系统多,信息的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。即使广泛投入使用的专家系统也同样存在着:(1)知识的获取和管理问题,难以获取较高适应度和准确度的知识。(2)推理的效率问题。(3)故障诊断的在线应用问题,目前仅限于离线故障诊断,该结论不能指导对电网的实际控制。(4)故障诊断的动态分析问题,缺乏故障的动态分析,从而屏蔽了很多有用的细节,尤其是各元件之间的相互关联关系等。基于以上问题,采用决策树方法可以对系统信息进行归类梳理,可以提高专家系统的速度;通过粗糙集方法建立清晰的数学模型;采用数据挖掘和关联性规则可以提高故障诊断分析的准确度。这几种方法的结合应用有助于提高故障诊断的智能水平、效率和准确度。 2.2电力系统故障智能诊断发展现状 电力系统连锁故障分析理论与应用中提到,电力系统故障智能诊断是相对传统的故障诊断而言的。在传统的故障诊断方法可划分为两类。其一是关于信号出路的方法。其二是数学模型的方法。这些都需要人为地区判断和分析,这些方法应用是没有自动化的处理能力。故障的智能诊断是将传统的方法,与当下先进的计算机技术有效的结合,形成的人工智能技术的新方法,对电力系统的故障进行智能的诊断,这是故障诊断技术发展的新时期。 3智能故障诊断面临的问题和对策 3.1智能故障诊断面临的问题 知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。 推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。 故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。 故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。 3.2智能故障诊断面临问题的解决对策 对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如 ANN、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。 对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。 对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的

状态监测与故障诊断的基本图谱

状态监测与故障诊断的基本图谱 一、常规图谱 常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。 1. 机组总貌图 机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。 2. 单值棒图 较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。 3. 多值棒图 多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。 正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5倍频微量或无,可选频段很小,残余量不大。 其中: (1)通频值~即总振动值,为各频率振动分量相互矢量迭加后的总和。 (2)一倍频~为转子实际运行转速n下的频率f,又称工频、基频、转频, f = n/60 [Hz];转子动不平衡及轴弯曲、轴承不良(偏心)、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。 (3)二倍频~二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等,都会引起二倍频振动分量增大,绝大多数是轴系不对中。 (4)0.5倍频~0.5倍工频,又称半频,油膜涡动会引起该频率段增大,轴承工作不良也会引起该段频率增大;旋转失速、摩擦也都有可能。 (5)可选频段~由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6)倍工频或(0.3~0 .8)倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。 (6)残余量~除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时,转子有可能发生摩擦、高频气流脉动等。 4. 波形图 波形图显示了振动位移与时间的关系,又称幅值时域图。 波形图显示了振幅、周期(即频率)、相位,特别是波形的形状和状态。 图中:① 振幅为正峰与负峰之间的位移量,比较各周期对应的峰高,即可知振幅值是否稳定;② 二个亮点之间为一个旋转周期,波形图的周期数可以选取,想了解波形重复性

状态监测与故障诊断

状态监测与故障诊断与飞设密不可分 刚刚接触这门课的时候,我只知道这是民航飞行学院开设的课程,但还不知道这门课到底讲什么东西,对我们飞设来说到底有什么借鉴之处。经过几周的学习,我初步了解了这门课。简单说,状态监测与故障诊断和飞设之间有着密切的联系。他们是一种表里关系,是一种感知和应用的关系,两者互为支撑,共同促进了航空工业的进步发展。 状态监测与故障诊断促进了设计行业的发展。 状态监测与故障诊断为设计飞机提供了大量的、可靠的数据。 这提供了一种实验。通过对飞行器飞行状态、各个零部件的工作状态、各个系统的运行情况进行检测,我们可以获得大量的实时数据,进而进行详细的分析,即故障诊断。一方面我们可以检测出飞行器的故障来源,对飞行器进行维修。同时,我们可以统计飞行器各部分发生故障的频率和原因等,进而分析得出设计上的缺陷。这也可以作为设计飞机的依据,比如发动机轴承要用什么材质,设计寿命多长时间最为合适。再者,分析得到的数据可以对目前的设计理论进行验证,这对飞行器设计来说更为至关重要。 状态监测与故障诊断也可以给设计提出新的问题与要求。比如国内大气污染严重,飞机的空调系统收到了巨大的影响。这就要求飞机设计时采取某些措施来防止这些问题发生。 设计行业也促进了状态监测与故障诊断的发展。 飞行器设计理论可以指导状态监测与故障诊断的实际应用。 应用已经提出验证的的理论,我们可以初步分析出各部件的特性,这样便可以某些易损坏或是极度危险的零部件进行重点监控,这样不但更具可行性,而且还大大节约了人力物力,降低航空公司的运营成本。比如发动机是飞行器的核心部分之一,构建复杂,极易出现故障,所以要重点监测。 同时已有的理论基础可以为状态监测提供必要的手段,使其具有可行性。最简单的就是发动机的涡轮叶片,我们可以通过测量转子的惯性矩来分析判断叶片是否有松动,这样方便可行。 在理论方面,飞行器设计理论也在指导状态监测与故障诊断的发展,经过传感器采集的数据杂乱无章而且数目极为庞大。如果没有现有理论的指导,我们很难得到数据处理的方向方法,这样就得不到有价值的数据,更不要说进行故障诊断了。而应用现有理论我们可以有方向,有目的的对数据进行处理,这样我们就可以判断出是哪一方面有问题,到底有什么样的问题。 总之,状态监测与故障诊断给了我一个新的视角去看待问题,从另一个角度认识飞设这个专业。打个比方,过去我们专业所关注的是从已知到要求的问题,我们知道各种数据,所做的是对数据的分析与应用。而状态监测与故障诊断则是从要求到已知的问题,是一个反问题,我们要做的是我们如何才能得到我们所需要的数据,如何才能保证所得导数据的可靠性等。 除此之外,还有就是这门课的感受吧。 这门课也进行大半了,但是自己并没有达到自己想要的水平。总感觉有些遗憾。很多东西还是一知半解,还不能应用。我想一方面与专业基础有关系,很多基础性东西我们不懂不会,这就对理解内容造成了困难,先是听不懂,然后就不想听了,紧接着更听不懂了,直至彻底放弃掉。当然这也和上课态度以及这门课是拓展课有关吧。有的人说这门课对我没用,但我想说大

智能故障诊断技术知识总结

智能故障诊断技术知识总结 一、绪论 □智能: ■智能的概念 智能是指能随、外部条件的变化,具有运用知识解决问题和确定正确行为的能力。 ■低级智能和高级智能的概念 低级智能——感知环境、做出决策和控制行为 高级智能——不仅具有感知能力,更重要的是具有学习、分析、比较和推理能力, 能根据复杂环境变化做出正确决策和适应环境变化 ■智能的三要素及其含义 三个基本要素:推理、学习、联想 推理——从一个或几个已知的判断(前提),逻辑地推断出一个新判断(结论)的思维形式 学习——根据环境变化,动态地改变知识结构 联想——通过与其它知识的联系,能正确地认识客观事物和解决实际问题 □故障: ■故障的概念 故障是指设备在规定条件下不能完成其规定功能的一种状态。可分为以下几种情况: 1.设备在规定的条件下丧失功能; 2.设备的某些性能参数达不到设计要求,超出允许围; 3.设备的某些零部件发生磨损、断裂、损坏等,致使设备不能正常工作; 4.设备工作失灵,或发生结构性破坏,导致严重事故甚至灾难性事故。 ■故障的性质及其理解 1层次性——系统是有层次的,故障的产生对应于系统的不同层次表现出层次性。 一般可分为系统级、子系统级、部件级、元件级等多个层次;高层故 障可由低层故障引起,而低层故障必定引起高层故障。诊断时可采用 层次诊断模型和诊断策略。 2相关性——故障一般不会孤立存在,它们之间通常相互依存和相互影响,如系统 故障常常由相关联的子系统传播所致。表现为,一种故障可能对应多 种征兆,而一种征兆可能对应多种故障。这种故障与征兆间的复杂关 系导致了故障诊断的困难。 3随机性——故障的发生常常是一个与时间相关的随机过程,突发性故障的出现通 常都没有规律性,再加上某些信息的模糊性和不确定性,就构成了故 障的随机性。 4可预测性——设备大部分故障在出现之前通常有一定先兆,只要及时捕捉这些征 兆信息,就可以对故障进行预测和防。 □故障诊断: ■故障诊断的概念 故障诊断就是对设备运行状态和异常情况做出判断。具体说来,就是在设备没有发 生故障之前,要对设备的运行状态进行预测和预报;在设备发生故障之后,要对故 障的原因、部位、类型、程度等做出判断;并进行维修决策。 ■故障诊断的实质及其理解 故障诊断的实质——模式识别(分类)问题

嵌入式智能故障诊断系统设计

嵌入式智能故障诊断系统设计 摘要:针对传统的故障诊断方法精度不高,实时性不好的问题,在嵌入式系统 环境下进行故障实时诊断系统的优化设计。本文首先分析了机械状态监测及故障 诊断的相关理论,然后详细分析了嵌入式智能故障诊断系统的设计与实现。实验 结果表明,采用该故障诊断系统进行滚动轴承故障实时检测非常便捷实用又适于 后续联网管理。 关键词:嵌入式系统;滚动轴承;故障诊断;硬件系统 引言 随着现代科技的不断发展,机械设备早已不是一个纯机械装备,而是融合了自动控制、 液压与气压传动等技术的结构和功能都十分复杂的系统。这给机械运行状态的监测和故障诊 断提出了越来越高的要求。机械运行过程中发生的故障不仅会导致重大经济损失,还可能给 人身安全带来极大威胁。因此,实时监测机械设备的运行工况并及时诊断故障,对经济效益 和社会效益的提高都有极其重要的意义。 1 机械状态监测和故障诊断的相关理论 机械诊断技术是通过监测机械设备运行状况,发现故障并预报故障发展趋势,诊断故障 类型及故障原因,确保机器正常运转的技术。目前,普遍采用的机械诊断技术有振动监测、 油液监测、噪声监测和无损探伤等。油液光谱分析技术通过分析机油中的金属颗粒物浓度, 能准确判断机械设备传动系统是否存在磨损型故障隐患。无损探伤技术利用物质的光、磁和 电等特性,能够在不损坏工件或改变机械设备运行状态的前提下准确完成机械部件工况的监测。 故障机理分析是机械诊断的关键。故障机理是在理论研究和实验分析的基础上得到的反 映故障信号和机器参数关系的表达式。从采集到的机械设备的状态信号,它能方便诊断出故 障的位置。这些状态信号通常是机械设备运行过程中表现出来的物理或化学现象,如机械振动、运行噪声、机器温度、油压波动、功耗增多和异常气味等。机械运行状态监测是通过各 种传感器采集机械设备运行过程中的物理或化学状态信号,并据此诊断故障的类型及原因。 故障信号的提取与处理是机械诊断中的重要步骤。通过分析传感器采集到的反映机械设备运 行状态的信号,提取出机械故障特征信息,从而为故障类型和故障原因的准确诊断提供可靠 的依据。信号处理方法经历了从时域分析到频域分析,再由频域分析到时频域分析的发展过程。频域分析将采集到的机械状态信号从时域变换到频域。典型的频域分析法有基于快速傅 里叶变换的经典谱估计法和现代谱估计法。时频分析技术同时在时域和频域分析机械非平稳 信号,其中Wigner-Ville时频分布等时频分析技术在机械诊断中得到了普遍应用。 2 嵌入式智能故障诊断系统设计 本系统将整体结构分为四层,包括管理层、功能层、推理层和数据层。管理层主要负责 整个系统的管理机制与通信机制。决策需要通信的Agent双方需要对话,还是需要进行知识 的交换。二是要Agent之间的关系作出判断。Agent之间的交互有两种关系:正关系和负关系。正关系表示Agent的规划有重叠的部分,或某个Agent具备其他Agent不具备的能力, 各Agent可通过管理层的协调获得帮助,负关系会导致冲突。管理层要进行协调,达到冲突 的消解的目的。功能层是多Agent诊断系统的核心层。主要包括知识处理、特征提取、实时 监控、故障诊断与故障决策等功能组件。推理层处于数据层和功能层之间。主要提供各功能 组件所需的知识或数据,并对推理机制进行定义。数据层包括数据库、知识库与扩展知识库 三个方面。数据库主要用于存储由传感器获得的各种信息,知识库为众多相关领域的专家的 经验总和。扩展知识库主要是为系统的日后扩展诊断功能留下接口。在管理层中主要有两个Agent:管理Agent和数据传输Agent。管理 Agent负责协调各Agent和通信,数据传输Agent 负责与后台计算机上的通信Agent之间传输巡检数据。具体诊断时,数据采集子系统将被诊 断设备的运行状态、参数等数据采集输入到诊断系统,一方面提供给PC端显示,另一方面,将数据提供给诊断方法 Agent,形成诊断请求。管理Agent对诊断请求进行任务分解,得出 多个子任务,再根据对诊断Agent的认识,将诊断任务分配给适当的诊断Agent。管理Agent 还要负责诊断Agent间的工作协调、协作和借助于KQML语言通信,以及将各诊断Agent的

故障诊断及相关应用

故障诊断及相关应用 摘要 故障诊断技术是一门以数学、计算机、自动控制、信号处理、仿真技术、可靠性理论等有关学科为基础的多学科交叉的边缘学科。故障诊断技术发展至今,已提出了大量的方法,并发展成为一门独立的跨学科的综合信息处理技术,是目前热点研究领域之一。我国的一些知名学者也在这方面取得了可喜的成果。 关键字:故障诊断,信息处理 1故障诊断技术的原理及基本方法 按照国际故障诊断权威,德国的Frank P M教授的观点,所有的故障诊断方法可以划分为3种:基于解析模型的方法、基于信号处理的方法和基于知识的方法。 1.1基于解析模型的故障诊断方法 基于解析模型的方法是发展最早、研究最系统的一种故障诊断方法。所谓基于解析模型的方法,是在明确了诊断对象数学模型的基础上,按一定的数学方法对被测信息进行诊断处理。其优点是对未知故障有固有的敏感性;缺点是通常难以获得系统模型,且由于建模误差、扰动及噪声的存在,使得鲁棒性问题日益突出。 基于解析模型的方法可以进一步分为参数估计方法、状态估计方法和等价空间方法。这3种方法虽然是独立发展起来的,但它们之间存在一定的联系。现已证明:基于观测器的状态估计方法与等价空间方法是等价的。相比之下,参数估计方法比状态估计方法更适合于非线性系统,因为非线性系统状态观测器的设计有很大困难,通常,等价空间方法仅适用于线性系统。 1.1.1参数估计方法 1984年,Iserman对于参数估计的故障诊断方法作了完整的描述。这种故障诊断方法的思路是:由机理分析确定系统的模型参数和物理元器件参数之间的关系方程,由实时辨识求得系统的实际模型参数,进而由关系方程求解实际的物理元器件参数,将其与标称值比较,从而得知系统是否有故障与故障的程度。但有时关系方程并不是双射的,这时,通过模型参数并不能求得物理参数,这是该方法最大的缺点。目前,非线性系统故障诊断技术的参数估计方法主要有强跟踪滤波方法。在实际应用中,经常将参数估计方法与其他的

电力设备故障诊断系统及应用

电力设备故障诊断系统及应用 电力设备运行状态对于整个电力系统的安全、可靠运行有着重要影响,而电力设备长时间运行过程中容易出现各种故障,造成严重的供电事故。通过运用科学合理的故障诊断方法,准确判断电力设备故障情况,为维护检修提供重要参考,并且加大对电力设备故障诊断系统的应用研究,降低电力设备故障发生率。文章分析了电力设备的状态监测技术,阐述了电力设备故障诊断系统应用,以供参考。 标签:电力设备;故障诊断系统;应用 近年来,我国电力系统快速发展,各种新型电力设备越来越多,这对于电力设备的故障诊断和维护提出了更高的要求。为了确保电力系统的稳定、经济、安全运行,应做好电力设备的故障诊断,通过运用简单的诊断技术和诊断方法,提高电力设备故障诊断准确率,加强电力设备状态监测,及时发现电力设备故障隐患,保障电力设备的安全性。 1 电力设备的状态监测技术 当前,电力设备故障监测和检修缺少合理、科学、明确的规范要求,这主要是由于各个地区存在较大的电气差别,根据电力设备运行状态,采用科学合理的故障状态检修方法,但是电力设备故障监测和检修主要依赖长期积累的实践经验,存在较大的主观性和随意性,但是实效性、规范性、客观性和科学性不足,而且电力设备故障监测和检修手段比较滞后。所以电力设备运行过程中,应做好状态监测,详细记录电力设备运行状态,做好评估和分类,为故障诊断和维修提供重要参考意见。电力设备状态监测包括以下内容:其一,为电力设备运行积累数据和资料,构建电力设备运行档案;其二,科学判断电力设备的运行状态,分析其处于异常或者正常状态,结合电力设备的故障征兆或者特征、运行状态等级、历史档案等,判断电力设备的故障程度和性质;其三,科学评估电力设备运行状态,合理分类,形成一定标准后,为电力设备状态检修提供重要参考依据,对电力设备故障或者异常状态进行有效估计,全面预测电力设备未来变化状态。对于电力设备的运行状态监测,要采取有效的方法和技术。 1.1 信号采集 结合当前我国电力系统建设发展现状,通过电力设备在线监测系统,持续检查和分析电力设备运行状态,利用各种运行状态量,分析电力设备运行状态,全面采集电力设备状态信息,包括磁力线密度、局部放电量、频率、电力、电压等信号,结合电力设备的各种状态量,采用合适的信号采集方法:其一,定时采样,按照电力系统运行状态,做好电力设备的定时采样;其二,一次性采样,每次采集一次合适长度的数据处理信号样本;其三,根据电力设备故障突变信号,实现自动化的信息采样;其四,结合电力设备故障诊断要求,采用峰值采样、转速跟踪采样等特殊方式。结合电力设备运行状态,采用合适的状态监测方法,对于断路器,采用振动监测法、跳闸轮廓法等,采集断路器运行状态信息;对于交流旋

电气设备状态监测与故障诊断word版本

电气设备状态监测与故障诊断 1 前言 1.1 状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 “监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。 广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。 1.2 状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所

设备故障诊断原理技术及应用

设备故障诊断原理技术及应用 机械设备故障诊断技术随着近十多年来国际上电子计算机技术、现代测量技术和信号处理技术的迅速发展而发展起来,是一门了解和掌握机械设备在使用过程中的状态,确定其整体或局部是否正常,早期发现故障及原因,并预报故障发展趋势的技术。 1.机械设备故障诊断的发展过程 设备故障诊断是指在一定工作环境下,根据机械设备运行过程中产生的各种信息判别机械设备是正常运行还是发生了异常现象,并判定产生故障的原因和部位,以及预测、预报设备状态的技术,故障诊断的实质就是状态的识别。 诊断过程主要有3 个步骤: ①检测设备状态的特征信号; ②从所检测的特征信号中提取征兆; ③故障的模式识别。其大致经历以下3 个阶段: ①基于故障事件原故障诊断阶段,主要缺点是事后检查,不能防止故障造成的损失; ②基于故障预防的故障诊断阶段; ③基于故障预测的故障诊断阶段,它是以信号采集与处理为中心,多层次、多角度地利用各种信息对机械设备的状态进行评估,针对不同的设备采取不同的措施。 2.开展故障诊断技术研究的意义 应用故障诊断技术对机械设备进行监测和诊断,可以及时发现机器的故障和预防设备恶性事故的发生,从而避免人员的伤亡、环境的污染和巨大的经济损失。应用

故障诊断技术可以找出生产设备中的事故隐患,从而对机械设备和工艺进行改造以 消除事故隐患。状态监测及故障诊断技术最重要的意义在于改革设备维修制度,现在多数工厂的维修制度是定期检修,造成很大的浪费。由于诊断技术能诊断和预报设备的故障,因此在设备正常运转没有故障时可以不停车,在发现故障前兆时能及时停车。按诊断出故障的性质和部位,可以有目的地进行检修,这就是预知维修—现代化维修 技术。把定期维修改变为预知维修,不但节约了大量的维修费用,而且,由于减少了许多不必要的维修时间,而大大增加了机器设备正常运转时间,大幅度地提高生产率,产生巨大的经济效益。因此,机械状态监测与故障诊断技术对发展国民经济有相当重要的作用。 3.机械故障诊断的研究现状 机械故障诊断作为一门新兴的综合性边缘学科,经过30 多年的发展,己初步形成了比较完整的科学体系。就其技术手段而言,已逐步形成以振动诊断、油样分析、温度监测和无损探伤为主,其他技术或方面为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最具生机与活力。目前,对振动信号采集来说, 计算机技术足以胜任各种场合的需要。在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅立叶变换、Wign2er 分布和小波变换等。就诊断方法而言,除了单一参数、 单一故障的技术诊断外,目前多变量、多故障的综合诊断已经兴起。 人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不

相关主题
文本预览
相关文档 最新文档