当前位置:文档之家› 状态监测与故障诊断的基本图谱

状态监测与故障诊断的基本图谱

状态监测与故障诊断的基本图谱
状态监测与故障诊断的基本图谱

状态监测与故障诊断的基本图谱

一、常规图谱

常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。

1. 机组总貌图机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。

2. 单值棒图较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。

3. 多值棒图多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5 倍频微量或无,可选频段很小,残余量不大。

其中:

(1)通频值?即总振动值,为各频率振动分量相互矢量迭加后的总和。

(2)—倍频?为转子实际运行转速n下的频率

f,又称工频、基频、转频, f = n /

60 [Hz] ;转子动不平衡及轴弯曲、轴承不良(偏心) 、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。

( 3)二倍频?二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等, 都会引起二倍频

振动分量增大,绝大多数是轴系不对中。

( 4) 0.5 倍频?0.5 倍工频,又称半频, 油膜涡动会引起该频率段增大,轴承工作不良也会引起该段

频率增大;旋转失速、摩擦也都有可能。

(5)可选频段?由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6) 倍

工频或(0.3~0 .8) 倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。

( 6)残余量?除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时, 转子有可能发生摩擦、高频气流脉动等。

4. 波形图波形图显示了振动位移与时间的关系,又称幅值时域图。波形图显示了振幅、周期(即频率) 、

相位,特别是波形的形状和状态。

图中:① 振幅为正峰与负峰之间的位移量,比较各周期对应的峰高,即可知振幅值是否稳定;②二个亮点之间为一个旋转周期,波形图的周期数可以选取,想了解波形重复性

出现小于一个

急剧变化,甚至

时周期数选多一点, 想了解波形细节时周期数选少一点; ③ 亮点为振动的初相位、 即零位, 比较各周期对应峰与零位的间隔,可以粗略了解振动相位(发生的时间、位置)是否稳定。

波形图既可以是通频波形图,

即显示通频总振值与时间(周期)的关系;也可以是选频波 形图,即一倍频波形、二倍频波形、 0.5倍频波形、…等。

波形图也可以作为示波器对振动波形的形态和变化进行实时监测。

由于从波形图上不能直接得频率及相位的精确数据,

现在很少用它来确定振动参数。但 是,其形象、具体的波形及其变化状态, 特别是波形在各周期下的重复性状况,仍非常有助 于对振动故障、尤其是干扰信号的分析、界定。例如:

(1) 正常运转状态下的 波形图,因工频为主,所以为 近似的正弦波,如上图;

(2) 动不平衡时,为近似的 等幅正弦波,见下图;

(3) 对中不良时,波峰翻倍,波形光滑、稳定、 重复性好,见下图;

(4) 摩擦时,波峰多,波形毛糙、不稳定,或有削波,见下图;

(5) 自激振荡时,波形杂乱、重复性差、波动性大;

(6) 严重油膜涡动 时,因接近半频, 振幅大小间隔,反而有点规律,见下图; 瞬态振动时,波形为若干周期的连续衰减;

冲击振动时,通频波形上出现小于一个周期的突起后又衰减的波形; 虚假信号干扰 时,波形瞬间急剧变化,甚至呈 直线状,见下图。

动不平衡时,为近似的等幅正弦波

不对中时,波峰翻倍,波形稳定、重复性好

对中不良时,通频波形图肯定要受到二倍频正弦波的影响,

二倍频在通频的一个周期内 变化二次,迭加后的波形自然是波峰翻倍。

在上图中,由于工频本身较低,只有 16卩m 从而使略微偏高的二倍频(18卩m)显得较

高;此外,由于还存在一些不太大的高次谐波,所以波形不够光滑;各频率成分的幅值较为

稳定,波形的重复性好。总体上看,机组存在对中不良,但程度并不严重。

主要为动不平衡、并存在摩擦的波形频谱图

上图为某催化烟机严重结垢时的波形频谱图。波形主要为较典型的正弦波,幅值很大, 为122.5卩m ;此外,还存在波峰多、波形毛糙以及单边(正峰)削波现象。根据烟机运行

特点,该烟机主要存在着因催化剂在转子轮盘上粘结而形成的动不平衡, 以及催化剂在气封 处

堆积而产生的较严重局部摩擦。

冲击振动时,在通频波形上 周期的突起后又衰减的波形。

虚假信号干扰时,波形瞬间 呈直线状。

智能状态监测与故障诊断教程文件

智能状态监测与故障诊断 测控一班 高青春 20091398

第一章 绪论 在现代化的机械设备的生产和发展中,滚动轴承占很大的地位,同时它的故障诊断与监测技术也随着不断地发展,国内外学者对轴承的故障诊断做了大量的研究工作,各种方法与技巧不断产生、发展和完善,应用领域不断扩大,诊断精度也不断提高。时至今日,故障诊断技术己成为一门独立的跨学科的综合信息处理技术,它以可靠性理论、信息论、控制论、系统论为理论基础,以现代测试仪器和计算机为技术手段,总的来说,轴承故障诊断的发展经历了以下几个阶段:第一段:利用通用的频谱分析仪诊断轴承故障。第二阶段:利用冲击脉冲技术诊断轴承故障。第三阶段:利用共振解调技术诊断轴承故障。第四阶段:以计算机为中心的故障诊断。 国外的滚动轴承的故障诊断与监测技术要先于中国,而且这项技术的发展趋势啊已经趋向智能化状态,因为它机械化迅速,技术和设备都比较先进些,目前的技术也比较完善。但是总体来看,这其中的距离在不断拉近,我们相信不久的将来,中国也会使机械完善大国,也会完善和提高技术的精密度和准确度。【2】【3】

1.1轴承监测与故障诊断的意义 滚动轴承是机械各类旋转机械中最常用的通用零件部件之一,也是旋转机械易损件之一,在机械生产中的作用不可取代,据统计旋转机械的故障有30%是由轴承故障引起的,它的好坏对机器的工作状态影响极大,轴承的缺陷会导致机器剧烈振动和产生噪音,甚至会引起设备的损坏,因此,对重要用途的轴承进行状态监测与故障诊断是非常必要的【3】而且,可以生产系统的安全稳定运行和提高产品质量的重要手段和关键技术,在连续生产系统中,如果某台设备因故障而不能继续工作,往往会影响全厂的生产系正常统运行,从而会造成巨大的经济损失,甚至可能导致机毁人亡的严重后果。未达到设计寿命而出现故障的轴承没有被及时的发现,直到定期维修时才被拆下来报废,使得机器在轴承出现故障后和报废前这段时间内工作精度降低,或者未到维修时间就出现严重故障,导致整部机器陷于瘫痪状态。因此,进行滚动轴承工作状态及故障的早期检测与故障诊断,对于设备安全平稳运行具有重要的实际意义。【14】 1.2滚动轴承故障的分类: 滚动轴承的故障多种多样,有生产过程中产生的也有使用过程中后天造成一系列故障,其失效形式有: 1.2.1疲劳剥落: 指滚动体或滚道表剥落或脱皮在表面上,形成不规则 凹坑等甚至会一定深度下形成能裂纹,继扩展到接触表面发生剥落坑,最后大面积剥落,造成失效。【12】

状态监测与故障诊断的基本图谱

状态监测与故障诊断的基本图谱 一、常规图谱 常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。 1. 机组总貌图 机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。 2. 单值棒图 较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。 3. 多值棒图 多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。 正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5倍频微量或无,可选频段很小,残余量不大。 其中: (1)通频值~即总振动值,为各频率振动分量相互矢量迭加后的总和。 (2)一倍频~为转子实际运行转速n下的频率f,又称工频、基频、转频, f = n/60 [Hz];转子动不平衡及轴弯曲、轴承不良(偏心)、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。 (3)二倍频~二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等,都会引起二倍频振动分量增大,绝大多数是轴系不对中。 (4)0.5倍频~0.5倍工频,又称半频,油膜涡动会引起该频率段增大,轴承工作不良也会引起该段频率增大;旋转失速、摩擦也都有可能。 (5)可选频段~由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6)倍工频或(0.3~0 .8)倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。 (6)残余量~除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时,转子有可能发生摩擦、高频气流脉动等。 4. 波形图 波形图显示了振动位移与时间的关系,又称幅值时域图。 波形图显示了振幅、周期(即频率)、相位,特别是波形的形状和状态。 图中:① 振幅为正峰与负峰之间的位移量,比较各周期对应的峰高,即可知振幅值是否稳定;② 二个亮点之间为一个旋转周期,波形图的周期数可以选取,想了解波形重复性

状态监测与故障诊断

状态监测与故障诊断与飞设密不可分 刚刚接触这门课的时候,我只知道这是民航飞行学院开设的课程,但还不知道这门课到底讲什么东西,对我们飞设来说到底有什么借鉴之处。经过几周的学习,我初步了解了这门课。简单说,状态监测与故障诊断和飞设之间有着密切的联系。他们是一种表里关系,是一种感知和应用的关系,两者互为支撑,共同促进了航空工业的进步发展。 状态监测与故障诊断促进了设计行业的发展。 状态监测与故障诊断为设计飞机提供了大量的、可靠的数据。 这提供了一种实验。通过对飞行器飞行状态、各个零部件的工作状态、各个系统的运行情况进行检测,我们可以获得大量的实时数据,进而进行详细的分析,即故障诊断。一方面我们可以检测出飞行器的故障来源,对飞行器进行维修。同时,我们可以统计飞行器各部分发生故障的频率和原因等,进而分析得出设计上的缺陷。这也可以作为设计飞机的依据,比如发动机轴承要用什么材质,设计寿命多长时间最为合适。再者,分析得到的数据可以对目前的设计理论进行验证,这对飞行器设计来说更为至关重要。 状态监测与故障诊断也可以给设计提出新的问题与要求。比如国内大气污染严重,飞机的空调系统收到了巨大的影响。这就要求飞机设计时采取某些措施来防止这些问题发生。 设计行业也促进了状态监测与故障诊断的发展。 飞行器设计理论可以指导状态监测与故障诊断的实际应用。 应用已经提出验证的的理论,我们可以初步分析出各部件的特性,这样便可以某些易损坏或是极度危险的零部件进行重点监控,这样不但更具可行性,而且还大大节约了人力物力,降低航空公司的运营成本。比如发动机是飞行器的核心部分之一,构建复杂,极易出现故障,所以要重点监测。 同时已有的理论基础可以为状态监测提供必要的手段,使其具有可行性。最简单的就是发动机的涡轮叶片,我们可以通过测量转子的惯性矩来分析判断叶片是否有松动,这样方便可行。 在理论方面,飞行器设计理论也在指导状态监测与故障诊断的发展,经过传感器采集的数据杂乱无章而且数目极为庞大。如果没有现有理论的指导,我们很难得到数据处理的方向方法,这样就得不到有价值的数据,更不要说进行故障诊断了。而应用现有理论我们可以有方向,有目的的对数据进行处理,这样我们就可以判断出是哪一方面有问题,到底有什么样的问题。 总之,状态监测与故障诊断给了我一个新的视角去看待问题,从另一个角度认识飞设这个专业。打个比方,过去我们专业所关注的是从已知到要求的问题,我们知道各种数据,所做的是对数据的分析与应用。而状态监测与故障诊断则是从要求到已知的问题,是一个反问题,我们要做的是我们如何才能得到我们所需要的数据,如何才能保证所得导数据的可靠性等。 除此之外,还有就是这门课的感受吧。 这门课也进行大半了,但是自己并没有达到自己想要的水平。总感觉有些遗憾。很多东西还是一知半解,还不能应用。我想一方面与专业基础有关系,很多基础性东西我们不懂不会,这就对理解内容造成了困难,先是听不懂,然后就不想听了,紧接着更听不懂了,直至彻底放弃掉。当然这也和上课态度以及这门课是拓展课有关吧。有的人说这门课对我没用,但我想说大

电气设备状态监测与故障诊断word版本

电气设备状态监测与故障诊断 1 前言 1.1 状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 “监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。 广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。 1.2 状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所

设备状态监测与故障诊断综述

设备状态监测与故障诊断综述 姓名: 摘要 从设备管理的角度,介绍了典型的设备状态监测与故障诊断的诊断理论、技术手段和具体方法。首先对设备状态监测与故障诊断的意义、发展,基础理论和现状进行了介绍,阐述了设备状态监测、故障诊断与设备管理的关系。进而对振动监测、温度检测、无损检测等基本监测手段的原理及诊断方法。 关键字:状态监测;故障诊断;振动;设备 1设备状态监测和故障诊断概述 1.1设备状态监测和故障诊断的意义和发展历史 1.1.1设备故障及故障诊断的意义 随着现代化工业的发展,设备能否安全可靠地以最佳状态运行,对于确保产品质量、提高企业生产能力、保障安全生产都具有十分重要的意义。 设备的故障就是指设备在规定时间内、规定条件下丧失规定功能的状况,通常这种故障是从某一零部件的失效引起的。设备的故障诊断则是发现并确定故障的部位和性质。寻找故障的起因,预报故障的趋势并提出相应的对策。 1.1.2 设备故障诊断技术发展历史 设备故障诊断技术的发展是与设备的维修方式紧密相连的。可以将故障诊断技术按测试手段分为六个阶段,即感官诊断、简易诊断、综合诊断、在线监测、精密诊断和远程监测。。从时间考察,故障诊断技术大致可以分为20世纪60年代以前、60年代到80年代和80年代以后几个阶段。 1.2现代设备故障诊断技术 在故障诊断学建立之前,传统的故障诊断方法主要是依靠经验的积累。将反映设备故障的特殊信号,从信息论角度出发对其进行分析,是现代设备故障诊断

技术的特点。可以分为统计诊断、逻辑诊断、模糊诊断。其中有几种方法做简单的介绍。贝叶斯法,此方法是基于概率统计的推理方法,以概率密度函数为基础,综合设备的故障信息来描述设备的运行状态,进行故障分析。此外还有最大似然法、时间序列、法灰色系统法和故障树分析法。故障树分析法模型是一个基于被诊断对象结构、功能特性的行为模型,是一种定性的因果模型。 1.3基于知识的故障诊断方法 基于知识的故障诊断方法,不需要待测对象精确的数学模型,而且具有智能特性。目前,这种故障诊断方法主要有:专家系统故障诊断方法;模糊故障诊断方法,神经网络故障诊断方法,信息融合故障诊断方法;基于Agent的故障诊断方法等。 1.3.1专家系统故障诊断方法 专家系统故障诊断方法,是指计算机在采集被诊断对象的信息后,综合运用各种专家经验,进行一系列的推理,以便快速地找到最终故障或最有可能的故障,再由用户来证实。此种方法国内外已有不少应用实例。、 1.3.2 模糊故障诊断方法 所谓“模糊”,是指一种边界不清楚,在质上没有确切的含义,在量上又没有明确的界限的概念,磨损状态的转变,正是典型的、带有明显中介过渡性的模糊现象。对于这种事物是不能用经典数学的二值逻辑方法的,即以[0,1]区间的逻辑代替传统的二值0,1逻辑,而且要用能综合事物内涵与外延性态的合理数学模型——隶属度函数,来定量处理模糊现象。典型的模糊故障诊断方法是向量的识别法。 1.3.3人工神经网络故障诊断方法 人工神经网络源于1943年,是模仿人的大脑神经元结构特性建立起来的一种非线性动力学网络系统,它由大量的简单的非线性处理单元高度并联、互联而成。由于故障诊断的核心技术是故障模式识别,而人工神经网络本身具有信息处理的特点,如并行性、自学习、自组织性、联想记忆功能等,所以能够解决传统模式识别方法不能解决的问题。

电气设备状态监测与故障诊断技术

电气设备状态监测与故障诊断技术 1 前言 1.1 状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 “监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。 广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。 1.2 状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所述,对于大型设备,突发性事故将造成巨大损失。 其后,发展成定期试验和维修,即预防性维修。现在,定期预防性试验和维修已在电力部门形成制度,对减少和防止事故的发生起到了很好的作用。但预防性试验是离线进行的,有很多不足之处: 1) 离线试验需停电进行,而不少重要电力设备轻易不能停止运行。 2) 停电后设备状态(如作用电压、温度等)和运行中不符,影响判断准确度。 3) 由于是周期性定期检查,而不是连续地随时监测,设备仍可能在试验间隔期间发生故障,即造成维修不足。 4) 由于是定期检查和维修,设备状态即使良好时,按计划仍需进行试验和维修,造成人力物力浪费,甚至可能因拆卸组装过多而造成损坏,即造成所谓维修过度。 因此,目前正在发展以状态监测(通常是在线监测)和故障诊断为基础的状态维修。其基本

机械设备状态监测与故障诊断技术讲座

机械设备状态监测与故障诊断技术讲座 一、机械设备状态监测与故障诊断技术发展的前景 1、是经济进一步发展的需要 现代化生产向着大型化、自动化、连续化、高精度、高效率等方向发展,生产率大幅度提高,产品的质量得到可靠的保证。但是,生产设备的突发性故障,造成的经济损失大。因而对于连续化、自动化生产设备必须随时对其运行状态实施监测,发现故障苗子或征兆,尽快采取措施,进行维修,以减少经济损失。 2、是安全和可持续发展的需要 科学技术的发展给人类带来发展和幸福,如核能的发现,提供全新的能源,化工产品的生产技术发现给人类带来很多新材料,给吃住行提供更多的诸如药物、衣料、装饰材料、各种特殊材料等,航空、航天、舰船的发展给人类带来交通方便是显而可见。但是,事物终有其反面。随着这些技术发展,也会给人类带来灾难。美国三里岛的核泄漏、俄罗斯梯尔偌贝利核电站的核泄漏,印度一农药厂的毒气泄漏,给当地和周围地区的人民带来很大的灾难。且可能延续数代人,这些灾难事故的发生更常见于航空、航海、各类交通运输企业。随工业的发展,环境污染也是新的问题,因此,设备设计尽可能减少环境污染,实施所谓的“绿色设计。然而,设备的老化,必然使得排放发生变化,因而增加气体、液体、振动、噪音的污染,故此,从可持续发展的战略高度看,实行状态监测与诊断技术势在必行。 3、是维修体制改革的需要 过去我国实施的维修体制是沿引原苏联维修体制,带有技术经济的色彩,称为计划预期维修,它是根据大量的统计规律而确定的。除出现故障实施事后维修外,根据统计规律和生产计划定时实施小修、中修、大修,这种计划预期维修体制随着机械设备设计、制造技术和材料可靠性提高,将会带来一系列问题。 1)存在剩余维修现象。而剩余维修所造成的费用是非常高的,而随机造成的经济损失也是很高的。 2)现代设备精度要求很高,在计划预期维修中往往解体检查,再重新装配,这样反复将会使机械设备的精度下降,影响产品的质量。 以上各种因素促使维修体制的改革,即变计划预期维修体制为状态维修,或称视情维修体制,即根据设备运行状态视情况决定修理。这就要求对机械运行状态实施周期性离线监测或在线连续监测。根据监测参数判断机械的运行状态,预报故障信息。这样就可避免过剩维修,避免重大事故的产生,因而出现设备状态监测和故障诊断技术。 4、机械设备故障诊断技术是多学科的综合与交叉。涉及机械状态的评价参数、涉及机件损 伤理论诸如磨损、疲劳累积损伤、断裂力学、腐蚀理论等,涉及参数监测,特别是非电量测技术、信号转换、传输处理及分析,涉及诊断理论与技术,如逻辑诊断技术、模糊诊断技术、神经网络技术等,也涉及预测技术等。因此,该课学习是让学生综合应用这些技术,实施学科交叉等。 二、机械设备状态监测与故障诊断的研究内容 (一)概述:从仿生学的角度来描述其含义最易让人们所理解,机械故障诊断就像人体看病

《设备状态监测与故障诊断》复习提纲

一、单项选择题 见教材。 二、填空题 1、通常设备的状态可分为正常状态,异常状态和故障状态几种情况。 2、“状态监测与故障诊断”的概念来源于仿生学,一台机器设备像人一样,有其生老病死的过程。 3、故障按与时间的关系和有无发展过程分为突发性故障和渐发性故障。 4、故障按发生的时期分为早期故障、使用期故障、后期故障,其故障率变化关系可以用“浴盆”曲线来表示。 5、故障模式是故障现象的一种表征,相当于医学上的疾病症状。 6、设备故障诊断按诊断的目的和要求可分为在线诊断和离线诊断。 7、设备故障诊断按诊断方法的完善程度可分为简易诊断和精密诊断。 8、设备状态维修的最主要作用是既防止失修,又防止过修。 9、状态监测与故障诊断应紧紧围绕中心问题四个“W”,即“Where”──故障部位;“What”──什么故障;“Why”──故障原因;“When”──什么时候发生。 10、设备故障诊断的具体实施过程可以归纳为以下四个方面:信息采集、信号处理、状态识别、诊断决策。 11、设备故障信息的获取方法中量化管理包括参数测定法、磨损残渣测定法和设备性能指标的测定。 12、判断标准包括绝对判断标准、相对判断标准和类比判断标准。 13、评定机器振动状态的物理量可以是振动加速度、振动速度及振动位移。在航空工业上习惯用振动加速度来评定。 14、周期信号包括简谐信号和复杂周期信号。从某种意义上讲,设备振动诊断的过程,就是从信号中提取周期成分的过程。 15、同一简谐振动的位移、速度、加速度三者之间的相位关系:加速度领先速度90o,速度领先位移90o。 16、傅里叶变换是由时域变换成频域。 17、按照傅里叶变换的原理,任何一个平稳信号,都可以分解成若干个谐波分量之和。

设备状态监测与故障诊断

1.设备监测目的意义 保障设备安全,防止突发故障。 保障设备精度,提高产品质量和经济效益。 推进设计理念和维修制度的革新。 避免设备事故、人员伤亡、环境污染。维护社会稳定。 2.故障分类 按故障对机械工作能力的影响分类:完全性故障局部性故障 按故障发生速度及演变过程分类:突发性故障渐进性故障 按其发生的原因分类:磨损性故障错用性故障先天性故障 按造成的后果分类:危害性故障安全性故障 3.故障规律 浴盆曲线:磨合期,正常使用期,耗损期 4.故障发生的原因 宏观上分析1.设计错误2 原材料缺陷3 制造过程的缺陷4 运转缺陷 微观上分析:疲劳,磨损,断裂,腐蚀 5.零件磨损的一般规律 磨合阶段,正常磨损阶段,急剧磨损阶段 6.零件变形失效 塑性变形失效,弹性变形失效,蠕变变形失效,翘曲变形失效 7.断裂失效 塑性断裂,脆性断裂 8.状态监测与故障诊断的技术方法 1.振动、噪声诊断技术 2. 油液分析技术 3. 温度检测技术 4. 无损检测技术9.振动的危害 降低机器及仪表的精度,引起机械设备及土木结构的破坏 10.机械振动的分类 按振动系统本身的特点分类: 离散系统连续系统 按振动系统所受的激励类型分类: 自由振动强迫振动自激振动参数振动按系统的响应(振动规律)分类: 确定性振动随机振动 按描述系统运动的微分方程分类:线性振动非线性振动 11.机械振动要研究的内容和步骤 1. 建立物理力学模型 2.建立数学模型 3.方程的求解 4.结果的阐述

12. 随机振动 非确定而又具有统计规律,它们的规律不能用时间的确定性函数来描述,但又具有一定的统计规律性。平稳随机过程与各态历经过程 13. 自相关函数 ∑=∞ →+= +n k k k T x t x t x n t t R 1 1 1 11)()(1 ),(lim ττ 同一点不同的两个时间函数乘积 称为随机过程 X(t)于时刻 t 1与 t 1+ τ的自相关函数。它是时差 的函数,在一般情况下,它也依赖于采样时刻 t 1,反映这两个时刻的随机变量的X k (t 1)与X (t1+τ)统计联系。 非平稳随机过:统计特性依赖于采样时刻的过程 : 平稳随机过程:统计特性不依赖于采样时刻的过程 正常运行状态:齿轮箱的振动(噪声)是大量的、无序的、 大小接近相等的随机冲击结果,具有较宽而均匀的频谱。 异常运行状态:随机振动(噪声)中将出现有规则、周期性的 脉冲,其大小比随机冲击大的多 14. 各态历经过程 对于各态历经过程,可以分别计算:均值、均方值、峭度方差 均值dt t x T T T x )(1 lim ?∞ →= μ 描述振动的稳定分量 均方值dt t x T T T x )(1 22 lim ?∞ →= ψ 描述振动的的能量 歪度dt t x T T T x )(1 3lim ?∞ →= α 峭度dt t x T T T x )(1 4lim ?∞ →= β 反映信号中大幅值成分的影响 方差2 220 2 ])([1 lim x x x T T x dt t x T μψμσ-=-=?∞ → 描述振动的波动 分量 15. 互相关函数 ?+= ∞ →T T y x dt t y t x T R 0 )()(1 )(lim ττ不同两个点不同时间函数乘积

状态监测与故障诊断报告

《信息检索与网络资源利用》检索报告 课题名称:页岩气开发前景研究 专业班级:安全11-2 学号:2011011084 姓名:呼和 完成日期:2013.4.20

页岩气开发前景研究 一.检索报告概况 1.课题名称:页岩气开发前景研究 2.涉及的学科及中图分类号: 学科:经济 > 工业经济 > 中国工业经济 > 工业部门经济 中图分类号:F426 3.检索时间范围: 1982-今,地域范围:国内外。 文献类型:期刊论文、学位论文、图书。 4.反映课题内容的检索词及扩展词: 中文检索词:主要检索词:页岩气、开发、前景,辅助检索词:研究,辅助检索词检索时可不考虑。 (1)页岩气:(非常规天然气、泥岩裂缝油气藏、裂缝性油气藏) (2)开发:(开采) (3)前景 英文检索词: (1)shale gas(unconventional gas(unconventional natural gas)、fractured shale reservoir(fractured mudstone reservioirs)、fractured oil and gas reservior(fractured hyrocarbon reservirs)) (2)prospect(foreground) (3)development 5.简要的课题内容分析 通过文献调研,本课题将从两个方面进行阐述。 (1)页岩气当前的应用现状 (2)页岩气的前景展望 二检索过程 1.选择检索工具或检索系统(至少四种不同的检索工具,其中有一外文数据库) 中文数据库:CNKI中国知网、中国石油文献全文库、超星读秀电子图书 外文数据库:Sciverse ScienceDirect 2. 实施检索及筛选检索结果

机械设备状态检测与故障诊断作业习题答案

1?简述设备故障诊断的目的和任务答:目的:①能及时的、正确的对各种异常状态或故障状态作出诊断,预防或消除故障,对设备的运行进行必要的指导,提高设备的可靠性、安全性和有效性,把故障降低到最低水平②保证设备发挥最大的设计压力③通过检测监视、故障分析、性能评估等,为设备结构改造、优化设计、合理制造及生产过程提供数据和信息任务:①状态监测②故障诊断③指导设备的管理维修2?简述设备故障诊断技术的定义、内容、类型和方法答:定义:在设备运行中或基本不拆卸设备的情况下,掌握设备的运行状况,判定产生故障的部位和原因,以及预测预报设备状态的技术内容:设备故障诊断的内容包括状态监测、分析诊断和故障预测三方面,实施过程为信号采集、信号处理、状态识别、诊断决策四方面类型:①按诊断对象分类:旋转机械诊断技术、往复机械诊断技术、工程结构诊断技术、运载器和装置诊断技术、通信系统诊断技术、工艺流程诊断技术②按诊断目的分类:功能诊断与运行诊断、定期诊断与连续诊断、直接诊断与间接诊断、常规工况与特殊工况诊断、在线诊断和离线诊断③按诊断方法完善程度分类:简易诊断、精密诊断技术 方法:①传统方法:利用各种物理和化学的原理和手段,通过伴随故障出现的各种物理和化学现象直接检测故障;利用故障所对应的征兆来诊断②智能诊断:在传统诊断方法的基础上,将人工智能的理论的方法 用于故障诊断③模式识别、概率统计、模糊数学、可靠性分析和 故障树分析、神经网络、小波变换、分析几何等数学分支在故障诊断中应用 3.机械设备故障的信息获取和检测方法有哪些? 答:获取方法:直接观测法、参数测定法、磨损残渣测定法、设备性能指标的测定 检测方法:①振动和噪声的故障检测:振动法、特征分析法、模态识别与参数识别法、冲击能量与冲击脉冲测定法、声学法②材料裂纹及缺陷损伤的故障检测:超声波探伤法、射线探伤法、渗透探伤法、磁粉探伤法、涡流探伤法、激光全息检测法、微波检测技术、声发射技术③设备零部件材料的磨损及腐蚀故障检测:光纤内窥技术、油液分

设备状态监测与故障诊断作业

设备状态监测与故障诊断作业 一、论述齿轮啮合频率产生的机理及齿轮故障诊断方法 二、滚动轴承故障的特征频率推导计算 三、针对某个机组对象建立其状态监测与故障诊断系统,描述测点布置、系统硬件结构组成(框图)及各部分功能 (如:XXX(如汽轮机)状态在线监测与故障诊断系统) (如:旋转机械状态监测与智能故障诊断) (如:面向Internet的远程工况监视与故障诊断) 内容包括: 监测对象介绍, 测点布置 监测诊断系统构成/总体结构、 功能模块/如在线分析与智能诊断模块)

目录 一、论述齿轮啮合频率产生的机理及齿轮故障诊断方法. 错误!未定义书签。 齿轮啮合频率的产生机理......................... 错误!未定义书签。 概述....................................... 错误!未定义书签。 齿轮的振动机理............................. 错误!未定义书签。 齿轮故障诊断的方法............................. 错误!未定义书签。 齿轮的故障类型.............................. 错误!未定义书签。 齿轮故障的特征信息......................... 错误!未定义书签。 齿轮故障诊断的常用方法..................... 错误!未定义书签。 实例分析....................................... 错误!未定义书签。 小结........................................... 错误!未定义书签。 二、滚动轴承故障的特征频率推导计算 ......... 错误!未定义书签。 滚动轴承故障特征频率的经验公式................. 错误!未定义书签。 滚动轴承故障的特征频率推导计算................. 错误!未定义书签。 三、高炉布料器齿轮箱在线状态监测与故障诊断系统 . 错误!未定义书签。 高炉炉顶布料齿轮箱的构成及工作原理............. 错误!未定义书签。 系统的监测参数及测点布置....................... 错误!未定义书签。 系统总体结构及功能模块划分..................... 错误!未定义书签。 信号采集及预处理模块....................... 错误!未定义书签。 实时状态监测与识别模块..................... 错误!未定义书签。 在线分析诊断模块........................... 错误!未定义书签。 总结........................................... 错误!未定义书签。

设备状态监测与故障诊断技术的应用

设备状态监测与故障诊断技术的应用摘要:高速线材厂轧机具有运转速度高、载荷变化频繁、所轧制轧件温度低的特点,设备的主要故障是主传动设备的轴承、齿轮失效故障,占了总设备故障时间的50%以上。传动设备的故障诊断,要通过在线监测,在获取机械大量信息的基础上,基于机器的故障机理,从中提取故障特征,进行周密的分析,然后进行诊断。通过设备状态监测与故障诊断技术的推广应用,达到预防为主的目的,有效的避免过维修和欠维修,既减少了设备故障又降低了维修费用,大大提高了作业率,为生产的顺利进行提供了可靠的保障。 关键词:高速线材厂;设备状态监测;故障诊断技术;齿轮故障;轴承故障 1 前言 设备状态监测与故障诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。通俗地讲,它是一种给设备“看病”的技术。本文联系高线厂预精轧机在实际工况条件下的状态监测,以及根据采集到的振动故障信号,对高线厂预精轧机进行故障诊断,并简单介绍一下设备状态监测与故障诊断技术在高速线材轧机上的应用。 2 设备简介 韶钢高速线材厂设计年生产50万t,轧制规格φ5.0~φ20mm,成品设计速度140m/s,保证速度115m/s。关键设备从意大利DANIELI进口,控制系统由TMEIC设计。全线由30架轧机组成,粗、中、预精轧采用平立交替布置,BGV、TMB采用DANIELI45度角顶交布置。是目前世界最先进的高速线材生产线之一。 预精轧机组由4架φ285轧机组成,平立交替布置。机架间设有立活套。4架φ285轧机为悬臂辊环式结构,具有如下特点: (1)轧机为轧辊箱插入式机构。机架由轧辊箱和齿轮箱(锥箱)组成; (2)轧辊箱箱体带有法兰面板,用来与齿轮箱连接。箱体内装有偏心套机构用来调整辊缝。偏心套内装有油膜轴承与轧辊轴,在悬臂的轧辊轴端用锥套固定辊环。水平机架与立式机架共用一种轧辊箱; (3)水平机架的齿轮箱内由输入轴和同步齿轮轴组成; (4)立式机架的齿轮箱内的传动系统比水平机架多了一对螺旋伞齿轮,用来改变传、动方向和调整速比,其余部分与水平机架相同; (5)辊缝的调节是旋转一根带左、右丝扣和螺母的丝杆,使两组偏心套相对旋转,两轧辊轴的间距随偏心套的旋转相对轧线对称移动而改变辊缝,并保持原有轧线及导卫的位置不变; (6)辊环通过锥套连接在悬臂的轧辊轴上,用专用的换辊工具更换辊环; (7)全部齿轮均为硬齿面磨削齿轮,齿面修形,辊箱齿轮精度5 级,螺伞齿轮为格里森齿型,精度5级。齿轮、齿轮轴、螺伞齿轮均为渗碳钢(20CrNi2Mo)。 (8)轧机滚动轴承及油膜轴承全部采用进口轴承(摩根专用轴承)。 预精轧机立式机架锥箱结构如图1所示,轴Ⅰ、轴Ⅱ是通过1、2两螺旋伞齿轮传动,轴Ⅱ、轴Ⅲ是通过3、4两斜齿轮传动。三条轴分别由不同型号的滚动轴承支撑(如图1中①~

(完整版)设备状态监测与故障诊断技术

新技术专题报告 学院:电子与信息工程学院 班级:电气11 姓名:张健康 学号:120113303018

设备状态监测与故障诊断技术 1 前言 设备状态监测与故障诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。通俗地讲,它是一种给设备“看病”的技术。本文联系高线厂预精轧机在实际工况条件下的状态监测,以及根据采集到的振动故障信号,对高线厂预精轧机进行故障诊断,并简单介绍一下设备状态监测与故障诊断技术在高速线材轧机上的应用。 2 状态监测 表1是预轧机16#锥箱轴承参数。图2、3是2006年5月30日和6月13日测得的频谱分析图是16#立式轧机分别在转速为610rpm和666rpm的转速下测得的,两图有明显的差异。虽然两副频谱中显示的振动幅值都 表1 预精轧机16#锥箱轴承参数 轴承序号滚动体数Z 节径D(″)滚动体直径d (″) 接触角α 1 18 6.4961 0.8661 0 2 20 6.5679 0.8125 29 3 18 6.4961 0.88238 0 4 12 3.7402 0.8268 0 5 11 3.4449 0.8437 40 6 10 2.2638 0.5 30

图1 预精轧立式机架锥箱结构 没有进入ISO3495旋转机械的振动烈度标准危险区域,但两次测得的结果一次基波振动副值逐渐增加,且两图中二、三、四、五次谐波都有明显的突起。证明锥箱内运转情况逐渐劣化,存在设备隐患。由于传感器安装位置上的差异,机械振动烈度未超出ISO3495标准并不能说明设备是正常的。因此状态监测需要每天进行记录,并要求将监测到的结果与历史记录比对,从中找出变化趋势,才能判断出真实的设备状态。 0 500 1000 1500 2000 Hz Lin 图2 劣化前期频谱分析 Mag RMS mm/sec Lin 4 3 2 1 ⑥ ⑤ ④ ③ ② ① ⅢⅡ Ⅰ

相关主题
文本预览
相关文档 最新文档