当前位置:文档之家› 电子秤不确定度评定

电子秤不确定度评定

电子秤不确定度评定
电子秤不确定度评定

ACS-JS 型电子计数秤测量结果不确定度评定

一、概述

1、测量依据:JJG539—2016《数字指示秤检定规程》。

2、测量标准:

3、被测对象:电子计数秤,型号:ACS-JS ,最大秤量Max=3kg ,最小秤量Min=20g,检定分度值e=1g 。

4、测量方法:

将砝码加载到电子计数秤承载器上,采用“闪变点”法或“内分法”确定数字指示秤化整前的示值误差。按照JJG 539-2016《数字指示秤检定规程》的要求进行重复性、偏载、称量和鉴别力等试验,并判断误差是否符合要求,同时,对50%最大称量点测量10次。 二、数学模型

△E =P -m 式中:△E —— 电子秤示值误差; P —— 电子秤示值; m —— 标准砝码质量值。 三、灵敏系数 11=???=

P E C 12-=???=m

E

C

四、输入量的标准不确定度评定u

1、电子计数秤测量重复性引起的标准不确定度分项1u

在同一条件下,用标准砝码对该电子秤50%最大秤量点进行10次连续测量,得到数据(单位:g )

n

P

P n

i i ∑==

1

=1499.96g

单次实验标准差 1

)(2

1

--∑==n p p S i n

i =0.05g

1u =

n

S

=0.02g 2、标准砝码引起的标准不确定度分项2u

由上级检定证书可知,1kg 砝码质量允差为±0.016g ,0.5kg 砝码质量允差为±0.0025g ,取半宽016.01=αg ,0025.02=αg ,则有: 2

22)3

0025.0()3016.0(

+=u =0.01g 3、电源电压和温度变化引起的标准不确定度分项3u

电源电压和温度变化引起的不确定度为0.2e ,即0.2g ,服从均匀分布,包含因子3=k 。 3u =

12.03

2

.0=g

4、合成标准不确定度的计算

由于各输入量彼此独立不相关,因此: 2322212u u u u c ++= =

c u 22212.001.002.0++

=0.12g 五、扩展不确定度的评定U

取包含因子k =2,则扩展不确定度: c u k U ?==0.12×2=0.24g

测量不确定度的报告与表示

ACS-JS 电子计数秤测量结果的扩展不确定度为:

U

=0.24g (k =2)

电子台秤校准结果测量不确定度的评定

电子台秤校准结果测量不确定度的评定 本文论述了电子台秤的概念、电子台秤的误差因素以及电子台秤校准结果测量不确定度的评定方法,并且详细叙述了电子台秤误差的改进措施,适用于从事电子台秤的计量检验人员对电子台秤校准结果测量不确定度的分析,希望以此能够提出建设性意见。 标签:电子台秤;校准结果;测量;不确定度评定 一、电子台秤的概念 电子台秤是利用电子应变元件受力形变原理输出微小的模拟电信号,通过信号电缆传送给称重显示仪表,进行称重操作和显示称量结果的称重器具。 二、电子台秤的误差因素 1、零点漂移误差。 经常会在称量重力不同的多种物体,从而使电子台秤的称重传感器受到多次往复负载的影响,在进行计量检定的过程中初始状态就出现了一系列的变化,仪表的指针已经不能够准确的归到零位,使电子台秤出现零点漂移现象,从而影响了对物体实际重量的准确测量。 2、四角偏载误差。 四角偏载误差的引起主要是由于电子台称传感器的灵敏度出现偏差。因为电子台秤的材料不尽相同,造成传感器的激励电压没有理想的那么稳定,电压不稳,导致传感器上面的信号输出是不同的,因此就产生了四角偏载误差。 3、重复测量误差。 所谓重复测量误差,就是同一物品在同意环境下连续多次进行称重实验,由于电子台称等计量器具的传感器产生侧向力和传感器条件缺失两个因素导致。首先,由于测量现场的限制因素,非常容易造成负载接收器发生偏移,导致托盘对传感器的力并不垂直,就会产生测力,就会导致测量物品的误差;另一个原因,由于传感器工作需要同时满足传力构造特性、传感参数标准的一致性等工作条件,而且有一个不满足,就会发生误差。 4、计量环境误差。 物体的本质会随着的外界环境的变化而发生轻微的变化,比如环境的温度、湿度等原因,这些因素都有可能造成电子台秤在测量称重的的时候发生客观的偏差,当然误差不会太大。作为电子台秤的使用者,我们要在日常生活中多去总结

测量不确定度的评定方法.

测量不确定度的评定方法 鉴于测量不确定度在检测,校准和合格评定中的重要性和影响,考虑到试验机行业应用测量不确定度时间不长,现就有关测量不确定度概念、测量不确定度的评定和表示方法,谈谈学习体会。奉献给同行业人员。由于本人学识浅薄,力不从心,有不妥或错误处,期望批评指正。 (一)测量不确定度的概念 《测量不确定度表示指南》(GUM),即国际指南,给出的测量不确定度的定义是:与测量结果相关联的一个参数,用以表征合理地赋予被测量之值的分散性。 其中,测量结果实际上指的是被测量的最佳估计值。被测量之值,则是指被测量的真值,是为回避真值而采取的。我国计量技术规范JJF1059—1999《测量不确定度评定与表示》中,亦推荐这一用法(见该规范2.3注4)。 须知,真值对测量是一个理想的概念,如何去估计它的分散性?实际上,国际指南(GUM)所评定的并非被测量真值的分散性,也不是其约定真值的分散性,而是被测量最佳估计值的分散性。 关于测量不确定度的定义,过去曾用过: ① 由测量结果给出的被测量估计的可能误差的度量; ② 表征被测量的真值所处范围的评定。 第①种提法,概念清楚,只是其中有“误差”一词,后来才改为第②种提法。现行定义与第②种提法一致,只是用被测量之值取代了真值,评定方法相同、表达式也一样,并不矛盾。 至于参数,可以是标准差或其倍数,也可以是给定置信概率的置信区间的半宽度。用标准差表示测量不确定度称为测量标准不确定度。在实际应用中如不加以说明,一般皆称测量标准不确定度为测量不确定度,甚至简称不确定度。 用标准差值表示的测量不确定度,一般包括若干分量。其中,一些分量系用测量列结果的统计分布评定,并用标准差表示:而另外一些分量则是基于经验或其他信息而判定的(主观的或先验的)概率分布评定,也以标准差值表示。可见,后者有主观鉴别的成分,这也是在定义中使用“合理地赋予”的主要原因。 为了和传统的测量误差相区别,测量不确定度用u(不确定度英文uncertainty的字头)来表示,而不用s。 应当指出,用来表示测量不确定度的标准差,除随机效应的影响外,还包括已识别的系统效应不完善的影响,如标准值不准、修正量不完善等。 显然,测量结果中的不确定度,并未包括未识别的系统效应的影响。尽管未识别的系统效应会使测得值产生某种系统偏差。 所以,可以概括地说,测量不确定度是由于随机效应和已识别得系统效应不完善的影响,而对被测量的测得值不能确定(或可疑)的程度。(注:这里的测得值,系指对已识别的系统效应修正后的最佳估计值)。 (二)不确定度的来源 在国际指南(GUM)中,将测量不确定度的来源归纳为10个方面: ① 对被测量的定义不完善; ② 实现被测量的定义的方法不理想; ③ 抽样的代表性不够,即被测量的样本不能代表所定义的被测量; ④ 对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善; ⑤ 对模拟仪器的读数存在人为偏移; ⑥ 测量仪器的分辨力或鉴别力不够; ⑦ 赋予计量标准的值或标准物质的值不准; ⑧ 引用于数据计算的常量和其他参量不准; ⑨ 测量方法和测量程序的近似性和假定性; ⑩ 在表面上看来完全相同的条件下,被测量重复观测值的变化。 上述的来源,基本上概括了实践中所能遇到的情况。其中,第①项如再加上理论认识不足,即对被测量的理论认识不足或定义不完善似更充分些;第⑩项实际上是未预料因素的影响,或简称之为“其他”。 可见,测量不确定度一般来源于随机性和模糊性。前者归因于条件不充分,而后者则归因于事物本

电子天平不确定度(例)(完成)

电子天平示值误差测量结果CMC 不确定度评定 1.概述 1.1测量依据:JJG1036-2008电子天平检定规程。 1.2环境条件:环境温度(15~25)℃,1 h 内温差不超过1℃,相对湿度35%~80% 电源等其它因素对电子天平的影响可以忽略不计。 1.3测量标准:相应准确度等级的标准砝码 1.4测量对象:电子天平。 1.5测量过程:在规定的环境条件下,按JJG1036-2008电子天平检定规程,将采用相应准确度等级质量的标准砝码,放在电子天平上,通过电子天平的显示值与砝码的实际值之间的差值,可得到在相应秤量点上的示值误差。 2.数学模型 根据示值误差定义,电子天平的示值误差m ?为 s m m m -=? 式中:m ?——电子天平示值误差;

m ——电子天平显示值; s m ——标准砝码的标称值。 3.灵敏系数 ()()()s c m u C m u C m u 22 2 2212?+?=? 灵敏系数 : 1C 1=???= m m ; 1C 2-=???=s m m ; 4.各输入量的标准不确定评定 以下分析过程以最大秤量200 g ○Ⅰ级电子天平(e =1mg)为例测量点选择10 mg 、10 g 、20 g 、50 g 、200 g 这五点展开。 4.1输入量m 的标准不确定度a u 来源主要是电子天平测量的重复性,用10次重复测量得到的一组数据,用贝塞尔公式采用A 类评定方法评定。 1)测量点10 mg : 单次实验标准差: 00.01 2 1 =-??? ??-=∑=- n m m s n k i i mg 2)测量点10 g :

单次实验标准差: 00.01 2 1=-??? ? ?-=∑=- n m m s n k i i mg 3)测量点20 g : 单次实验标准差: 03.01 2 1 =-??? ??-=∑=- n m m s n k i i mg 4)测量点50 g : 单次实验标准差: 04.01 2 1=-? ?? ? ?-=∑=- n m m s n k i i mg 5 )测量点200 g :

电子天平不确定度(例)(完成)

吉林省国绘仪器测试有限公司 文件编号:GHT/ZYB-0036 作业指导书 页 码: 第 1页 共 7页 第1版 第1次 修订 标 题 电子天平示值误差 测量结果CMC 不确定度评定 批 准 人 实施日期 2016年 11月06日 电子天平示值误差测量结果CMC 不确定度评定 1.概述 1.1测量依据:JJG1036-2008电子天平检定规程。 1.2环境条件:环境温度(15~25)℃,1 h 内温差不超过1℃,相对湿度35%~80% 电源等其它因素对电子天平的影响可以忽略不计。 1.3测量标准:相应准确度等级的标准砝码 1.4测量对象:电子天平。 1.5测量过程:在规定的环境条件下,按JJG1036-2008电子天平检定规程,将采用相应准确度等级质量的标准砝码,放在电子天平上,通过电子天平的显示值与砝码的实际值之间的差值,可得到在相应秤量点上的示值误差。 2.数学模型 根据示值误差定义,电子天平的示值误差m ?为 s m m m -=? 式中:m ?——电子天平示值误差; m ——电子天平显示值; s m ——标准砝码的标称值。 3.灵敏系数 ()()()s c m u C m u C m u 22 2 2212?+?=? 灵敏系数 : 1C 1=???= m m ; 1C 2-=???=s m m ; 4.各输入量的标准不确定评定 以下分析过程以最大秤量200 g ○Ⅰ级电子天平(e =1mg)为例测量点选择10 mg 、10 g 、20 g 、

50 g 、200 g 这五点展开。 4.1输入量m 的标准不确定度a u 来源主要是电子天平测量的重复性,用10次重复测量得到的一组数据,用贝塞尔公式采用A 类评定方法评定。 1)测量点10 mg : 单次实验标准差: 00.01 2 1=-??? ? ?-=∑=- n m m s n k i i mg 2)测量点10 g : 单次实验标准差: 00.01 2 1=-??? ? ?-=∑=- n m m s n k i i mg 3)测量点20 g : 单次实验标准差: 03.01 2 1=-? ?? ? ?-=∑=- n m m s n k i i mg 4)测量点50 g : 单次实验标准差:

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

综合不确定度分析

电子天平测量结果不确定度评定报告 1 概述 1.1 测量依据:JJG 1036-2008《电子天平检定规程》(电子天平部分); 1.2 测量标准:E2级标准砝码装置,出厂编号968,根据JJG 99-2006《砝码检定规程》中给出100g砝码的扩展不确定度不大于0.053mg,包含因子k=2; 1.3 环境条件:温度23℃,相对湿度31 %; 1.4 测量对象:电子天平100g/0.1mg,型号AB104-S,出厂编号1128422995; 1.5 测量过程:检定方法属直接测量法,标准砝码与电子天平示值之差为电子天平示值误差。 2 不确定度来源分析 2.1 输入量m的标准不确定度u(m),包括: 2.1.1 被检天平测量重复性的标准不确定度u1(m); 2.1.2 电子天平的分辨力引入的标准不确定度u2(m); 2.1.3 由温度不稳定及振动等引入的标准不确定度u3(m); 2.2 由标准砝码本身的误差引入的标准不确定度u(m B)。 3 数学模型 Δm = m —m B 式中: Δm——电子天平示值误差; m——电子天平示值; m B——标准砝码值。 但实际上考虑电子天平的示值与上述不确定度来源中的被检天平的测量重复性、电子天平的分辨力及环境温度的不稳定和振动等影响因素有关,故在测量不确定度评定中必须考虑这三个附加因素的影响,考虑到上述不确定度来源,于是数学模型成为: Δm = m ×f重复性×f分辨力×f温度、振动—m B

4 输入量的标准不确定度评定 4.1 输入量m的标准不确定度分量u(m)的评定 4.1.1 重复性测量 被检天平测量重复性的标准不确定度u1(m),可以通过连续测量得到测量列,采用A类方法评定: 以100g为天平最大称量点,进行n=10次重复测量,测得结果如表1所示。 表1 测量数列 次数12345 实测值(g)100.0004100.0004100.0003100.0004100.0003次数678910 实测值(g)100.0004100.0002100.0003100.0004100.0004 其平均值为:100.0004 g 可用贝塞尔公式计算得:u1(m) = s(x i)= 0. 071mg 自由度:υ(m1) =(n-1)= 9 4.1.2 分辨力 电子天平的分辨力引入的不确定度u2(m) ,我们采用标准不确定度的B类评定方法,我们所采用的天平的分辨力为0.1mg,根据经验,数字式测量仪器的分辨力导致的不确定度一般可以近似地估计为矩形分布(均匀分布),矩形分布k取3, 所以有u2(m)=a/k= 0.05÷3= 0.03 mg 自由度为υ(m 2) = ∞ 4.1.3温度不稳定及振动等引起示值不确定度u3 (m),由于实验室在采用砝码校准的过程中完全采用计量标准规定的方法要求,环境温度的控制、周围振动等影响在此予以忽略。 电子天平示值合成标准不确定度u c(m) 由于没有任何输入量具有值得考虑的相关性,因此 u2 (m) = u12(m)+u22(m) +u32(m) u (m)= √u12 (m)+u22 (m) +u32 (m) = 0.078 mg 4.2 标准砝码误差引入的不确定度量分量u(m B)的评定 该不确定度分量主要由检定装置的误差引起,采用B类评定方法: 由JJG 99-2006《砝码检定规程》可知100g砝码的扩展不确定度不大于 0.053mg,包含因子k = 2 则:标准不确定度u(m B) = 0.053mg ÷2 = 0.027mg/3=0.016mg 5 合成标准不确定度的评定 5.1数学模型Δm = m×f重复性×f分辨力×f温度、振动—m B 灵敏系数为:

电子秤不确定度评定

15Kg电子秤示值误差测量结果的不确定度评定 1概述 1.1测量依据:JJG555-1996《非自动秤通用检定规程》。 1.2 环境条件:温度(-10~40)℃ 1.3 测量标准器:M1等级砝码,根据JJG99-2006《砝码检定规程》中给出100mg~10kg砝码质量最大允许误差MPE:±(0.5mg~0.5g)。 1.4被测对象: 电子秤 e为5g,0~500e为±0.5e;>500~2000e为±1.0e;> 2000e~max为±1.5e。 1.5测量过程:用砝码直接加载、卸载方式,分段测量示值与标准砝码之差即为示值误差。 一般情况下,检定电子秤大致均匀分布的10个称量点。 1.6评定结果的使用: 在符合上述条件下,对15kg规格电子秤的15kg称量点示值误差的测量,一般可使用本不确定度评定结果,对其他示值和其他电子秤的示值误差测量结果的不确定度评定,可采用本评定方法。 2 数学模型: △E=P-m 式中,△E--电子秤的示值误差 P--电子秤示值 m--标准砝码质量值 3 输入量的标准不确定度评定 本评定方法以最大称量15kg点为例 3.1输入量P的标准不确定度u(P)的来源主要是电子秤测量重复性、四角偏载误差以及示 值随电源变化等。 3.1.1电子秤测量重复性引入的不确定度分量u(P1)的评定(用A类方法评定) 用标准砝码在重复性条件下对电子秤进行连续10次测量,得到测量数据15.0000; 15.0000;4.9995;14.9995;14.990;15.0000;14.9995;14.9990;15.0000;14.9995(kg)

单次测量的标准偏差: 3.1.2电子秤的偏载误差引入的不确定度分量u (P 2)的评定(用B 类方法评定) 电子秤在进行偏载试验时,用最大称量1/3的砝码,放置在1/4秤台面积中最大值与最小值之差,根据试验数据,一般不会超过5g ,其半宽α=2.5g 。而在实际工作时,放置砝码的位置比较注意,实际的偏载量,根据经验,一般只有试验偏载量的1/3。 实际偏载量为:2.5g/3=0.83g 此误差属于平均分布,包含因子为3。 所以u (P 2)=0.83g/3=0.48g 3.1.3 电源电压不稳定引入的不确定度分量u (P 3)的评定(用B 类方法评定) 根据有关资料,电源电压在规定条件下(电源电压变化:220V -15%~+10%;电源频率变化:-2%~+2%)变化会造成示值变化0.2e ,即1.0g 。 半宽度为α=1.0g 。此误差属于平均分布,根据《JJF1059测量不确定度评定与表示》附录中的规定,其包含因子(p =100%)为3。 所以u (P 3)=1.0g/3=0.58g 3.1.4 输入量P 的标准不确定度u (P )的计算 由于输入量P 的各分量彼此独立不相干,因此 g P u P u P u P u 82.0)()()()(322212=++= 3.2 输入量m 的标准不确定度u(m) 输入量m 的标准不确定度u(m)可以根据检定证书上得到,如果检定证书上没有给出扩展不确定度,可查找检定规程,得到15kg M 1等级砝码的最大允许误差为±0.75g ,根据《JJF1059测量不确定度评定与表示》附录中的规定,按级使用的数字式仪表、测量仪器最大允许误差导致的不确定度为均匀分布,其包含因子(p =100%)为3。 所以u(m)=0.75g/3=0.43g g n P P P s n i i i 40.01 ) ()(1 2 =--= ∑=

误差和不确定度的区别和联系

误差与不确定度的概念比较 实验教学中关于误差和不确定度的区别和联系,是学生感到难以理解并准确掌握的概念之一,本文将对此比较总结如下。 1误差和不确定度的定义 1.1 误差的概念 各被测量量在实验当时条件下均有不依人的意志为转移的真实大小,此值被称为被测量的真值。即真值就是被测量量所具有的、客观的真实数值。然而实际测量时,总是由具体的观测者,通过一定的测量方法,使用一定的测量仪器和在一定的测量环境中进行的。由于受到观测者的操作和观察能力,测量方法的近似性,测量仪器的分辨力和准确性,测量环境的波动等因素的影响,其测量结果和客观的真值之间总有一定的差异。测量结果与真值的差为测量值的误差,即 测量值(x)-真值(a)=误差(ε) 在实验中通常要处理的来源于测量值的误差有两类:偶然误差和系统误差。 对于偶然误差,有算术平均值作为被测量真值的最佳估计值,相应的误差有标准偏差s ,它的定义为 1)(12 --=∑=n x x s n i i ------------------------------(1) 式中n 为测量值的个数。对于算术平均值的标准偏差,用来表示算术平均值的偶然误差,表达式为 n s x s /)(=------------------------------------(2) 二者的统计意义是,标准偏差小的测量值,其可靠性较高。 对于系统误差,不能用统计的方法评定不确定度,首先要对实验理论分析或对比分析之后,可以得知其系统误差的来源,并可采取一定的措施去削减系统误差。例如由于天平左右臂长不完全相同导致的系统误差,可将物体放在天平左盘、右盘上各称一次取平均去消除,而对于单摆周期与振幅有关,缩小振幅可以减小此项系统误差,在测量要求更高时,可根据理论分析得出的修正公式去补正。 1.2 不确定度的概念 测量不确定度则是评定作为测量质量指标的此量值范围,即对测量结果残存误差的评估。设测量值为x ,其测量不确定度为u ,则真值可能在量值范围(x-u ,x+u)之中,显然此量值范围越窄,即测量 不确定度越小,用测量值表示真值的可靠性就越高。 不确定度也有两类:A 类标准不确定度和B 类不确定度。 由于偶然效应,A 类标准不确定度用统计方法来评定,其就取为平均值的标准偏差,即(2)式,也可写为 n s x s x u A /)()(==-------------------------(3) B 类评定的标准不确定度为 u(x)=Δ/3--------------------------------------(4) (4)式又称为仪器的标准误差。该式是根据仪器误差概率密度函数遵从均匀分布规律,由数学计算所得。 式中Δ为极限误差或仪器误差,是在规定的使用条件下,正确使用仪器时,仪器的示值和被测量真值之间可能出现的最大误差,其可以从下列几种情况中获得:国家计量技术规范;计量仪器说明书或检定书;仪器准确度等级;仪器分度值或经验(粗略估计)等。 2 二者的比较 不同类型的误差中究竟如何来区分误差和不确定度,表达式等方面有何不同,仍然有很多教材没有说明清楚。1993年,国际标准化组织颁布了《测量不确定度表达指南》(UGM),1999年,国家技术监督局颁布了《测量不确定度的评定与表示》 (JJF1059-1999)。这两个文件的颁布,标志着我国各技术领域 在不确

电子台秤校准结果测量不确定度的评定

电子台秤校准结果测量不确定度的评定 一、电子台秤的概念 电子台秤是利用电子应变元件受力形变原理输出微小的模拟电信号,通过信号电缆传送给称重显示仪表,进行称重操作和显示称量结果的称重器具。 二、电子台秤的误差因素 1、零点漂移误差。 经常会在称量重力不同的多种物体,从而使电子台秤的称重传感器受到多次往复负载的影响,在进行计量检定的过程中初始状态就出现了一系列的变化,仪表的指针已经不能够准确的归到零位,使电子台秤出现零点漂移现象,从而影响了对物体实际重量的准确测量。 2、四角偏载误差。 四角偏载误差的引起主要是由于电子台称传感器的灵敏度出现偏差。因为电子台秤的材料不尽相同,造成传感器的激励电压没有理想的那么稳定,电压不稳,导致传感器上面的信号输出是不同的,因此就产生了四角偏载误差。 3、重复测量误差。 所谓重复测量误差,就是同一物品在同意环境下连续多次进行称重实验,由于电子台称等计量器具的传感器产生侧向力和传感器条件缺失两个因素导致。首先,由于测量现场的限制因素,非常容易造成负载接收器发生偏移,导致托盘对传感器的力并不垂直,就会产生测力,就会导致测量物品的误差;另一个原因,由于传感器工作需要同时满足传力构造特性、传感参数标准的一致性等工作条件,而且有一个不满足,就会发生误差。 4、计量环境误差。 物体的本质会随着的外界环境的变化而发生轻微的变化,比如环境的温度、湿度等原因,这些因素都有可能造成电子台秤在测量称重

的的时候发生客观的偏差,当然误差不会太大。作为电子台秤的使用者,我们要在日常生活中多去总结经验和规律用科学的方法不断去修正,保障电子台秤测量结果的真实性以及可靠性。 5、鉴别力误差。 电子台秤的鉴别力大小反映了电子台秤对负载的微小变化的反应快慢能力。对电子台秤进行鉴别力误差测试的目的在于更加准确的检验电子台秤的结构连接过程以及摩擦过程,所以,机械连接中的摩擦和应力是造成电子台秤的鉴别力误差的主要影响因素。 三、电子台秤校准结果测量不确定度的评定 1 范围。 适用于电子台秤示值误差测量结果的不确定度评定。 2 引用文件。 JJF 1059.1- 2012 测量不确定度评定与表示 JJG 539- 97 数字指示秤检定规程 3 概述。 3.1 测量依据:JJG 539- 97 数字指示秤检定规程。 3.2 环境条件:温度:21.5℃ 湿度:48%RH。 3.3 测试标准:M1级砝码。 3.4 被测对象:电子台秤。 3.5 测量过程:用砝码直接测量的方式,分段测量示值与标准砝码之差。 3.6 评定结果的使用在符合上述条件下的测量结果,一般可直接使用本不确定度的评定结果。 4 数学模型。 E=P- m 其中:E———电子台秤示值误差; P———电子台秤示值; m———标准砝码质量值。 5 输入量的标准不确定度评定。

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

最新1电子天平不确定度评定

1 概述 1.1 测量依据:JJG1036—2008《电子天平检定规程》。 1.2.评定依据:JJF1059.1—2012《测量不确定度评定与表示》 1.3 测量环境条件:温度(20±5)℃,湿度≤85%RH,温度波动≤5℃/h。 1.4 测量标准:(1mg~500g)、F1级标准砝码组和(1mg~2000g)、F2级标准砝码组,见表1: 表1 两组砝码技术指标 以上两组砝码经顺德质量技术监督检测所检定合格,在检定有效期内。 1.5 被测对象:各范围的电子天平,见表2: 表2各范围的电子天平

广东联塑科技实业有限公司计量质量检测中心 编号:LS ·QEO ·GZ ·27·QD53-2014 电子天平示值误差的不确定度评定 实施日期:2014年05月01日 页码:2/12 1.6 测量方法:采用标准砝码直接测量电子天平各技术参数(各载荷点)的示值,可得电子天平示值与标准砝码之差,即为电子天平的示值误差。 1.7 评定结果的使用:在符合或十分接近上述条件下电子天平的示值误差的不确定度,可直接使用本不确定度的评定结果。 2 测量模型 2.1 示值误差: ? m = P -m 式中 : ? m — 电子天平示值误差,g ; P — 电子天平示值,g ; m — 标准砝码值,g 。 2.2 方差和灵敏系数: 根据 于是 [][]2 .2.2 2 2 )()()(.)(.) (21m u c P u c m u m m P u P m m u c +=?? ???????+?????????=? 式中 11=???= P m c 12-=???=m m c 3 不确定度来源 电子天平示值误差Δm 的不确定度来源主要有: 3.1 天平示值测量重复性引入的标准不确定度分量 )(1P u ; 3.2 偏载测量引起的的标准不确定度)(2P u ; 3.3 天平分辨力引入的标准不确定度分量)(3P u ; 3.4 标准砝码m 最大允许误差引入的标准不确定 )(m u ;

电子台秤不确定度评定

For personal use only in study and research; not for commercial use 宁波市计量测试研究院 电子台秤测量结果的不确定度评定

1.概述 1.1 测量依据:JJG539-1997《数字指示秤检定规程》。 1.2 环境条件:温度(-10~40)℃。 1.3 测量标准:M1等级标准砝码,根据JJG99-2006《砝码检定规程》中给出500mg~15kg砝码最大质量允差 为±(0.8 mg~750 mg)。 1.4 被测对象: 电子秤的分类 允许误差为:(0~500)e为±0.5e;>(500~2000)e为±1e; >2000e为±1.5e。 1.5 测量过程 用砝码直接加载、卸载的方式,分段测量示值与标准砝码之差。 1.6 评定结果的使用 在符合上述条件下,对3kg规格电子秤的3kg点示值误差的测量,一般可使用本不确定度评定结果。对其他示值和其他规格电子秤的示值误差测量结果的不确定度可采用本评定方法。 2. 评定模型 ΔE = P - m 式中:ΔE—电子秤示值误差; P—电子秤示值; m—标准砝码质量值

3. 输入量的标准不确定度评定 本评定方法以ACS —3电子秤,3kg 称量点为例。 3.1 输入量P 的标准不确定度来源u(P )主要是电子秤测量重复性u(P 1)及电子秤分辨率的影响u(P 2)。 3.1.1 ACS-3电子秤测量重复性引起的标准不确定度分项u(P 1)的评定(A 类评定方法) 用标准砝码在重复性条件对电子秤在最大秤量进行10次连续测量,得到测量列为:(单位:g )2.9995,2.9994,2.9995,2.9997,2.99995,2.9994,2.9997,2.9999,2.9998,2.9994。 单次实验标准差为 0.18s g == 则标准不确定度为1()0.056u P g = == 自由度v P1可按下式计算: v P1 =n-1=10-1 =9 3.1.2电子秤分辨率引起的标准不确定度分项u (P 2)的评定,用B 类标准不确定度评定 被检电子秤的分度值为1g ,采用闪点法可以使数字分辨率为0.1g ,则不确定度区间半宽为0.1g ,按均匀 分布计算:2()0.058u P g = = 3.1.4 输人量P 的标准不确定度的计算 由于输人量P 的分项彼此独立不相关,因此, 则 222 12()()()u P u P u P =+ 3.2输入量m 的标准不确定度评定 输人量m 的不确定度可以根据检定证书中得到,如检定证书中没有给出扩展不确定度,则可按OIML R111砝码国际建议的约定,对低准确度级砝码的标准不确定度等于允差表规定的最大允许误差的 。 查表得到3kg 砝码,允差±0.15g ,估计分布为均匀分布,即k = 4.合成标准不确定度的评定 4.1合成标准不确定度的计算 输入量P 与m 彼此独立不相关,所以合成标准不确定度可按下式得到: 5.扩展不确定度的评定 取置信概率95%,按有效自由度,查t 分布表得到 k p = t 95(50) = 2.01 扩展不确定度 U 95 = t 95(50)·u c (ΔE) =2×0.11=0.22g 13

电子天平不确定度评定报告[1].doc

电子天平不确定度评定报告[1]

电子天平测量不确定度报告 1 测量方法 依据JJF 1036-2008《电子天平计量检定规程》,天平的校准项目主要包括偏载、重复性和示值误差等 1.1偏载的测量:用标称值至少等于最大载荷1/3的砝码分别放置在天平秤盘的不同位置,记录天平相应的示值。 1.2重复性的测量:实验载荷应为单个砝码,其标称值尽量接近于天平的最大称量。在测量之前,显示器置零,测量次数至少6次。每次取下砝码后都要检测零点,必要时可将显示器重新置零。 1.3示值误差的测量:至少选择6个可以覆盖整个称量范围的载荷点(标准砝码),其中必须包括天平的最小和最大称量载荷,所有载荷都放置在秤盘的中心,计算出被测天平的示值误差。 2 测量模型 2.1偏载误差:示值误差的测量时,所有载荷都放置在秤盘的中心,故偏载误差对示值误差测量结果的影响可忽略。 2.2重复性:采用贝塞尔公式计算重复性,假设在整个称量范围其结果恒定,故在计算示值误差不确定度时,各个载荷点的重复性均为此值。 2.3示值误差 对于每一个试验载荷,示值误差的计算公式为:m I E ref j j -= I j :天平示值 m ref :标准砝码的实际值 ()()()ref m j I j c m u C I u C E u 2 2222+= 1=??= j j I I E C 1-=??= ref j m m E C 相关性:各输入量之间未发现任何值得考虑的相关性 3 不确定度分量

3.1标准砝码引入的标准不确定度分量 依据JJG99-2006《砝码》规程,编号为0216的标准砝码200g 的扩展不确定度U =0.10mg ,k =2 ()?? ? ??=2U m u ref =0.00005g 因此:标准砝码引起的不确定度分量为:()m u ref =0.00005g 3.2天平显示值的标准不确定度分量 对于天平显示变动的修正,可通过下式计算 I I I ecc rep δδ+= 故天平显示的不确定度按正态分布计算如下: ()()()I u I u u ecc rep I δδ2 22 += 3.2.1 天平重复性引起的不确定度分量() rep I u δ 次数 1 2 3 4 5 6 示值(g ) 200.00 200.00 200.01 200.00 200.01 200.00 ()()I s I u rep =δ= () () 11 2 --∑=n n I I n i i =0.002g 3.2.2分度值引起的不确定度分量d u 假设其为均匀分布,得到d u =0.006g 因为d u >() rep I u δ,所以合成不确定度选取d u 作为其中一个分量。 3.2.3 偏载引起的不确定度分量()ecc I u δ 此项误差为试验载荷的重心偏离了秤盘的中心位置引起的误差,在测量时,单个载荷可放在秤盘的中心,多个载荷可通过叠放的形式放于秤盘的中心,故偏载误差对示值误差测量结果的影响可忽略不计。 天平200g 显示值的合成标准不确定度为 ()()I u u I u ecc d δ2 2 +==0.006g 4 不确定度概算 不确定度分量汇总表

功率不确定度评定与表示.

输入功率和电流的 不确定度评定与表示 编制: 日期: 审核: 日期: 批准:日期: 1 目的 测试样品的输入电流及输入功率。 2 检测方法和步骤 按GB4706.13-1998标准的要求,被测样品在额定电压及相应的气候类型条件下,运行达到稳定状态后,测量被测样品在运行周期开停时的电流及输入功率值,取其平均值作为被测量样品的电流、输入功率测量值。 被测样品由稳压电源供电,对于N型气候类型的电冰箱,测试的环境温度保持在32℃,使用青岛青智仪器有限公司的8775A型数字式电参量测试仪,直接测量被测样品运行周期开停时的输入功率及电流。 3 数学模型 由于是用电叁数表直接测量被测样品的电流和输入功率,因此: Ic=Is 其中: Ic:被测电流 A,Is:示值电流 A Pc=Ps 其中: Pc:被测功率 W,Is:被测功率 W 4 不确定度分量的识别与量化 4.1不确定度来源有:

a .由仪器显示的末位数值波动引起的检测人员读数的不确定度,可用A类 方法评价。 b .由稳压电源的波动引起的测试条件的不稳定,此不确定度可用A类方法 评价。 c .由仪器的测量准确度引起的测量不确定度,此类不确定度可用该仪器的 校准证书的信息通过B类方法评定。 d .由于环境温度的波动造成仪器测量准确度的变化和被测样品的电流、功 率的测量不确定度,此类不确定度可用B类方法评定。 4.1.1 A类不确定度评定 对于由仪器显示值的波动以及稳压电源波动造成的测量不确定度,通过重复测量加以评定。进行五次重复测量,并通过下列公式计算测量结果的标准不确定度μ(): = ()=-) ()=μ()= a电流测量值及计算结果: 测量值5 1.258

数字指示秤不确定度评定

电子台秤示值误差测量结果的不确定度评定 1.概述: 1.1测量依据:JJG539-1997《数字指示秤检定规程》 1.2环境条件:温度-10℃~40℃ 1.3测量标准:M1级砝码,根据JJG99-1990《砝码检定规程》中给出50g~20kg质量最大允许误差为±(3mg~1g)。 1.4被测对象:电子秤Ⅲ级,检定分度值e=0.5kg,0~500e为± 0.5e,(500~2000)e为±1.0e,2000e~Max为1.5e。 1.5测量过程:用砝码直接加载、卸载的方式,观察测量示值与标准砝码之差即为示值误差。 2.数学模型:△E=p-m 式中:△E—电子秤示值误差(kg) p—二次仪表显示值(kg) m—标准砝码质量值(kg) 对上式求偏导得灵敏系数为:C1=1,C2=-1 3.输入量的标准不确定度评定: 3.1输入量p的标准不确定度来源u(p)主要是电子秤测量重复性、四角偏载误差、示值随电源电压变化以及二次仪表分度值选取引起 的示值误差等。 3.1.1电子秤测量重复性引起的标准不确定度来源u(p1)的评定 (A类评定方法)。

用固定砝码在重复性条件下对电子秤进行10次连续测量,得到测量列:1000.00,1000.00,999.95,999.85,1000.00,1000.00,999.85,999.85,1000.00,1000.00kg p — = 1n ∑i=1 n p i =999.95(kg ) 根据贝塞尔公式:S =∑ i=1 n (p i -p 1 ̄)2 n-1 = 0.12(kg ) u (p 1)= S n = 0.12 3 = 0.07(kg ) 自由度γp1 = 3×(n-1)=27 3.1.2电子秤的偏载误差引起的标准不确定度分项u (P 2)评定。 电子秤进行偏载试验时,用最大称量1/3的砝码,放置在1/4秤台面积上,最大值与最小值之差一般不会超过0.5kg ,半宽a=0.25kg 。假设其误差为偏载时的1/3,并服从均匀分布,包含因 子k= 3 ,可得u (p 2)= 0.25 33 =0.05(kg ) 估计△u (p 2) u (p 2) = 0.10,则γρ2= 12 [△u (p 2) u (p 2) ]-2= 50 3.1.3电源电压稳定度引起的标准分项u (p 3)评定。 电源电压在规定条件下变化可能会造成示值变化0.2e ,即0.1kg 。假设半宽度a=0.1kg ,服从均匀分布,包含因子k= 3 u (p 3)= 0.1 3 =0.06(kg )

电子天平不确定度评定报告[1]

电子天平测量不确定度报告 1 测量方法 依据JJF 1036-2008《电子天平计量检定规程》,天平的校准项目主要包括偏载、重复性和示值误差等 1.1偏载的测量:用标称值至少等于最大载荷1/3的砝码分别放置在天平秤盘的不同位置,记录天平相应的示值。 1.2重复性的测量:实验载荷应为单个砝码,其标称值尽量接近于天平的最大称量。在测量之前,显示器置零,测量次数至少6次。每次取下砝码后都要检测零点,必要时可将显示器重新置零。 1.3示值误差的测量:至少选择6个可以覆盖整个称量范围的载荷点(标准砝码),其中必须包括天平的最小和最大称量载荷,所有载荷都放置在秤盘的中心,计算出被测天平的示值误差。 2 测量模型 2.1偏载误差:示值误差的测量时,所有载荷都放置在秤盘的中心,故偏载误差对示值误差测量结果的影响可忽略。 2.2重复性:采用贝塞尔公式计算重复性,假设在整个称量范围其结果恒定,故在计算示值误差不确定度时,各个载荷点的重复性均为此值。 2.3示值误差 对于每一个试验载荷,示值误差的计算公式为:m I E ref j j -= I j :天平示值 m ref :标准砝码的实际值 ()()()ref m j I j c m u C I u C E u 2 2222+= 1=??= j j I I E C 1-=??= ref j m m E C 相关性:各输入量之间未发现任何值得考虑的相关性 3 不确定度分量

3.1标准砝码引入的标准不确定度分量 依据JJG99-2006《砝码》规程,编号为0216的标准砝码200g 的扩展不确定度U =0.10mg ,k =2 ()?? ? ??=2U m u ref =0.00005g 因此:标准砝码引起的不确定度分量为:()m u ref =0.00005g 3.2天平显示值的标准不确定度分量 对于天平显示变动的修正,可通过下式计算 I I I ecc rep δδ+= 故天平显示的不确定度按正态分布计算如下: ()()()I u I u u ecc rep I δδ2 22 += 3.2.1 天平重复性引起的不确定度分量() rep I u δ ()()I s I u rep =δ= () () 11 2 --∑=n n I I n i i =0.002g 3.2.2分度值引起的不确定度分量d u 假设其为均匀分布,得到d u =0.006g 因为d u >() rep I u δ,所以合成不确定度选取d u 作为其中一个分量。 3.2.3 偏载引起的不确定度分量()ecc I u δ 此项误差为试验载荷的重心偏离了秤盘的中心位置引起的误差,在测量时,单个载荷可放在秤盘的中心,多个载荷可通过叠放的形式放于秤盘的中心,故偏载误差对示值误差测量结果的影响可忽略不计。 天平200g 显示值的合成标准不确定度为 ()()I u u I u ecc d δ2 2 +==0.006g 4 不确定度概算 不确定度分量汇总表

相关主题
文本预览
相关文档 最新文档