当前位置:文档之家› JJF1059.1-2012规程测量不确定度评定与表示

JJF1059.1-2012规程测量不确定度评定与表示

JJF1059.1-2012规程测量不确定度评定与表示
JJF1059.1-2012规程测量不确定度评定与表示

JJF 中华人民共和国国家计量技术规范

JJF1059.1-2012

测量不确定度评定与表示

Evaluation and Expression

of Uncertainty in Measurement

2012-12-03 发布 2013-06-03实施

国家质量监督检验检疫总局发布

测量不确定度评定与表示

Evaluation and Expression

Of Uncertainty in Measurement

归口单位:全国法制计量管理计量技术委员会

起草单位:江苏省计量科学研究院

中国计量科学研究院

北京理工大学

国家质检总局计量司

本规范委托全国法制计量管理计量技术委员会解释

本规范起草人:

叶德培

赵峰 (江苏省计量科学研究院)

施昌彦

原遵东 (中国计量科学研究院)

沙定国 (北京理工大学)

周桃庚 (北京理工大学)

陈红 (国家质检总局计量司)

目录

引言

1 范围

2 引用文献

3 术语和定义

4 测量不确定度的评定方法

4.1 测量不确定度来源分析

4.2 测量模型的建立

4.3 标准不确定度的评定

4.4 合成标准不确定度的计算

4.5 扩展不确定度的确定

5 测量不确定度的报告与表示

6.测量不确定度的应用

附录A 测量不确定度评定举例(参考件)

附录B t分布在不同概率p与自由度ν的)(ν

t值(t值)(补充件)

p

附录C 有关量的符号汇总 (补充件 )

附录D 术语的英汉对照(参考件)

1 引言

本规范是对JJF1059-1999《测量不确定度评定与表示》的修订。

本次修订的依据是十多年来我国贯彻JJF1059-1999的经验以及最新的国际标准ISO/IEC Guide98-3-2008《测量不确定度第3部分:测量不确定度表示指南》(Uncertainty of measurement-Part 3:Guide to the Expression of Uncertainty in Measurement以下简称GUM),与JJF 1059-1999相比,主要修订内容有:

--编写格式改为符合JJF1071-2010《国家计量校准规范编写规则》的要求。

--所用术语采用JJF 1001-2011《通用计量术语及定义》中的术语和定义,例如更新了“测量结果”和“测量不确定度”的定义,增加了“测得值”,“测量模型”,“测量模型的输入量”和“输出量”,并以“包含概率”代替了“置信概率”等。本规范还增加了一些与不确定度有关的术语,如“定义不确定度”,“仪器的测量不确定度”,“零的测量不确定度”,“目标不确定度”等。

--对适用范围作了补充,明确指出:本规范主要涉及有明确定义的、并可用唯一值表征的被测量估计值的不确定度,也适用于实验、测量方法、测量装置和系统的设计和理论分析中有关不确定度的评定与表示。本规范的方法主要适用于输入量的概率分布为对称分布、输出量的概率分布近似正态分布或t分布,并且测量模型为线性模型或可用线性模型近似表示的情况。当上述适用条件不能完全满足时,可采用一些近似或假设的方法处理,或考虑采用蒙特卡洛法(简称MCM)评定测量不确定度.本规范的方法(GUM法)的评定结果可以用蒙特卡洛法验证,验证评定结果一致时仍然可以使用GUM法进行不确定度评定。因此本规范仍然是最常用和最基本的方法。

--在A类评定方法中,根据计量的实际需要,增加了常规计量中可以

预先评估重复性的条款。

--合成标准不确定度评定中增加了各输入量间相关时协方差和相关系数的估计方法,以便处理相关的问题。

--弱化了给出自由度的要求,只有当需要评定U p或用户为了解所评定的不确定度的可靠程度而提出要求时才需要计算和给出合成不确定度的有效自由度υeff。

--本规范从实际出发规定:一般情况下,在给出测量结果时报告扩展不确定度U。在给出扩展不确定度U时,一般应注明所取的k值。若未注明k值,则指k=2。

--增加了第6章:测量不确定度的应用,包括:校准证书中报告测量不确定度的要求、实验室的校准和测量能力表示方法等。

--取消了原规范中关于概率分布的附录,将其内容放到B类评定的条款中。

--增加了附录A:测量不确定度评定方法举例。附录A.1是标准不确定度的B类评定方法举例. 附录A.2 是关于合成不确定度评定方法的举例. 附录A.3是不同类型测量时测量不确定度评定方法举例.包括量块的校准、温度计的校准、硬度计量、样品中所含氢氧化钾的质量分数测定和工作用玻璃液体温度计的校准五个例子。前三个例子来自GUM。目的是使本规范的使用者开阔视野,更深入理解不同情况下的测量不确定度评定方法。例子与数据都是被选用来说明本规范的原理的,因此不必当作实际测量的叙述,更不能用来代替某项具体校准中不确定度的评定。

本规范的目的是:

——促进以充分完整的信息表示带有测量不确定度的测量结果;

——为测量结果的比较提供国际上公认一致的依据。

本规范规定的评定与表示测量不确定度的方法满足以下要求:

----适用于各种测量领域和各种准确度等级的测量;

----测量不确定度能从对测量结果有影响的不确定度分量导出,且与

这些分量怎样分组无关,也与这些分量如何进一步分解为下一级分量无关;

----当一个测量结果用于下一个测量时,其不确定度可作为下一个测量结果不确定度的分量。

----在诸如工业、商业及与健康或安全有关的某些领域中,往往要求提供较高概率的区间,本方法能方便地给出这样的区间及相应的包含概率。

本规范仅给出了在最常见情况下评定与表示测量不确定度的原则、方法和简要步骤,其中的注和举例,旨在对原则和方法作详细说明,以便于进一步理解和有助于实际应用。

在一些特殊情况下,本规范的方法可能不适用或规范不够具体,例如测量如何模型化、非对称分布或非线性测量模型时的不确定度评定等。此外,对于在特殊专业领域中的应用,鼓励各专业技术委员会依据本规范制定专门的技术规范或指导书。

本规范包含四个附录,附录A“测量不确定度评定举例”它是资料性附录,仅作参考;附录B“t分布在不同概率p与自由度ν的t p(ν)值(t值)表”和附录C“有关量的符号汇总”是规范性附录,所用的基本符号,取自GUM 及有关的ISO、IEC标准;附录D“术语的英汉对照”供参考。

测量不确定度评定与表示

1 范围

a)本规范所规定的评定与表示测量不确定度的通用方法,适用于各种准确度等级的测量领域,例如:

1)国家计量基准、计量标准的建立及量值的比对;

2) 标准物质的定值、标准参考数据的发布;

3) 测量方法、检定规程、检定系统表、校准规范等技术文件的编制;

4) 计量资质认定、计量确认、质量认证以及实验室认可中对测量结果及测量能力的表述;

5) 测量仪器的校准、检定以及其他计量服务;

6) 科学研究、工程领域、贸易结算、医疗卫生、安全防护、环境监测、资源保护等领域的测量。

b)本规范主要涉及有明确定义的,并可用唯一值表征的被测量估计值的测量不确定度。至于被测量呈现为一系列值的分布或取决于一个或多个参量(例如,以时间为参变量),则对被测量的描述是一组量,应给出其分布情况及其相互关系。

c)本规范也适用于实验、测量方法、测量装置、复杂部件和系统的设计和理论分析中有关不确定度的评估与表示。

d)本规范主要适用于以下条件:

1)可以假设输入量的概率分布呈对称分布;

2)可以假设输出量的概率分布近似为正态分布或 t分布;

3)测量模型为线性模型,可以转化为线性模型或可用线性模型近似的模型。

当上述适用条件不能完全满足时,可采用一些近似或假设的方法处理,或考虑采用蒙特卡洛法(简称MCM)评定测量不确定度,…即

采用概率分布传播的方法。MCM的使用详见JJF1059.2:2012《用蒙特卡洛法评定测量不确定度》。当用本规范的方法(简称GUM法) 评定的结果得到蒙特卡洛法验证时,则依然可以用本规范的方法评定测量不确定度。

2引用文件

本规范引用了下列文件:

JJF1001-2011 通用计量术语及定义

GB/T 8170-2008 数值修约规则与极限数值的表示和判定

GB3101-1993 有关量、单位和符号的一般原则

GB4883-2008 数据的统计处理和解释正态样本离群值的判断和处理ISO/IEC Guide98-3-2008 测量不确定度-第三部分:测量不确定度表示指南(Uncertainty of measurement —Part 3:Guide to the expression ofuncertainty in measurement)

ISO 3534-1:2006 统计学术语和符号第1部分:一般统计术语和概率术语(Statistics Vocabulary and Symbols Part 1:General statistical terms and terms used in probability)。

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。

3术语和定义

本规范中的计量学术语采用JJF1001-201X《通用计量术语及定义》及国际标准ISO/IEC Guide99:2007(即VIM第三版)。本规范中所用的概率和统计学术语基本采用国际标准ISO3534-1-1993的术语和定义。3.1被测量 measurand(新定)

拟测量的量。 JJF1001:2011

IEC 60050

受到测量的量

注:

1. 对被测量的说明要求了解量的种类,以及含有该量的现象、物体

或物质状态的描述,包括有关成分及化学实体。

2. 在VIM第二版和IEC60050-300:2001中,被测量定义为受到测量的

量.

3. 测量包括测量系统和测量条件,它可能会改变研究中的现象、物

体或物质,使受到测量的量可能不同于定义的被测量。在这种情

况下,适当的修正是必要的。

例:1) 用内阻不够大的电压表测量电压时,电池两端之间的电位差会降低,开路电位差可从电池和电压表的内阻计算得到。

2) 钢棒在与环境温度23℃平衡时长度不同与拟测量在规定

温度20℃时长度,这种情况下必须加以修正。

3) 在化学中,“分析物”或者物质或化合物的名称有时被称

为“被测量”。这种用法是错误的,因为这些术语并不涉

及测量。

3.2 测量结果 measurement result, result of measurement[新定]

与其它有用的相关信息一起赋予被测量的一组量值。(JJF1001:2011) 由测量所得的赋予被测量的值(JJF1001-1998,JJF1059:1999,GUM.) 注1 测量结果通常包含这组量值的“相关信息”,诸如某些可以比其他方式更能代表被测量的信息。它可以概率密度函数(PDF)的

方式表示。

注2:测量结果通常表示为单个测得的量值和一个测量不确定度。对某些用途,如认为测量不确定度可忽略不计,则测量结果可表示

为单个测得的量值。在许多领域中这是表示测量结果的常用方

式。

注3:在传统文献和上版VIM中,测量结果定义为赋予被测量的值,并按情况解释为平均示值、未修正的结果或已修正的结果。

3.3 测得的量值(新定)

又称量的测得值, 简称测得值,

代表测量结果的量值.

注: 1.对重复示值的测量,每个示值可提供相应的测得值.用这一组独立的测得值可计算出作为结果的测得值.如平均值或中位值.通常它附有一个已减少了的相关联的测量不确定度.

2. 当认为代表被测量的真值范围与测量不确定度相比小得多时, 量的测得值可认为是实际唯一真值的估计值.通常是通过重复测量获得的各独立测得值的平均值或中位值.

3. 当认为代表被测量的真值范围与测量不确定度相比不太小时,被测量的测得值通常是一组真值的平均值或中位值的估计值.

4. 在测量不确定度(GUM)中,对测得的量值使用术语有“测量结果”,“被测量的值的估计”或“被测量的估计值”。

3.4 测量精密度 measurement precision

简称精密度(precision)

在规定条件下,对同一或类似被测对象重复测量所得示值或测得值间的一致程度。

注: 1. 测量精密度通常用不精密度以数字形式表示.如在规定测量条件下的标准差,方差或变异系数.

2. 规定条件可以是重复性测量条件,期间精密度测量条件或复现性测量条件.

3.测量精密度用于定义测量重复性,期间性测量精密度或测量复现性.

4. 术语测量精密度有时用于指测量准确度, 这是错误的.

3.5 测量重复性 measurement repeatability

简称重复性(repeatability)

在一组重复性测量条件下的测量精密度。

3.6 重复性测量条件measurement repeatability condition of

measurement

简称重复性条件(repeatability condition)

相同测量程序、相同操作者、相同测量系统、相同操作条件和相同地点,并在短时间内对同一或相类似被测对象重复测量的一组测量条件。

注:在化学中,术语“序列内精密度测量条件”有时用于指“重复性测量条件”。

3.7 测量复现性

简称复现性在复现性测量条件下的测量精密度.

3.8 复现性测量条件.

简称复现性条件

不同地点、不同操作者、不同测量系统、对同一或相类似被测对象重复测量的一组测量条件。

注:1.不同的测量系统可采用不同的测量程序.

2. 在给出复现性时,应说明改变和未变的条件及实际改变到什

么程序.

3.9 期间精密度测量条件

简称期间精密度条件

除了相同测量程序、相同地点、以及在一个较长时间内对对同一或相类似被测对象重复测量的一组测量条件外,还可包括涉及改变的其他条件。

注: 1. 改变可包括新的校准,测量标准器, 操作者和测量系统.

2. 对条件的说明应包括改变和未变的条件以及实际改变到什么

程序.

3. 在化学中,术语“序列间精密度测量条件”有时用于“期间精

密度测量条件”。

3.10 实验标准偏差 experimental standard deviation

简称实验标准差

对同一被测量作n次测量,表征测量结果分散性的量。用符号s表示.

注: 1. n 次测量中某个测得值x k 的实验标准差s(x k )可按贝塞尔公

计算:

式中: x i 是第i 次测量的测得值,n 是测量次数,x 是n 次测量所得一组测得值的算术平均值。 2. n 次测量的算术平均值x 的实验标准偏差)(x s 为:

n x s x s k /)()(

3.11 测量误差(新定)

简称误差 测得的量值减去参考量值. JJF1001:2011 测量结果减去被测量的真值 98, VIM-1993

注: 1. 测量误差的概念在以下两种情况下均可使用:

(1) 当涉及存在单个参考量值,如用测得值的测量不确定度可

忽略的测量标准进行校准.或约定量值给定时,测量误差是已知的.

(2) 假设被测量使用唯一的真值,或范围可忽略的一组真值表

征时,测量误差是未知的.

2. 测量误差不应与出现的错误或过失混淆.

3.12 测量不确定度measurement uncertainty(新定)

简称不确定度(uncertainty ) JJF1001:2011

根据所获信息,表征赋予被测量值分散性的非负参数。

表征合理地赋予被测量之值的分散性,与测量结果相联系的参数.98 注:

1. 测量不确定度包括由系统影响引起的分量,如与修正量和测量

标准所赋量值有关的分量及定义的不确定度。有时对估计的系

统影响未作修正,而是当作不确定度分量处理。

2. 此参数可以是诸如称为标准测量不确定度的标准偏差(或其特

定倍数),或是说明了包含概率的区间半宽度。

3. 测量不确定度一般由若干分量组成。其中一些分量可根据一系

列测量值的统计分布,按测量不确定度的A类评定进行评定,

并用实验标准偏差表征。而另一些分量则可根据经验或其它信

息假设的概率分布,按测量不确定度的B类评定进行评定,也

用标准偏差表征。

4.通常,对于一组给定的信息,测量不确定度是相应于所赋予被测量的量值的。该值的改变将导致相应的不确定度的改变。

5. 本定义是按2008版VIM给出,而在GUM中的定义是:表征合理地

赋予被测量之值的分散性,与测量结果相联系的参数.

3.13 标准不确定度 standard uncertainty

全称标准测量不确定度(standard measurement uncertainty)

以标准偏差表示的测量不确定度。

3.14 测量不确定度的A类评定 Type A evaluation of measurement uncertainty

简称A类评定(Type A evaluation)

对在规定测量条件下测得的量值,用统计分析的方法进行的测量不确定度分量的评定。

注:规定测量条件是指重复性测量条件、期间精密度测量条件或复现性测量条件。

3.15 测量不确定度的B类评定 Type B evaluation of measurement uncertainty

简称B类评定(Type B evaluation)

用不同于测量不确定度A类评定的方法进行的测量不确定度分量的评定。

例:评定基于以下信息:

-权威机构发布的量值,

-有证标准物质的量值,

-校准证书,

-仪器的漂移,

-经检定的测量仪器准确度等级,

-根据人员经验推断的极限值等。

3.16 合成标准不确定度combined standard uncertainty

全称合成标准测量不确定度(combined standard measurement uncertainty)

由在一个测量模型中各输入量的标准测量不确定度获得的输出量的标准测量不确定度。

注:在测量模型中输入量相关的情况下,当计算合成标准不确定度时必须考虑协方差。

3.17 相对标准不确定度 relative standard uncertainty

全称相对标准测量不确定度(relative standard measurement uncertainty)

标准不确定度除以测得值的绝对值。

3.18 扩展不确定度 expanded uncertainty

全称扩展测量不确定度 expanded measurement uncertainty

合成标准不确定度与一个大于1的数字因子的乘积。

注:

1. 该因子取决于测量模型中输出量的概率分布类型及所选取的包含

概率。

2. 本定义中术语“因子”是指包含因子。

3.19 包含区间 coverage interval(新增)

基于可获信息确定的包含被测量一组值的区间,被测量值以一定概率落在该区间内。

注:

1. 包含区间不必以所选的测得值为中心。

2. 不应把包含区间称为置信区间,以避免与统计学概念混淆。

3. 包含区间可由扩展测量不确定度导出.

3.20 包含概率 coverage probability (新增)

在规定的包含区间内包含被测量的一组值的概率。

注:

1. 为避免与统计学概念混淆, 不应把包含概率称为置信水平。

2. 在GUM中包含概率又称置信的水平.

2.包含概率替代了曾经使用过的置信水准 (level of confidence) 3.21 包含因子 coverage factor

为获得扩展不确定度,对合成标准不确定度所乘的大于1的数。

注:包含因子通常用符号k表示。

3.22 测量模型 measurement model(新增)

简称模型 model

测量中涉及的所有已知量间的数学关系。

注:

1. 测量模型的通用形式是方程:h(Y,X1,…,X n)=0,其中测量模型

中的输出量Y是被测量,其量值由测量模型中输入量X1,…,Xn

的有关信息推导得到。

2. 在有两个或多个输出量的较复杂情况下,测量模型包含一个以上

的方程。

3.23 测量函数(新增)

在测量模型中, 由输入量的已知量值计算得到的值是输出量的测得值时,输入量与输出量之间的函数关系.

注: 1. 如果测量模型h(Y,X1---X N)=0 可明确写成Y=f(X1---X N), 其中:Y是测量模型中的输出量, 则函数f是测量函数.更通俗地说,

f是一个算法符号,算出与输入量X1---X N相应的输出量y=(x1,---x N)

2. 测量函数也用于计算测得值Y的测量不确定度.

3.24 测量模型中的输入量 input quantity in a measurement model

简称输入量(input quantity)

为计算被测量的测得值而必须测量的量,或其值可用其它方式获得的量。

例:当被测量是在规定温度下某钢棒的长度时,则实际温度、在实

际温度下的长度以及该棒的线热膨胀系数为测量模型中的输入

量。

注:

1. 测量模型中的输入量往往是某个测量系统的输出量。

2. 示值、修正值和影响量可以是测量模型中的输入量。

3.25 测量模型中的输出量 output quantity in a measurement model

简称输出量(output quantity)

用测量模型中输入量的值计算得到的测得值的量。

3.26 定义的不确定度 definitional uncertainty(新增)

由于被测量定义中细节量有限所引起的测量不确定度分量。

注:

1. 定义的不确定度是在任何给定被测量的测量中实际可达到的最小

测量不确定度。

2. 所描述细节中的任何改变导致另一个定义的不确定度。

3.27 仪器的测量不确定度 instrumental measurement uncertainty(新增)

由所用测量仪器或测量系统引起的测量不确定度的分量。

注:

1. 除原级测量标准采用其他方法外,仪器的不确定度是通过对测量

仪器或测量系统的校准得到。

2. 仪器不确定度通常按B类测量不确定度评定。

3. 对仪器的测量不确定度的有关信息可在仪器说明书中给出。

3.28 零的测量不确定度 null measurement uncertainty(新增)

测量值为零时的测量不确定度。

注: 1. 零的测量不确定度与零位或接近零的示值有关,它包含被测

量小到不知是否能检测的区间或仅由于噪声引起的测量仪器的

示值区间。

2. 零的测量不确定度的概念也适用于当对样品与空白进行测

量并获得差值时.

3.29 不确定度报告 uncertainty budget [2.33](新增)

对测量不确定度的陈述,包括测量不确定度的分量及其计算和合成。 注:不确定度报告应该包括测量模型、估计值、测量模型中与各个量

相关联的测量不确定度、协方差、所用的概率密度函数的类型、

自由度、测量不确定度的评定类型和包含因子。

3.30 目标不确定度 target uncertainty(新增)

全称目标测量不确定度(target measurement uncertainty )

根据测量结果的预期用途,规定为上限的测量不确定度。

3.31 自由度 degrees of freedom

在方差的计算中,和的项数减去对和的限制数。

注 :1 在重复性条件下,用 n 次独立测量确定一个被测量时,所得的样本方差为)1/()(22221-+++n v v v n Λ,其中v i 为残差:x x v -=11,x x v -=22,…

x x v n n -=。因此,和的项数即为残差的个数n ,而(当n 较大时0=∑i ν)是一

个约束条件,即限制数为1。由此可得自由度ν=n -1。

2 当用测量所得的n 组数据按最小二乘法拟合的校准曲线确定 t

个被测量时,自由度ν=n-t 。如果另有r 个约束条件,则自由度

ν=n-(t +r )。

3 自由度反映了相应实验标准偏差的可靠程度。用贝塞尔公式估计

实验标准偏差s 时,s 的相对标准差为:νο2/1/)(=s s 。若测量

次数为10,则ν=9,表明估计的s 的相对标准差约为0.24,可靠

程度达76%。

4 合成标准不确定度u c (y )的自由度,称为有效自由度νeff ,用于在

评定扩展不确定度U p 时求得包含因子k p 。

3.32 协方差(covariance)

协方差是两个随机变量相互依赖性的度量,它是两个随机变量各自的误差之积的期望。用符号C0V (X,Y )或V (X,Y )表示

V(X,Y)=E [(x-μx )(y-μy )]

注:定义的协方差是在无限多次测量条件下的理想概念。有限次测量时协方差的估计值用s (x ,y )表示:

有限次测量时两个随机变量算术平均值的协方差估计值用s(x,y)表示:

S(x,y)=))((

)1(11

y y X x n n i n i I ---∑= 3.33 相关系数 correlation coefficient

相关系数是两个变量之间相互依赖性的度量,它等于两个变量间的协方差除以各自方差之积的正平方根,用符号ρ(x, y )表示

)

()(),(),(),(),(),(),(x y x y V x x V y y V x y V x y y x σσρρ=== 注:1,定义的相关系数是在无限多次测量条件下的理想概念。有限次测

量时相关系数的估计值用r (x,y )表示,

)

()(),(),(),(y s x s y x s x y r y x r == 2,相关系数是一个[-1,+1]间的纯数,

3, 对于多变量概率分布,通常给出相关系数矩阵,该矩阵的对角

线元素为1。

测量不确定度与测量误差的主要区别

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

测量不确定度的评定方法.

测量不确定度的评定方法 鉴于测量不确定度在检测,校准和合格评定中的重要性和影响,考虑到试验机行业应用测量不确定度时间不长,现就有关测量不确定度概念、测量不确定度的评定和表示方法,谈谈学习体会。奉献给同行业人员。由于本人学识浅薄,力不从心,有不妥或错误处,期望批评指正。 (一)测量不确定度的概念 《测量不确定度表示指南》(GUM),即国际指南,给出的测量不确定度的定义是:与测量结果相关联的一个参数,用以表征合理地赋予被测量之值的分散性。 其中,测量结果实际上指的是被测量的最佳估计值。被测量之值,则是指被测量的真值,是为回避真值而采取的。我国计量技术规范JJF1059—1999《测量不确定度评定与表示》中,亦推荐这一用法(见该规范2.3注4)。 须知,真值对测量是一个理想的概念,如何去估计它的分散性?实际上,国际指南(GUM)所评定的并非被测量真值的分散性,也不是其约定真值的分散性,而是被测量最佳估计值的分散性。 关于测量不确定度的定义,过去曾用过: ① 由测量结果给出的被测量估计的可能误差的度量; ② 表征被测量的真值所处范围的评定。 第①种提法,概念清楚,只是其中有“误差”一词,后来才改为第②种提法。现行定义与第②种提法一致,只是用被测量之值取代了真值,评定方法相同、表达式也一样,并不矛盾。 至于参数,可以是标准差或其倍数,也可以是给定置信概率的置信区间的半宽度。用标准差表示测量不确定度称为测量标准不确定度。在实际应用中如不加以说明,一般皆称测量标准不确定度为测量不确定度,甚至简称不确定度。 用标准差值表示的测量不确定度,一般包括若干分量。其中,一些分量系用测量列结果的统计分布评定,并用标准差表示:而另外一些分量则是基于经验或其他信息而判定的(主观的或先验的)概率分布评定,也以标准差值表示。可见,后者有主观鉴别的成分,这也是在定义中使用“合理地赋予”的主要原因。 为了和传统的测量误差相区别,测量不确定度用u(不确定度英文uncertainty的字头)来表示,而不用s。 应当指出,用来表示测量不确定度的标准差,除随机效应的影响外,还包括已识别的系统效应不完善的影响,如标准值不准、修正量不完善等。 显然,测量结果中的不确定度,并未包括未识别的系统效应的影响。尽管未识别的系统效应会使测得值产生某种系统偏差。 所以,可以概括地说,测量不确定度是由于随机效应和已识别得系统效应不完善的影响,而对被测量的测得值不能确定(或可疑)的程度。(注:这里的测得值,系指对已识别的系统效应修正后的最佳估计值)。 (二)不确定度的来源 在国际指南(GUM)中,将测量不确定度的来源归纳为10个方面: ① 对被测量的定义不完善; ② 实现被测量的定义的方法不理想; ③ 抽样的代表性不够,即被测量的样本不能代表所定义的被测量; ④ 对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善; ⑤ 对模拟仪器的读数存在人为偏移; ⑥ 测量仪器的分辨力或鉴别力不够; ⑦ 赋予计量标准的值或标准物质的值不准; ⑧ 引用于数据计算的常量和其他参量不准; ⑨ 测量方法和测量程序的近似性和假定性; ⑩ 在表面上看来完全相同的条件下,被测量重复观测值的变化。 上述的来源,基本上概括了实践中所能遇到的情况。其中,第①项如再加上理论认识不足,即对被测量的理论认识不足或定义不完善似更充分些;第⑩项实际上是未预料因素的影响,或简称之为“其他”。 可见,测量不确定度一般来源于随机性和模糊性。前者归因于条件不充分,而后者则归因于事物本

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

测量不确定度与《测量不确定度表示指南》

测量不确定度与《测量不确定度表示指南》 摘要:CIPM、BIPM、ISO等国际组织提出了统一的测量准确度的评定方法,制定了“测量不确定度表示指南”等技术规范。测量不确定度的提出对于计量学、经典真值误差概念、误差理论研究和应用、测量结果评定与表示等都具有划时代的意义。本文对“测量不确定度表示指南”进行综述,介绍测量不确定度的提出和发展过程、计量学指南联合委员会(JCGM)关于测量不确定度的工作情况,以及在JCGM/WG1 工作会议上我国提出的关于GUM建议修改意见。 关键词:测量不确定度;测量误差;GUM;JCGM/WG1 1。引言 测量是人们认识自然界量值关系的重要手段,是人类有意识的实践活动。当人们用测量来认识客观存在的量值时,该量值就是被测量,其定义值就是被测量真值。被测量真值是一种客观存在,其关键是被测量真值的定义。通过测量确定的被测量的估计值被称为测量结果。测量结果是人们对客观存在的被测量真值通过测量得到的主观认识。受到需要和客观可能的限制,测量结果与被测量真值间存在差异,即 测量误差。测量误差表征测量结果作为被测量真值估计值的可靠程度,被称为测量准确度,测量准确度评估事实上就是对测量误差进行评估。完整的测量结果的信息中,应该包括测量准确度评估结果,用以判断测量结果的可靠程度[1]。 有测量史以来,测量准确度评估始终处于计 量技术的核心位置。测量不确定度表征被测量真值在某个量值范围的

估计。测量误差虽然不可能准确知道,但常常可以由各种依据估计测量误差可能变动的区间,可以估计测量误差的绝对值上界,这个被估计的变动区间或上界值称为测量不确定度,它是测量结果及其表征测量误差大小的统计特征估计值[2,3]。 测量不确定度的提出引发了经典真值误差概念、误差理论研究和应用、测量结果评定与表示的重大变革。本文拟对“测量不确定度表示指南”进行综述,介绍测量不确定度的提出和发展过程、计量学指南联合委员会(JCGM)第一工作组(WG1)的工作情况,以及我国在JCGM/WG1工作会议上提出的GUM建议修改意见。 2。测量不确定度与测量误差 测量不确定度和测量误差是误差理论中两个重要概念[4],它们都是评价测量结果质量高低的重要指标,都可作为测量结果的精度评定参数。但它们之间又有明显的区别。 从定义上讲,测量误差是测量结果与真值之差,它以真值或约定真值为中心,而测量不确定度是以被测量的估计值为中心。因此测量误差是一个理想的概念,一般不能准确知道,难以定量;而测量不确定度是反映人们对被测量真值在某个量值范围的估计,可以定量评定。 测量误差按其特征和性质分为系统误差、随机误差和粗大误差,并可采取不同措施来减小或消除各类误差对测量的影响。由于各类误差之间并不存在绝对界限,故在分类判别和误差计算时不易准确掌握。测量不确定度不对测量误差进行分类,而是按评定方法分为A类评定和B类评定[5,6],两类评定方法不分优劣,按实际情况的可能性加

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

测量不确定度要求的实施指南

测量不确定度要求的实施指南 1 概述 1993年由国际计量局(BIPM)、国际标准化组织(ISO)、国际电工委员会(IEC)、国际法制计量组织(OIML)、国际理论与应用化学联合会(IUPAC)、国际理论与应用物理联合会(IUPAP)、国际临床化学联合会(IFCC) 7个国际组织联合发布《测量不确定度表示指南》(Guide to the Expression of Uncertainty in Measurement)简称GUM。为了保持与国际化发展和要求的同步,我国1999发布并实施JJF 1059-1999《测量不确定度评定与表示》。中国合格评定国家认可委员会在对检测实验室的认可中,对测量不确定度的评定提出了要求:对于检测实验室要求制定与检测工作特点相适应的测量不确定度的评定程序,并将其应用于不同类型的检测工作;当不确定度与检测结果的有效性或应用有关,当用户有要求,当影响对规范限度的符合性,当测试方法有规定和认可委员会有要求时,检测报告应该提供测量结果的不确定度。这对实验室的检测工作程序,对检测技术的质量控制和实验室规范性管理提出了更高的要求。 1.1、测量不确定度(uncertainty of a measurement) 表征合理地赋予测量之值的分散性,与测量结果相联系的参数。 (1) “合理”——是指在统计控制状态下的测量才能称之为合理的。所谓统计控制状态就是一种随机状态,即处于重复性条件下或重现性条件下的测量状态。 (2) “分散性”——指测量结果的分散性,即为一个量值区间,测量结果可以是假定概率分布的估算。 (3) “相联系”——更确切的翻译应为“与.....一起”。因此,不确定度是和测量结果一起,用来表明在给定条件下对被测量进行测量时,测量结果所可能出现的区间。测量不确定度是真值所处范围的评定参数。 测量结果的完整表达 一般来讲,可用y’=y±U表示,y是测量结果,U是扩展不确定度,测量结果的完整表达y’,可用图0表示。 ----此参数可以是诸如标准差或其倍数,或说明了臵信水准的区间的半宽度。 ----测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,并用实验标准差表征。另一些分量则可用基于经验或其他信息的假定概率分布估算,也可用标准差表征。 ----不确定度是对测量结果而言,用于表达这个结果的分散程度,是一个定量概念,可用数字来描述。不确定度越小,测量的水平越高,质量越高,其实用价值也越高;反之亦然。

功率不确定度评定与表示.

输入功率和电流的 不确定度评定与表示 编制: 日期: 审核: 日期: 批准:日期: 1 目的 测试样品的输入电流及输入功率。 2 检测方法和步骤 按GB4706.13-1998标准的要求,被测样品在额定电压及相应的气候类型条件下,运行达到稳定状态后,测量被测样品在运行周期开停时的电流及输入功率值,取其平均值作为被测量样品的电流、输入功率测量值。 被测样品由稳压电源供电,对于N型气候类型的电冰箱,测试的环境温度保持在32℃,使用青岛青智仪器有限公司的8775A型数字式电参量测试仪,直接测量被测样品运行周期开停时的输入功率及电流。 3 数学模型 由于是用电叁数表直接测量被测样品的电流和输入功率,因此: Ic=Is 其中: Ic:被测电流 A,Is:示值电流 A Pc=Ps 其中: Pc:被测功率 W,Is:被测功率 W 4 不确定度分量的识别与量化 4.1不确定度来源有:

a .由仪器显示的末位数值波动引起的检测人员读数的不确定度,可用A类 方法评价。 b .由稳压电源的波动引起的测试条件的不稳定,此不确定度可用A类方法 评价。 c .由仪器的测量准确度引起的测量不确定度,此类不确定度可用该仪器的 校准证书的信息通过B类方法评定。 d .由于环境温度的波动造成仪器测量准确度的变化和被测样品的电流、功 率的测量不确定度,此类不确定度可用B类方法评定。 4.1.1 A类不确定度评定 对于由仪器显示值的波动以及稳压电源波动造成的测量不确定度,通过重复测量加以评定。进行五次重复测量,并通过下列公式计算测量结果的标准不确定度μ(): = ()=-) ()=μ()= a电流测量值及计算结果: 测量值5 1.258

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

测量不确定度初学者指南如何表述测量答案举例说明不确定度的基本算法(六)

测量不确定度初学者指南如何表述测量答案举例说明不确定度的基本算法(六) 8.如何表述测量答案 表述测量答案是重要的,以便阅读者可以使用这个信息。要注意的主要事项有: ●测量结果要与不确定度值一起表述,例如"棍子长度为20cm±1cm"。 ●对包含因子和置信概率作说明。推荐的说法为:"报告的不确定度是根据标准不确定度乘以包含因子k=2,提供的置信概率约为95%"。 ●不确定度是如何估计的(你可以参考有阐述此法的出版物,如UKAS出版物M3003)。9.举例--不确定度的基本算法 以下举的是一个简单的不确定度分析例子。例子太详细并不显示,不过这意思是说简单有清晰的例子足以说明方法了。首先是阐述测量和不确定度分析。其次吧不确定度分析表示在一张表格上("填表模省?"或"不确定度汇总表") 9.1测量--一根绳子有多长? 假定你要仔细估计一根绳子的长度,按照6.2节所列步骤,过程如下。 --------------------------------------------------------------------------------------------------- 例3计算一根绳子长度的不确定度 步骤一:确定你从你的测量中需要得到的是什么,为产生最终结果,要决定需要什么样 的实际测量和计算。你要测量长度而使卷尺。除了在卷尺上的实际长度读数外,你也许有必要考虑: ● 卷尺的可能误差 ◇卷尺是否需要修正或者是否有了表明其正确读数的校准 ◇那么校准的不确定度是多少?

◇卷尺易于拉长吗? ◇可能因弯曲而使其缩短吗?从它校准以来,它会改变多少? ◇分辨力是多少?即卷尺上得分度值是多少?(如mm) ● 由于被测对象的可能误差 ◇绳子伸直了吗?欠直还是过直? ◇通常的温度或湿度(或任何其它因素)会影响其实际长度吗? ◇绳的两端是界限清晰的,还是两端是破损的? ● 由于测量过程和测量人员的可能误差 ◇绳的起始端玉娟尺的起始端你能对的有多齐? ◇卷尺能放的与绳子完全平行吗? ◇测量如何能重复? ◇你还能想到其它问题吗? 步骤2:实施所需要的测量。你实施并纪录你的长度测量。为了格外充分,你进行重复测量总计10次,每一次都重新对准卷尺(实际上也许并不十分合理)。让我们假设你计算的平均值为5.017米,估计的标准不确定度为0.0021m(即2.1mm)。 对于仔细测量你还可以记录: ◇你在什么时间测量的 ◇你是如何测的,如沿着地面还是竖直的,卷尺反向测量与否,以及你如何使卷尺对准绳子的其它详细情况 ◇你使用的是哪一个卷尺 ◇环境条件(如果你认为会影响你测量结果的那些条件) ◇其它可能相关的事项

不确定度评定报告

不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型 数学模型 A=A S +δ 式中:A —频率计上显示的频率值 A S —参考频率标准值; δ—被测与参考频标频率的误差。 3、输入量的标准不确定度 3.1 标准晶振引入的标准不确定度()s A u ,用B 类标准不确定度评定。 标准晶振的频率准确度为±2×10-10,即当被测频率为10MHz 时,区间半宽为a =10×106×2×10-9=2×10-2Hz ,在区间内认为是均匀分布,则标准不确定度为 ()s A u =a/k =1.2×10-2Hz ()=rel s A u 1.2×10-2/107=1.2×10-9 3.2被测通用计数器的测量重复性引入的标准不确定度分量u(δ2) u(δ2)来源于被测通用计数器的测量重复性,可通过连续测量得到测量列,采用A 类方式进行评定。对一台通用计数器10MHz 连续测量10次,得到测量列9999999.6433、9999999.6446、9999999.6448、9999999.6437、9999999.6435、9999999.6428、9999999.6446、9999999.6437、9999999.6457、9999999.6451Hz 。 由测量列计算得 算术平均值 ∑==n i i f n f 1 1=9999999.6442Hz, 标准偏差 () Hz n f f s n i i 00091.01 2 1 =--= ∑=

标准不确定度分量u(δ 3 )=0.00091/=0.00029Hz u(δ 3 )rel=2.9×10-11 4 合成标准不确定度评定 主要标准不确定度汇总表 输入量A S 、δ 1 、δ 2 相互独立,所以合成标准不确定度为 u c (A)= 9 2 2 2 1 210 5.1 ) ( ) ( ) (- ? = + +δ δu u A u S 5 扩展不确定度评定 取k=2,则 扩展不确定度为 U rel =k×u c=2×1.5×10-9=3×10-9 6测量不确定度报告 f=f0(1±3×10-9)Hz,k=2 不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型

不确定度评定规范(计量)

中汽长电股份有限公司 1. 目的 明确测量不确定度评定方法.种类.确保测量设备不确定度的正确评定,合理利用测量结果,满足计量校对要求. 2. 适用范围 为证实产品质量符合要求所需的测量设备和技术合同所提出要求的须给出不确定度的测量设备. 3. 职责 3.1本单位最高标准始建时,报上级计量部门对不确定度认可发证 方可使用,当主标准更换后其不确定度重新评定. 3.2本企业测量设备由计量检定人员按GB/T19022.1-1994给出测量 不确定度. 3.3本企业的试验设备由有关部门(设备设计.设备管理.设备使用) 给出有关信息,由检定人员给出不确定度. 信息指: (1) 设备名称.使用单位及地点. (2) 试验目的和要求. (3) 技术与性能要求. (4) 试验的数据. 4. 不确定度评定方法 4.1 不确定度采用A.B两类方法其选择可根据具体情况确定. 4.2 A类方法用所得观测列按统计方法进行评定. 4.3B类评定方法在实际测量中,有时不能或不需重复测量,须根据 有关信息进行科学判断估计作出. (1) 以前的测量数据(如计量标准数据).

(2) 有关材料及仪器特点.性能的经验或一般知识. (3) 制造说明书. (4) 检定校准证书提供的数据(如证书开出的测量结果). (5) 手册赋予参考数据的不确定度. 4.4测量设备来源不确定度由于须对量值溯源,可由上一级计量标 准的不确定度取得.也可利用所得检定证书或有关规范所给出的数据. 4.5按检定规程经过检定合格,不超过最大允许误差,使用者不必考 虑评定测量不确定度. 4.6测量设备具有相应检定规程一般只给出测量结果,不标明不确 定度数值用户有文件规定时,可给出评估值. 4.7本企业设计自制的试验设备按企业制定的不确定度校准规范进 行评定. 4.8自行设计制造的试验设备由设计部门对其装置提出具体要求, 使用单位编制校准规范,并提供试验数据.由计量中心给出不确定度, 技术部门依据计量中心给出的不确定度结果作出确认. 4.9使用单位按校准规范确定的周期,向计量中心提交试验数据.不 确定度评定按周期进行. 5. 引用文件 GB/T19022.1-1994 ISO10012-1 ISO10012-2 6. 质量记录: 试验设备不确定度登记表

测量不确定度评定例题

测量不确定度评定与表示 一.思考题 1.什么是概率分布? 答:概率分布是一个随机变量取任何给定值或属于某一给定值集的概率随取值而变化的函数,该函数称为概率密度函数。 2.试写出测量值X 落在区间[]b a ,内的概率p 与概率密度函数的函数关系式,并说明其物理意义。 答:()()dx x p b X a p b a ?= ≤≤ 式中,()x p 为概率密度函数,数学上积分代表面积。 物理意义 : 概率分布曲线 概率分布通常用概率密度函数随随机变量变化的曲线来表示,如图所示。 测量值X 落在区间[]b a ,内的概率p 可用上式计算 由此可见,概率p 是概率分布曲线下在区间[]b a ,内包含的面积,又称包含概率或置信水平。当9.0=p ,表明测量值有90%的可能性落在该区间内,该区间包含了概率分布下总面积的90%。在(一∞~+∞)区间内的概率为1,即随机变量在整个值集的概率为l 。当=p 1(即概率为1)表明测量值以100%的可能性落在该区间内,也就是可以相信测量值必定在此区间内。 3.表征概率分布的特征参数是哪些? 答:期望和方差是表征概率分布的两个特征参数。 4.期望和标准偏差分别表征概率分布的哪些特性? 答:期望μ影响概率分布曲线的位置;标准偏差σ影响概率分布曲线的形状,表明测量值的分散性。 5.有限次测量时,期望和标准偏差的估计值分别是什么? 答:有限次测量时,算术平均值X 是概率分布的期望μ的估计值。即:∑=n i i x n X 1 1= 有限次测量时,实验标准偏差s 是标准偏差σ的估计值。即:()() 1 1 2 --=∑=n X x x s n i i

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

(完整版)不确定度与测量结果不确定的表达

1.2 不确定度与测量结果不确定的表达 由于误差的存在,使得测量结果具有一定程度的不确定性。为了加强国际间的交流与合作,1996年,中国计量科学研究院在国际权威文件《测量不确定度表达指南》的基础上,制定了我国的《测量不确定度规范》。从此,物理实验的不确定度评定有了国际公认的准则。下面将结合对测量结果的评定对不确定度的概念、分类、合成等问题进行讨论。 1.2.1 不确定度的概念 不确定度是评价测量质量的一个新概念,是表达测量结果具有分散性的一个参数,它是被测量的真值在某个量值范围内的一个评定。不确定度反映了可能存在的误差分布范围,是误差的数字指标。不确定度愈小,测量结果可信赖程度愈高;不确定度愈大,测量结果可信赖程度愈低。在实验和测量工作中,不确定度是作为估计而言的,因为误差是未知的,不可能用指出误差的方法去说明可信赖程度,而只能用误差的某种可能的数值去说明可信赖程度,所以不确定度更能表示测量结果的性质和测量的质量。用不确定度评定实验结果的误差,其中包含了各种来源不同的误差对结果的影响,而它们的计算又反映了这些误差所服从的分布规律,这是更准确地表述了测量结果的可靠程度,因而有必要采用不确定度的概念。 1.2.2 测量结果的表示和合成不确定度 在做物理实验时,要求表示出测量的最终结果。在这个结果中既要包含待测量的近似真实值x,又要包含测量结果的不确定度σ,还要反映出物理量的单位。因此,要写成物理含意深刻的标准表达形式,即 σ± =x x(单位)(1—4)式中x为待测量;x是测量的近似真实值,σ是合成不确定度,一般保留一位有效数字,若首数是1或2时可取2位。这种表达形式反应了三个基本要素:测量值、合成不确定度和单位。 在物理实验中,直接测量时若不需要对被测量进行系统误差的修正,一般就取多次测量的算术平均值x作为近似真实值;若在实验中有时只需测一次或只能测一次,该次测量值就为被测量的近似真实值。如果要求对被测量进行一定系统误差的修正,通常是将一定系统误差(即绝对值和符号都确定的可估计出的误差分量)从算术平均值x或一次测量值中减去,从而求得被修正后的直接测量结果的近似真实值。 在上述的标准式中,近似真实值、合成不确定度、单位三个要素缺一不可,否则就不能全面表达测量结果。同时,近似真实值x的末尾数应该与不确定度的所在位数对齐,近似真实值x与不确定度σ的数量级、单位要相同。在开始实验中,测量结果的正确表示是一个难点,要引起重视,从开始就注意纠正,培养良好的实验习惯,才能逐步克服难点,正确书写测量结果的标准形式。 由于误差的来源很多,测量结果的不确定度一般包含几个分量。在修正了可定系统误差之后,把余下的全部误差归为A、B两类不确定度分量。 ①A类分量(A类不确定度): S—在同一条件下,多次重复测量时,用统计分析 A

测量不确定度评估报告

测量不确定度评估报告 1.识别测量不确定度的来源 在医学实验室中构成测量不确定度的4个主要分量主要包括“检验过程不精密度”、“校准品赋值的不确定度”、“样品影响分量”和“其它检验影响分量”。我们参考CNAS-GL05:2011《测量不确定度要求的实施指南》和CNAS-TRL-001:2012《医学实验室―测量不确定度的评定与表达》的要求,制定了测量不确定度评定程序,评估了本科室申报的定量项目的测量不确定度。由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故我们只评估了前两个分量的不确定度。 2.目标不确定度 2.1 确定的检验程序在正式启用前,实验室应为每个测量程序确定目标不确定度,即规定每个测量程序的测量不确定度性能要求。 2.2 检验科每个测量程序的目标不确定度由各实验室确定。 2.3 各实验室在确定目标不确定度时可以基于生物变异、国内外专家组的建议、管理准则或当地医学界的判断。根据应用要求,对不同水平的测量结果可以确定一个或多个目标不确定度。 2.4目标不确定度如下: 2.4.1临床化学项目将TEa(国家标准(GB/T20470-2006)、卫生部临床检验中心室间质量评价标准)作为目标扩展不确定度。 2.4.2血液学项目,将TEa(行业标准WS/T406-2012)指标作为目标扩展不确定度。 3.确立输出量与输入量之间的数学模型 若输出量为Y(被测量值),输入量X的估计值为xi,则被测量与各输入量之间的函数关系为Y=f(x1,x2,x3,x4…);由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故只对前两个分量的不确定进行评估。 4测量不确定度的计算 4.1 A类评估:检验过程不精密度评估样本使用高低2个水平的室内质控品作为实验用样本。 计算本室2水平质控品的日间精密度。计算批间变异系数CV。

不确定度的评定步骤及方法1

目次 1 范围 (1) 2 规范性引用文件 (1) 3 术语及定义 (1) 4 产生测量不确定度的原因和测量模型化 (1) 5 A类相对标准不确定度的评定 (2) 6 B类相对标准不确定度的评定 (4) 7 合成标准不确定度的评定 (1) 8 扩展不确定度的评定 (1) 9 测量不确定度的表示 (1) 附录 (1)

不确定度的评定与表示 1 范围 1.1 本规范适用于本实验室各种准确度等级的测量。 1.2 本规范主要涉及有明确定义,并可用唯一值表征的被测量估计值的不确定度。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T6397.6-2009《测量方法与结果的准确度(正确度与精密度)第6部分:准确度值得实际应用》 JJF1059-1999 《测量不确定度的评定与表示》 JJF1001 《通用计量术语及定义》 3 术语及定义 引用JJF1001 《通用计量术语及定义》 4 产生测量不确定度的原因 4.1 测量过程中的随机效应及系统效应均会导致测量不确定度,数据处理中的修约也会导致不确定度。 4.2 测量中可能导致不确定度的来源一般有: a)被测量的定义不完整; b)复现被测量的测量方法不理想; c)取样的代表性不够,即被测样本不能代表所定义的被测量; d)对测量过程受环境影响的认识不恰如其分或对环境的测量与控制不完善; e)对模拟式仪器的读数存在人为偏移; f)测量仪器的计量性能 (如灵敏度、鉴别力阑、分辨力、死区及稳定性等)的局限性; g)测量标准或标准物质的不确定度; h)引用的数据或其他参量的不确定度; i)测量方法和测量程序的近似和假设; j)在相同条件下被测量在重复观测中的变化。 上述的不确定度的来源可能互相关联。对于那些尚未认识到的系统效应,显然是不可能在不确定度

相关主题
文本预览
相关文档 最新文档