当前位置:文档之家› 功率不确定度评定与表示.

功率不确定度评定与表示.

功率不确定度评定与表示.
功率不确定度评定与表示.

输入功率和电流的

不确定度评定与表示

编制: 日期:

审核: 日期:

批准:日期:

1 目的

测试样品的输入电流及输入功率。

2 检测方法和步骤

按GB4706.13-1998标准的要求,被测样品在额定电压及相应的气候类型条件下,运行达到稳定状态后,测量被测样品在运行周期开停时的电流及输入功率值,取其平均值作为被测量样品的电流、输入功率测量值。

被测样品由稳压电源供电,对于N型气候类型的电冰箱,测试的环境温度保持在32℃,使用青岛青智仪器有限公司的8775A型数字式电参量测试仪,直接测量被测样品运行周期开停时的输入功率及电流。

3 数学模型

由于是用电叁数表直接测量被测样品的电流和输入功率,因此:

Ic=Is 其中: Ic:被测电流 A,Is:示值电流 A

Pc=Ps 其中: Pc:被测功率 W,Is:被测功率 W

4 不确定度分量的识别与量化

4.1不确定度来源有:

a .由仪器显示的末位数值波动引起的检测人员读数的不确定度,可用A类

方法评价。

b .由稳压电源的波动引起的测试条件的不稳定,此不确定度可用A类方法

评价。

c .由仪器的测量准确度引起的测量不确定度,此类不确定度可用该仪器的

校准证书的信息通过B类方法评定。

d .由于环境温度的波动造成仪器测量准确度的变化和被测样品的电流、功

率的测量不确定度,此类不确定度可用B类方法评定。

4.1.1 A类不确定度评定

对于由仪器显示值的波动以及稳压电源波动造成的测量不确定度,通过重复测量加以评定。进行五次重复测量,并通过下列公式计算测量结果的标准不确定度μ():

=

()=-)

()=μ()=

a电流测量值及计算结果:

测量值5

1.258

1.146

1.202

灵敏系数

μ()=()μ()= C2()μ()

C()=1

b输入功率测量值及计算结果:

测量值1测量值2测量值3测量值4测量值5平均值标准不确定

度186.1185.1179.3188.8183.8------

146.0145.8145.8139.3146.2------

166.05165.45162.55164.05165.0164.62 0.612

灵敏系数

μ()=()μ()=C2()μ()

C()=1

4.1.2 B类不确定度评定

1)由仪器的测量准确度引起的测量不确定度

a. 电流测量

8775A型数字式电参量测试仪的测量准确度:±( 读数偏差+0.1%╳测量范围),对本例而言测量的最大误差范围:±(0.002402A+0.1%╳10A)=±0.0124 A,且假定为矩形分布,则μ(Is)为最大误差范围的半宽/,即 0.0124 /= 0.0072 A。

灵敏系数

μ(Ic)=()μ(Is)=C(Is)μ(Is)

C(Is)=1

b. 输入功率测量

8775A型数字式电参量测试仪的测量准确度:±(读数偏差+0.1%╳测量范围),对本例而言测量的最大误差范围:±(0.3939 +0.1%╳1000)=± 1.3939 W,且假定为均匀分布,则μ(Pc)为最大误差范围的半宽/,即 1.3939

/=0.805 W。

灵敏系数μ(Pc)=()μ(Ps)=C(Ps)μ(Ps)

C(Ps)=1

2)环境温度变化对仪器测试准确度的影响,造成测量不确定度,考虑到本次测量的环境温度在仪器正常工作范围,因此该不确定分量可以忽略。

3)环境温度变化对电冰箱的运行有较大的影响,但是家用制冷器具检测装置对温度的控制精度达到±0.1℃,因此引起的测量不确定度分量可以忽略。

4.1.3 合成标准不确定度及有效自由度的计算

用以下公式计算合成标准不确定度

μ(y)=()μ(x)

a.电流测量的合成标准不确定度:

μ(Ic)=C(Ic)×μ(Ic)+ C()×μ()

=1×0.0072+1×0.0022=0.0000567

μ(Ic)=0.0075

b.输入功率测量的合成标准不确定度:

μ(Pc)=C(Pc)×μ(Pc)+ C()×μ()

=1×0.805+1×0.612=1.023W

μ(Pc)=1.011

4.2 标准不确定度汇总表

4.2.1电流标准不确定度汇总表

μ(

重复

测量 A

0.0022 正态分布

1

0.0022 1

0.0022

μ(Ic ) 仪器测量

准确度

B

0.0124 矩形分布

0.0072 1 0.0072

合成标准不确定度

(Uc )=

0.0075

包含因子(Kp (置信水平:95%)

2

扩展不确定度(U= Uc*Kp 0.015

4.2.1电流标准不确定度汇总表

μ

()重复

测量 A

0.612

正态分布 1

0.612 1 0.612

μ(Pc)仪器

测量

准确

B

1.3939

矩形分布

0.805 1 0.805

合成标准不确定度

(Uc)=

1.011

包含因子(Kp(置信水

平:95%)

2

扩展不确定度(U=

Uc*Kp

2.02

5 测量不确定度的最终报告

5.1电流测量结果

I=1.201A±0.015A(K=2,р=0.95)。

5.2输入功率测量结果

P=164.62W±2.06W(K=2,р=0.95)。

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

标准不确定度的A类评定

标准不确定度的A类评定 减小字体增大字体作者:李慎安来源:https://www.doczj.com/doc/0010598095.html, 发布时间:2007-04-28 08:52:07 计量培训:测量不确定度表述讲座 国家质量技术监督局李慎安 5.1 A类评定的基本方法是什么? 用统计方法(参阅4.1)评定标准不确定度称为不确定度的A类评定,所得出的不确定度称为A类标准不确定度,简称A类不确定度。当它作为一个分量时,无例外地只用标准偏差表征。 标准不确定度A类评定的基本方法是采用贝塞尔公式计算标准差s的方法。 一个被测量Q(既可以是输入量中的一个,也可以是输出量或被测量)在重复性条件下或复现性条件下重复测量了n次,得到n个观测结果q1,q2,…,q n,那么,Q的最佳估计 即是这n个观测值的算术平均值: 由于n只是有限的次数,故又称为样本平均值,它只是无限多次(总体)平均值的一个估计。n越大,这个估计越可靠。 每次的测量结果q i减称为残差v i,v i=(q i-),因此有n个残差。 残差的平方和除以n-1就是实验方差s2(q i),即一次测量结果的实验方差,其正平方根即为实验标准差s(q i),当用它来表述一次测量结果的不确定度u(q i)时,有s(q)=u(q i),或简写成s=u。 请注意,今后不再把s作为A类不确定度的符号,把u作为B类不确定度的符号,而是不分哪一类,标准不确定度均用u表示。 上述的计算程序就是3.1给出的程序。 平均值的标准偏差s()或其标准不确定度u()为: 必须注意上式中的n指所用的次数。在实际工作中,为了得到一个较为可靠的实验标准偏差s(q i),往往作较多次的重复测量(n较大,自由度ν也较大);但在给出被测量Q i测量结果q时,只用了较少的重复观测次数(例如往往只有4次)。那么,4次的平均值的标准偏差就是s(q i)/4=0.5×s(q i) 但是,如果用于评定s(q i)时的n个观测值,直接用于评定s()(n个的平均),则成为下式: 5.2 除基本方法外还有哪些简化的方法?用于何种场合? 在JJF1059中提出了另外的一种简化方法,称之为极差法,极差R定义为一个测量列

测量不确定度的评定方法.

测量不确定度的评定方法 鉴于测量不确定度在检测,校准和合格评定中的重要性和影响,考虑到试验机行业应用测量不确定度时间不长,现就有关测量不确定度概念、测量不确定度的评定和表示方法,谈谈学习体会。奉献给同行业人员。由于本人学识浅薄,力不从心,有不妥或错误处,期望批评指正。 (一)测量不确定度的概念 《测量不确定度表示指南》(GUM),即国际指南,给出的测量不确定度的定义是:与测量结果相关联的一个参数,用以表征合理地赋予被测量之值的分散性。 其中,测量结果实际上指的是被测量的最佳估计值。被测量之值,则是指被测量的真值,是为回避真值而采取的。我国计量技术规范JJF1059—1999《测量不确定度评定与表示》中,亦推荐这一用法(见该规范2.3注4)。 须知,真值对测量是一个理想的概念,如何去估计它的分散性?实际上,国际指南(GUM)所评定的并非被测量真值的分散性,也不是其约定真值的分散性,而是被测量最佳估计值的分散性。 关于测量不确定度的定义,过去曾用过: ① 由测量结果给出的被测量估计的可能误差的度量; ② 表征被测量的真值所处范围的评定。 第①种提法,概念清楚,只是其中有“误差”一词,后来才改为第②种提法。现行定义与第②种提法一致,只是用被测量之值取代了真值,评定方法相同、表达式也一样,并不矛盾。 至于参数,可以是标准差或其倍数,也可以是给定置信概率的置信区间的半宽度。用标准差表示测量不确定度称为测量标准不确定度。在实际应用中如不加以说明,一般皆称测量标准不确定度为测量不确定度,甚至简称不确定度。 用标准差值表示的测量不确定度,一般包括若干分量。其中,一些分量系用测量列结果的统计分布评定,并用标准差表示:而另外一些分量则是基于经验或其他信息而判定的(主观的或先验的)概率分布评定,也以标准差值表示。可见,后者有主观鉴别的成分,这也是在定义中使用“合理地赋予”的主要原因。 为了和传统的测量误差相区别,测量不确定度用u(不确定度英文uncertainty的字头)来表示,而不用s。 应当指出,用来表示测量不确定度的标准差,除随机效应的影响外,还包括已识别的系统效应不完善的影响,如标准值不准、修正量不完善等。 显然,测量结果中的不确定度,并未包括未识别的系统效应的影响。尽管未识别的系统效应会使测得值产生某种系统偏差。 所以,可以概括地说,测量不确定度是由于随机效应和已识别得系统效应不完善的影响,而对被测量的测得值不能确定(或可疑)的程度。(注:这里的测得值,系指对已识别的系统效应修正后的最佳估计值)。 (二)不确定度的来源 在国际指南(GUM)中,将测量不确定度的来源归纳为10个方面: ① 对被测量的定义不完善; ② 实现被测量的定义的方法不理想; ③ 抽样的代表性不够,即被测量的样本不能代表所定义的被测量; ④ 对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善; ⑤ 对模拟仪器的读数存在人为偏移; ⑥ 测量仪器的分辨力或鉴别力不够; ⑦ 赋予计量标准的值或标准物质的值不准; ⑧ 引用于数据计算的常量和其他参量不准; ⑨ 测量方法和测量程序的近似性和假定性; ⑩ 在表面上看来完全相同的条件下,被测量重复观测值的变化。 上述的来源,基本上概括了实践中所能遇到的情况。其中,第①项如再加上理论认识不足,即对被测量的理论认识不足或定义不完善似更充分些;第⑩项实际上是未预料因素的影响,或简称之为“其他”。 可见,测量不确定度一般来源于随机性和模糊性。前者归因于条件不充分,而后者则归因于事物本

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

合成标准不确定度的计算修订稿

合成标准不确定度的计 算 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

第七讲合成标准不确定度的计算 减小字体增大字体作者:李慎安?来源:发布时间:2007-05-08 10:19:04 计量培训:测量不确定度表述讲座 国家质量技术监督局 李慎安 合成标准不确定u c的定义如何理解? 合成标准不确定度无例外地用标准偏差给出,其符号u以小写正体c作为下角标;如给出的为相对标准不确定度,则应另加正体小写下角标rel,成为u crel。按《JJF1001》定义为:当测量结果是由若干个其他量的值求得时,按其他各量的方差和协方差算得的标准不确定度。如各量彼此独立,则协方差为零;如不为零(相关情况下),则必须加进去。 上述定义可以理解为:当测量结果的标准不确定度由若干标准不确定度分量构成时,按方和根(必要时加协方差)得到的标准不确定度。有时它可以指某一台测量仪器,也可以指一套测量系统或测量设备所复现的量值。在某个量的不确定度只以一个分量为主,其他分量可忽略不计的情况下,显然就无所谓合成标准不确定度了。 什么是输入量、输出量 在间接测量中,被测量Y不能直接测量,而是通过若干个别的可以直接测量的量或是可以通过资料查出其值的量,按一定的函数关系得出: Y=f(X1,X2,…,X n) 其中X i为输入量,而把Y称之为输出量。 例如:被测量为一个立方体的体积V,通过其长l、宽b和高h三个量的测量结果,按函数关系 V=l·b·h计算,则l,b,h为输入量,V为输出量。 什么叫作线性合成 例如在测量误差的合成计算中,其各个误差分量,不论是随机误差分量还是系统误差分量,当合成为测量误差时,所有这些分量按代数和相加。这种合成的方法称为线性合成。 不确定度的各个分量如彼此独立,则恒用方和根的方式合成。但如果其中某两个分量彼此强相关,且相关系数r=+1,则合成时是代数相加,即线性合成而非方和根合成。 什么叫灵敏系数 当输出量Y的估计值y与输入量X i的估计值x1,x2,…x n之间有

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

标准不确定度B类评定的举例

标准不确定度B类评定的举例: (例1)校准证书上给出标称值为1000g的不锈钢标准砝码质量m s的校准值为,且校准不确定度为24g(按三倍标准偏差计),求砝码的标准不确定度。 评定:a =U =24g k=3 则砝码的标准不确定度为u B(m s)= 24g/3 =8g (例2)校准证书上说明标称值为10的标准电阻,在23℃时的校准值为,扩展不确定度为90,置信水平为99%,求电阻的相对标准不确定度。 评定:由校准证书的信息知道: a =U99=90,P =;p241 假设为正态分布,查表得到k=;则电阻校准值的标准不确定度为: u B(R S)=90/=35 相对标准不确定度为:u B(R S)/ R S=×10-6。 (例3)手册给出了纯铜在20℃时线热膨胀系数20(Cu)为×10-6℃-1,并说明此值的误差不超过×10-6℃-1,求20(Cu)的标准不确定度。 评定:根据手册,a =×10-6℃-1,依据经验假设为等概率地落在区间内,即均匀分布,查表得,铜的线热膨胀系 k 3

数的标准不确定度为: u ( 20)=×10-6℃-1/ =×10-6℃-1 (例4) 由数字电压表的仪器说明书得知,该电压表的最大允许误差为(14×10-6×读数+2×10-6×量程),在10 V 量程上测1 V 时,测量10次,其平均值作为测量结果, V = V ,求电压表仪器的标准不确定度。 评定:电压表最大允许误差的模为区间的半宽度: a =(14×10-6× +2×10-6×10 V )=33×10-6 V=33 V 。 设在区间内为均匀分布,查表得到 。 则:电压表仪器的标准不确定度为: u (V )= 33 V/3=19 V [案例]:某法定计量技术机构为要评定被测量Y 的测量结果y 的合成标准不确定度u c (y )时,y 的输入量中,有碳元素C 的原子量,通过资料查出C 的原子量Ar (C )为:Ar (C )=±。资料说明这是国际纯化学和应用化学联合会给出的值。如何评定C 的原子量不准引入的标准不确定度分量 案例分析:问题在于:①±是否是碳元素原子量的不确定度;②如何评定碳元素C 的原子量不准引入的标准不确定度分量。依据JJF1059-1999《测量不确定度的表式和评定》第5节《标准不确定度的B 类评定》, ①如果对没有关于不确定度的说明,一般可认为±不是不确定度,它是允许误差限,也就是Ar (C )=±,说明Ar (C )值33k

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

不确定度计算

2、不确定度各分量的评定 根据测量步骤可知,测量氨氮质量的不确定度来源有几个方面,一是由标准曲线配制所产生的不确定度,二是测试过程所产生的不确定度。按《化学分析中不确定度的评估指南》,对于只涉及积或商的模型,例如:c N=m/v,合成标准不确定度为: 式中,u(c)为质量m和体积v的合成标准测量不确定度,mg/L; u(m)为质量m的标准测量不确定度,ug; u(v)为体积v的标准测量不确定度,mL。 2.1 取样体积引入的相对不确定度u rel(v) 所取水样用50mL单标线吸管移取。查JJG 196-2006《常用玻璃量器检定规程》,A级50mL 单标线吸管的容量允差为0.05mL,根据JJF 1059-1999《测量不确定度评定与表示》的规定,标定体积为三角分布,则容量允差引入的不确定度为:u(△V)=0.050/√6 。 根据制造商提供的信息,吸量管校准温度为20℃,设实验室内温度控制在±5℃范围内波动,与校准时的温差为5℃,由膨胀系数(以水的膨胀系数计算)为2.1×10-4/℃得到50mL水样的标准不确定度为(假定为均匀分布):

2.2重复性测定引入的相对不确定度u rel(rep) 采用A类方法评定,与重复性有关的合成标准不确定度均包含其中。对某水样进行7次 重复性测定,所得结果如下:1.33、1.35、1.34、1.34、1.35、1.38、1.35mg/L,平均值 1.35 mg/L。 重复测量数据的标准不确定度为: 2.3 铵(以氮计)的绝对量m引入的不确定度u rel(m) 2.3.1 配制过程中引入的不确定度u rel(1)

a.) 标准贮备液的不确定度u rel(1-1):包括纯度、称量、体积及摩尔质量计算4个部分,其中,摩尔 质量计算不确定度可省略不计(与其它因素相比,其对标准浓度计算相差1-2个数量级)。 纯度p:按供应商提供的参考数据,分析纯氯化铵[NH4Cl]纯度为≥99.5%,将该不确定度视为矩 形分布,则标准不确定度为u(p) =0.5/√3=28.9×10-4; 称量m:经检定合格的天平最大允许误差±0.1mg,将该不确定度视为矩形分布,标准偏差为 0.058mg,称量3.819g时的相对标准偏差为u(m) =0.152×10-4; 体积v:影响体积的主要不确定度有校准及温度。其一“校准影响”,根据JJG 196-2006《常用 玻璃量器检定规程》,校准温度20℃时A级1000mL容量瓶的容量允差为0.4mL,根据《测量不 确定度评定与表示》的规定,标定体积为三角分布,则容量允差引入的不确定度为,其相对标准 不确定度为0.164/1000=1.64×10-4。其二“温度影响”,根据制造商提供的信息,容量瓶校准温 度为20℃,设实验室内温度控制在±5℃范围内波动,则引起的体积变化为1000×5×2.1×10- 4=1.05mL,假定为均匀分布,k= ,则温度引起的容量瓶体积标准不确定度为,其相对标准不确定 度为6.06×10-4。所以综合这两个影响因素,u rel(v)= 6.28×10-4 综上所述,校准贮备液不确定度为: b.) 5mL移液管移取标准贮备液引入的不确定度u rel(1-2):按检定证书,5mL 单标线吸管(A级)最大允差为0.025mL,假定为三角分布,则校准体积的相对标准不确定度为0.00204(计算过程略);在±5℃引起的体积变化为0.00525mL,按均匀分布,则温度引起的体积标准不确定度为 0.00303mL,其相对标准不确定度为6.06×10-4,所以,5mL单标线吸管相对合成标准不确定度为: u rel(1-2)=2.13×10-3 c.) 500mL移液管移取标准贮备液引入的不确定度u rel(1-3):按检定证书,500mL 单标线吸管(A级)最大允差为0.25mL,假定为三角分布,则校准体积的相对标准不确定度为2.04×10-4(计算过程

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

不确定度测定汇总 ()

测量不确定度评定与表示 测量的目的是确定被测量值或获取测量结果。有测量必然存在测量误差,在经典的误差理论中,由于被测量自身定义和测量手段的不完善,使得真值不可知,造成严格意义上的测量误差不可求。而测量不确定度的大小反映着测量水平的高低,评定测量不确定度就是评价测量结果的质量。 图1 1 识别测量不确定度的来源 测量不确定度来源的识别应从分析测量过程入手,即对测量方法、测量系统和测量程序作详细研究,为此必要时应尽可能画出测量系统原理或测量方法的方框图和测量流程图。 检测和校准结果不确定度可能来自: (1)对被测量的定义不完善; (2)实现被测量的定义的方法不理想; (3)取样的代表性不够,即被测量的样本不能代表所定义的被测量; (4)对测量过程受环境影响的认识不全,或对环境条件的测量与控制不完善; (5)对模拟仪器的读数存在人为偏移; (6)测量仪器的计量性能 (如最大允许误差、灵敏度、鉴别力、分辨力、死区及稳定性等)的局限性,即导致仪器的不确定度; (7)赋予计量标准的值或标准物质的值不准确; (8)引用于数据计算的常量和其它参量不准确; (9)测量方法和测量程序的近似性和假定性; (10)在表面上看来完全相同的条件下,被测量重复观测值的变化。 分析时,除了定义的不确定度外,可从测量仪器、测量环境、测量人员、测量方

法等方面全面考虑,特别要注意对测量结果影响较大的不确定度来源,应尽量做到不遗漏、不重复。 2 定义 2.1 测量误差简称误差,是指“测得的量值减去参考量值。” 2.2 系统测量误差简称系统误差,是指“在重复测量中保持恒定不变或按可预见的方式变化的测量误差的分量。” 系统测量误差的参考量值是真值,或是测量不确定度可忽略不计的测量标准的测量值, 或是约定量值。系统测量误差及其来源可以是已知的或未知的。对于已知的系统测量误差可 以采用修正来补偿。系统测量误差等于测量误差减随机测量误差。 2.3 随机测量误差简称随机误差,是指“在重复测量中按不可预见的方式变化的测量误差的分量。” 随机测量误差的参考量值是对同一个被测量由无穷多次重复测量得到的平均值。随机测量误差等于测量误差减系统测量误差。 图2 测量误差示意图 2.4 测量不确定度简称不确定度,是指“根据用到的信息,表征赋予被测量值分散性的非负参数。” 测量不确定度一般由若干分量组成。其中一些分量可根据一系列测量值的统计分布,按测量不确定度的A类评定(随机效应引起的)进行评定,并用标准偏差表征;而另一些分量则可根据基于经验或其它信息所获得的概率密度函数,按测量不确定度的B类评定(系统效应引起的)进行评定,也用标准偏差表征。 2.5 标准不确定度是“以标准偏差表示的测量不确定度。”

功率不确定度评定与表示.

输入功率和电流的 不确定度评定与表示 编制: 日期: 审核: 日期: 批准:日期: 1 目的 测试样品的输入电流及输入功率。 2 检测方法和步骤 按GB4706.13-1998标准的要求,被测样品在额定电压及相应的气候类型条件下,运行达到稳定状态后,测量被测样品在运行周期开停时的电流及输入功率值,取其平均值作为被测量样品的电流、输入功率测量值。 被测样品由稳压电源供电,对于N型气候类型的电冰箱,测试的环境温度保持在32℃,使用青岛青智仪器有限公司的8775A型数字式电参量测试仪,直接测量被测样品运行周期开停时的输入功率及电流。 3 数学模型 由于是用电叁数表直接测量被测样品的电流和输入功率,因此: Ic=Is 其中: Ic:被测电流 A,Is:示值电流 A Pc=Ps 其中: Pc:被测功率 W,Is:被测功率 W 4 不确定度分量的识别与量化 4.1不确定度来源有:

a .由仪器显示的末位数值波动引起的检测人员读数的不确定度,可用A类 方法评价。 b .由稳压电源的波动引起的测试条件的不稳定,此不确定度可用A类方法 评价。 c .由仪器的测量准确度引起的测量不确定度,此类不确定度可用该仪器的 校准证书的信息通过B类方法评定。 d .由于环境温度的波动造成仪器测量准确度的变化和被测样品的电流、功 率的测量不确定度,此类不确定度可用B类方法评定。 4.1.1 A类不确定度评定 对于由仪器显示值的波动以及稳压电源波动造成的测量不确定度,通过重复测量加以评定。进行五次重复测量,并通过下列公式计算测量结果的标准不确定度μ(): = ()=-) ()=μ()= a电流测量值及计算结果: 测量值5 1.258

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

不确定度评定报告

不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型 数学模型 A=A S +δ 式中:A —频率计上显示的频率值 A S —参考频率标准值; δ—被测与参考频标频率的误差。 3、输入量的标准不确定度 3.1 标准晶振引入的标准不确定度()s A u ,用B 类标准不确定度评定。 标准晶振的频率准确度为±2×10-10,即当被测频率为10MHz 时,区间半宽为a =10×106×2×10-9=2×10-2Hz ,在区间内认为是均匀分布,则标准不确定度为 ()s A u =a/k =1.2×10-2Hz ()=rel s A u 1.2×10-2/107=1.2×10-9 3.2被测通用计数器的测量重复性引入的标准不确定度分量u(δ2) u(δ2)来源于被测通用计数器的测量重复性,可通过连续测量得到测量列,采用A 类方式进行评定。对一台通用计数器10MHz 连续测量10次,得到测量列9999999.6433、9999999.6446、9999999.6448、9999999.6437、9999999.6435、9999999.6428、9999999.6446、9999999.6437、9999999.6457、9999999.6451Hz 。 由测量列计算得 算术平均值 ∑==n i i f n f 1 1=9999999.6442Hz, 标准偏差 () Hz n f f s n i i 00091.01 2 1 =--= ∑=

标准不确定度分量u(δ 3 )=0.00091/=0.00029Hz u(δ 3 )rel=2.9×10-11 4 合成标准不确定度评定 主要标准不确定度汇总表 输入量A S 、δ 1 、δ 2 相互独立,所以合成标准不确定度为 u c (A)= 9 2 2 2 1 210 5.1 ) ( ) ( ) (- ? = + +δ δu u A u S 5 扩展不确定度评定 取k=2,则 扩展不确定度为 U rel =k×u c=2×1.5×10-9=3×10-9 6测量不确定度报告 f=f0(1±3×10-9)Hz,k=2 不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型

不确定度评定规范(计量)

中汽长电股份有限公司 1. 目的 明确测量不确定度评定方法.种类.确保测量设备不确定度的正确评定,合理利用测量结果,满足计量校对要求. 2. 适用范围 为证实产品质量符合要求所需的测量设备和技术合同所提出要求的须给出不确定度的测量设备. 3. 职责 3.1本单位最高标准始建时,报上级计量部门对不确定度认可发证 方可使用,当主标准更换后其不确定度重新评定. 3.2本企业测量设备由计量检定人员按GB/T19022.1-1994给出测量 不确定度. 3.3本企业的试验设备由有关部门(设备设计.设备管理.设备使用) 给出有关信息,由检定人员给出不确定度. 信息指: (1) 设备名称.使用单位及地点. (2) 试验目的和要求. (3) 技术与性能要求. (4) 试验的数据. 4. 不确定度评定方法 4.1 不确定度采用A.B两类方法其选择可根据具体情况确定. 4.2 A类方法用所得观测列按统计方法进行评定. 4.3B类评定方法在实际测量中,有时不能或不需重复测量,须根据 有关信息进行科学判断估计作出. (1) 以前的测量数据(如计量标准数据).

(2) 有关材料及仪器特点.性能的经验或一般知识. (3) 制造说明书. (4) 检定校准证书提供的数据(如证书开出的测量结果). (5) 手册赋予参考数据的不确定度. 4.4测量设备来源不确定度由于须对量值溯源,可由上一级计量标 准的不确定度取得.也可利用所得检定证书或有关规范所给出的数据. 4.5按检定规程经过检定合格,不超过最大允许误差,使用者不必考 虑评定测量不确定度. 4.6测量设备具有相应检定规程一般只给出测量结果,不标明不确 定度数值用户有文件规定时,可给出评估值. 4.7本企业设计自制的试验设备按企业制定的不确定度校准规范进 行评定. 4.8自行设计制造的试验设备由设计部门对其装置提出具体要求, 使用单位编制校准规范,并提供试验数据.由计量中心给出不确定度, 技术部门依据计量中心给出的不确定度结果作出确认. 4.9使用单位按校准规范确定的周期,向计量中心提交试验数据.不 确定度评定按周期进行. 5. 引用文件 GB/T19022.1-1994 ISO10012-1 ISO10012-2 6. 质量记录: 试验设备不确定度登记表

测量不确定度评定例题

测量不确定度评定与表示 一.思考题 1.什么是概率分布? 答:概率分布是一个随机变量取任何给定值或属于某一给定值集的概率随取值而变化的函数,该函数称为概率密度函数。 2.试写出测量值X 落在区间[]b a ,内的概率p 与概率密度函数的函数关系式,并说明其物理意义。 答:()()dx x p b X a p b a ?= ≤≤ 式中,()x p 为概率密度函数,数学上积分代表面积。 物理意义 : 概率分布曲线 概率分布通常用概率密度函数随随机变量变化的曲线来表示,如图所示。 测量值X 落在区间[]b a ,内的概率p 可用上式计算 由此可见,概率p 是概率分布曲线下在区间[]b a ,内包含的面积,又称包含概率或置信水平。当9.0=p ,表明测量值有90%的可能性落在该区间内,该区间包含了概率分布下总面积的90%。在(一∞~+∞)区间内的概率为1,即随机变量在整个值集的概率为l 。当=p 1(即概率为1)表明测量值以100%的可能性落在该区间内,也就是可以相信测量值必定在此区间内。 3.表征概率分布的特征参数是哪些? 答:期望和方差是表征概率分布的两个特征参数。 4.期望和标准偏差分别表征概率分布的哪些特性? 答:期望μ影响概率分布曲线的位置;标准偏差σ影响概率分布曲线的形状,表明测量值的分散性。 5.有限次测量时,期望和标准偏差的估计值分别是什么? 答:有限次测量时,算术平均值X 是概率分布的期望μ的估计值。即:∑=n i i x n X 1 1= 有限次测量时,实验标准偏差s 是标准偏差σ的估计值。即:()() 1 1 2 --=∑=n X x x s n i i

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

测量不确定度评估报告

测量不确定度评估报告 1.识别测量不确定度的来源 在医学实验室中构成测量不确定度的4个主要分量主要包括“检验过程不精密度”、“校准品赋值的不确定度”、“样品影响分量”和“其它检验影响分量”。我们参考CNAS-GL05:2011《测量不确定度要求的实施指南》和CNAS-TRL-001:2012《医学实验室―测量不确定度的评定与表达》的要求,制定了测量不确定度评定程序,评估了本科室申报的定量项目的测量不确定度。由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故我们只评估了前两个分量的不确定度。 2.目标不确定度 2.1 确定的检验程序在正式启用前,实验室应为每个测量程序确定目标不确定度,即规定每个测量程序的测量不确定度性能要求。 2.2 检验科每个测量程序的目标不确定度由各实验室确定。 2.3 各实验室在确定目标不确定度时可以基于生物变异、国内外专家组的建议、管理准则或当地医学界的判断。根据应用要求,对不同水平的测量结果可以确定一个或多个目标不确定度。 2.4目标不确定度如下: 2.4.1临床化学项目将TEa(国家标准(GB/T20470-2006)、卫生部临床检验中心室间质量评价标准)作为目标扩展不确定度。 2.4.2血液学项目,将TEa(行业标准WS/T406-2012)指标作为目标扩展不确定度。 3.确立输出量与输入量之间的数学模型 若输出量为Y(被测量值),输入量X的估计值为xi,则被测量与各输入量之间的函数关系为Y=f(x1,x2,x3,x4…);由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故只对前两个分量的不确定进行评估。 4测量不确定度的计算 4.1 A类评估:检验过程不精密度评估样本使用高低2个水平的室内质控品作为实验用样本。 计算本室2水平质控品的日间精密度。计算批间变异系数CV。

相关主题
文本预览
相关文档 最新文档