当前位置:文档之家› 分式与函数

分式与函数

分式与函数
分式与函数

1.约分:

把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

2.分式的乘法法则:

两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

3. 分式的加减法法则:

同分母的分式相加减,分母不变,把分子相加减。

4.通分:

异分母的分式可以化成同分母的分式,这一过程叫做通分。如:3/2和2/3可化为9/6和4/6!即:3/2*3,2/3*2!

5.异分母分式的加减法法则:

异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。

(1).定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/

B 叫做分式(fraction)。

注:A/B=A×1/B

(2).组成:在分式中A称为分式的分子,B称为分式的分母。

(3).意义:对于任意一个分式,分母都不能为0,否则分式无意义。

(4).分式值为0的条件:在分母不等于0的前提下,分子等于0,则分式值为0。

注:分式的概念包括3个方面:①分式是两个整式相除的分式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

[编辑本段]

第二节分式的基本性质和变形应用

V.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

VI.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.

VII.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积

的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分

解因式,再将公因式约去.

注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母

共有的字母,指数取公共字母的最小指数,即为它们的公因式.

VIII.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.

IX.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分.

X.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.

注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.

注:(1)约分和通分的依据都是分式的基本性质2.(2)分式的约分和通分都是互逆运算过程.

[编辑本段]

第三节分式的四则运算

XI.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.

XII.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.

XIII.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.

XIV.分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.

[编辑本段]

第四节分式方程

XVI.分式方程的意义:分母中含有未知数的方程叫做分式方程.

XVII.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)....................................................一周知识概述

1、分式

一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.分式中,A叫做分子,B叫做分母.

2、分式有意义、无意义,分式的值为零的条件

分式有意义的条件是分式的分母不为0;

分式无意义的条件是分式的分母为0;

分式的值为0的条件是分子为0,且分母不为0.

3、分式的基本性质

分式的分子与分母同乘(或除)以一个不为零的整式,分式的值不变.用式子表示为:

其中A、B、C为整式.

4、通分

与分数通分类似,利用分式的基本性质,使分式的分子分母同乘以适当的整式,不改变分式的值,化异分母分式为同分母分式,这样的分式变形叫做分式的通分.

5、约分

与分数的约分类似,利用分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.

6、分式的乘除法法则

分式乘分式,用分子的积作积的分子,分母的积作积的分母;

分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.

7、分式的乘方法则

分式乘方,把分子、分母各自乘方.即

8、同分母的分式的加减法

同分母的分式相加减,分母不变,把分子相加减.

即.

9、异分母分式加减法

异分母分式相加减,先通分,变为同分母分式,然后再加减.

即.

10、零指数幂的意义

任何不等于零的数的零次幂都等于1,即a0=1(a≠0).零的零次幂没有意义.

11、负整数指数幂

任何不等于零的数的-n(n为正整数)次幂等于这个数的n次幂的倒数.

12、负整数指数幂用正整数指数幂表示

在运用正整数指数幂表示负整数指数幂时,对代数式中的相关幂与积的乘方或幂的其他运算要先进行运算,并且正整数指数幂的运算对负整数指数幂的运算都适用.

13、科学记数法

(1)用科学记数法可以把绝对值较小的数表示成a×10-n(1≤|a|<10,n为正整数)的形式.

(2)确定n的具体数值:通常从小数点往后至第一个不为零的数字上所有零的个数,包括小数点前面的那个零.

一、函数的有关概念

1、函数的概念:

设在某变化过程中,有两个变量x、y,如果给定一个x的值,相应地就确定

了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

2、平面直角坐标系:

①在同一平面内,两条互相垂直的数轴(原点重合,取向右和向上的方向

为正方向)组成了一个平面直角坐标系,水平的数轴叫做横轴或x轴,铅

直的数轴叫做纵轴或y轴。

②在平面直角坐标系中,两条数轴把平面分成了四个部分,为第一、二、

三、四象限。

③在平面直角坐标系中,一对有序实数对与坐标平面内的点建立了一种一

一对应的关系。

二、④点A(a,b)在第一象限时:a>0,b>0;在第二象限时:a<0,b>0;

在第三象限时:a<0,b<0;在第四象限时:a>0.b<0.

⑤坐标轴上的点不属于任何象限,在x轴上的点的纵坐标都为0;在y轴上

的点的横坐标都为0,原点的坐标为(0,0)。

3、坐标平面内点的对称

点A(a,b)关于x轴的对称点为:A/(a,-b);

关于y轴的对称点为:A/(-a,b);

关于原点对称的点为:A/(-a,-b);

关于一、三象限的角平分线(直线y=x)对称的点为A/( b,a);

关于二、四象限的角平分线(直线y=-x)对称的点为A/( -b,-a)。

4 、平面内任意两点之间的距离:A(x1,y1),B(x2,y2)间的距离为:

5、平面内一条线段的中点坐标:线段AB,{A(x1,y1),B(x2,y2)}的

中点坐标为:

6、函数的表示有三种方法:图象法,列表法,公式法(即解析式法)。

用解析式表示函数关系的优点是:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质;

用列表法表示函数关系的优点是:不必通过计算就知道当自变量取某些值时函数的对应值;

用图像法表示函数关系的优点是:能直观形象地表示出函数的变化情况二、正比例函数和一次函数

1、正比例函数:y=kx (k≠0)叫做正比例函数,它的图象是过原点的一条直

线。|k|=tanα,α为直线与x轴的夹角(锐角); |k|越大, α越大.

当k>0时,图象分布在一、三象限,y随x的增大而增大;y随x的减小而减小。且当x>0时,y>0;x=0时,y=0;x

当k<0时,图象分布在二、四象限,y随x的增大而减小;y随x的减小而增大。且当x>0时,y<0;x=0时,y=0;x0.

2、一次函数:y=kx+b (k≠0)叫做一次函数,它的图象是平行于y=kx (k≠0)

的一条直线。与x轴的交点为(-b/k,0),与y轴的交点为(0,b); |k|=tanα,α为直线与x轴的夹角(锐角); |k|越大, α越大.

当k>0,b>0时,图象分布在一二三象限,y随x的增大而增大;y随x的减小而减小。

当k>0,b<0时,图象分布在一三四象限,y随x的增大而增大;y随x的减小而减小。

且当x>-b/k时,y>0;x=-b/k时,y=0;x<-b/k时,y<0.

当k<0,b>0时,图象分布在一二四象限,y随x的增大而减小;y随x的减小而增大。

当k<0,b<0时,图象分布在二三四象限,y随x的增大而减小;y随x的减小而增大。

且当x>-b/k时,y<0;x=-b/k时,y=0;x<-b/k时,y>0.

3、在y1=k1x+b1;y2=k2x+b2 (k1k2≠0)中:

当y1‖y2时,k1=k2;当y1⊥y2时,k1k2= -1;当y1与y2不平行时,k1≠k2;

当这两直线不平行时,它们的交点坐标是两解析式联合方程组的解。

|k|=tanα,α为直线与x轴的夹角;

|k|越大,夹角就越大;|k|越小,夹角就越小。. 4、一次函数图象的平移:上下平移外加减;左右平移内加减。

y=k(x+0)+ b

内外

例如:把y=-2x+5的图象向左平移3个单位的直线为:y=-2(x+3)+ 5,即y=-2x-1;

把y=-2x+5的图象向下平移3个单位的直线为:y=-2(x+0)+ 5-3,即y=-2x+2; 把y=-2x+5的图象向右平移3个单位再向上平移4个单位为:y=-2(x-3)+ 5+4;

即y=-2x+15.

5、函数解析式的确定:

正比例函数y=kx (k≠0)中因为有一个常量k,所以确定其解析式只要一个条件即可。

一次函数y=kx+b (k≠0)中因为有两个常量k,b所以确定其解析式要两个条件。

6、一次函数y=kx+b (k≠0)

三、反比例函数

1、叫做反比例函数,它的图象是双曲线。

当k>0时,图像分布在一、三象限,在每一个象限内y随x的增大而减小;y随x的减小而增大。当x>0时,y>0;当x<0时,y<0;(x≠0)

当k<0时,图像分布在二、四象限,在每一个象限内y随x的增大而增大;y随x的减小而减小。当x>0时,y<0;当x<0时,y>0;(x≠0)

2、在反比例函数中,因为有一个常量k,所以解析式的确定只随一个条件即可。

分式函数

第 1 页 共 4 页 一次分式函数 班级__________姓名____________ ______年____月____日 1、 理解分式函数的概念 2、 掌握一次分式函数的图像画法及性质 【教学过程】 一、知识梳理: 1. 一次分函数的定义 我们把形如(0,)cx d y a ad bc ax b +=≠≠+的函数称为一次分函数。 2. 一次分函数(0,)cx d y a ad bc ax b +=≠≠+的图象和性质 2.1 图象:其图象如图所示. 2.2定义域: ? ?????-≠a b x x ; 2.3 值域:? ?????≠ a c y y ; 2.4 对称中心:??? ? ?- a c a b ,;

2.5 渐近线方程:b x a =- 和c y a =; 2.6 单调性:当ad>bc 时,函数在区间(,)b a -∞-和(,)b a -+∞分别单调递减;当ad

初中数学一次函数的最值问题

初中数学一次函数的最值问题 一次函数)0k (b kx y ≠+=在自变量x 允许取值范围(即全体实数)内,它是没有最大或最小值的。但是,如果给定了自变量的某一个取值范围(全体实数的一部分),那么y=kx+b 的最大值或最小值就有可能存在。一般地,有下面的结论: (1)如果m x n ≤≤,那么b kx y +=有最大值或最小值(如图1):当0k >时,b km y +=最大,b kn y +=最小;当0k <时,b kn y +=最大,b km y +=最小。 图1 (2)如果n x ≥,那么b kx y +=有最小值或最大值(如图2):当0k >时,b kn y +=最小;当0k <时,b kn y +=最大。 图2 (3)如果m x ≤,那么b kx y +=有最大值或最小值(如图3)当0k >时,b km y +=最大;当0k <,b km y +=最小。 图3 (4)如果m x n <<,那么b kx y +=既没有最大值也没有最小值。 凡是用一次函数式来表达实际问题,求其最值时,都需要用到边界特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。 下面是一道利用一次函数的最小值的决策问题,供同学们参考: 某送奶公司计划在三栋楼之间建一个奶站,三栋楼在同一条直线上,顺次为A 楼,B 楼,C 楼,其中A 楼与B 楼之间的距离为40m ,B 楼与C 楼之间的距离为60m ,已知A 楼每天有20人取奶,B 楼每天有70人取奶,C 楼每天有60人取奶,送奶公司提出两种建站

方案: 方案一:让每天所有取奶的人到奶站的距离总和最小; 方案二:让每天A 楼与C 楼所有取奶的人到奶站的距离之和等于B 楼所有取奶的人到奶站距离之和。 (1)若按照方案一建站,取奶站应建在什么位置? (2)若按照方案二建站,取奶站应建在什么位置? (3)在方案二的情况下,若A 楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B 楼越来越远,还是越来越近?请说明理由。 解:(1)设取奶站建在距A 楼xm 处,所有取奶的人到奶站的距离总和为ym.。 ①当40x 0≤≤时, 8800 x 110)x 100(60)x 40(70x 20y +?-=-+-+= ∴当x=40时,y 的最小值为4400。 ②当100x 40≤<时, )x 100(60)40x (70x 20y -+-+= 3200x 30+=, 此时y 的值大于4400。 因此按方案一建奶站,取奶站应建在B 楼处。 (2)设取奶站建在距A 楼xm 处。 ①当40x 0≤≤时, )x 40(70)x 100(60x 20-=-+, 解得03 320x <- =(舍去)。 ②当100x 40≤<时, )40x (70)x 100(60x 20-=-+ 解得x=80, 因此按方案二建奶站,取奶站应建在距A 楼80m 处。 (3)设A 楼取奶人数增加a (22a 0≤≤)人, ①当40x 0≤≤时, )x 40(70)x 100(60x )a 20(-=-++, 解得30 a 3200x +-=(舍去)。 ②当100x 40≤<时, )40x (70)x 100(60x )a 20(-=-++, 解得a 1108800x -=,当a 增大时,x 增大。 ∴当A 楼取奶的人数增加时,按照方案二建奶站,取奶站仍建在B 、C 两楼之间,且随着人数的增加,离B 楼越来越远。

附录2(分式函数求值域方法总结)

分式型函数求值域的方法总结 一、形如()ax b f x cx d += + (,0a o b ≠≠)(一次式比一次式)在定义域内求值域。 例1:求21()32 x f x x +=+(2)3x ≠-的值域。 解:242()133()2323()3x f x x x +-=-++=123332 x -+∵1122330,323323x x -≠∴-≠++ ∴其值域为}2/3y y ?≠?? 一般性结论,()ax b f x cx d += + (,0a o b ≠≠)如果定义域为{x /d x c ≠-},则值域}/a y y c ?≠?? 注:本题所用方法即为分离常数法,分离常数之后,分子便不含有x 项,使计算变得简便。 例2:求21()32x f x x += +,()1,2x ∈的值域。 分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,我们可以画出函数图像,求出其值域。 解:21()32x f x x +=+=123332x -+,是由1 3y x =-向左平移23,向上平移23得出,通过图像观察,其值域为35,58?? ??? 小结:函数关系式是一次式比一次式的时候,我们发现在此类函数的实质是反比例函数通过平时得出的,因此我们可以作出其图像,去求函数的值域。

x 分析:此类函数中,当0a <,函数为单调函数,较简单,在此我们不做讨论,当0a >时, 对函数求导,'2()1,a f x x =-'()0f x > 时,(x ∈-∞? +∞),'()0f x <时, (x ∈?,根据函数单调性,我们可以做出此类函数的大致图像,其我们常 其图像 例3:求4()2,((1,4)f x x x x =+ ∈上的值域。 解:将函数整理成2()2()f x x x =+,根据双钩函数的性质,我们可以判断此函数在单调递减,在)+∞1,4出的函数值,我们可以知道在1处取的最大值,所以其值域为) ?? 三、用双钩函数解决形如2()mx n f x ax bx c +=++(0,0m a ≠≠),2()ax bx c f x mx n ++=+(0,0m a ≠≠)在定义内求值域的问题。 例3:已知0t >,则则函数241t t y t -+=的最小值为_______. 解:24114t t y t t t -+==+-,t o >∴由基本不等式地2y ≥-

一次分式函数最值问题

一次分式函数最值问题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

拆分函数解析式结构,巧解问题 --------------函数()ax b f x cx d +=+值域(最值)问题的解法 在高中,初学函数之时,我们接触的具体函数并不多。前面我们已经给出了一元二次函数值域(最值)的求法步骤。除此,还有一类()(0)ax b f x c cx d +=≠+函数也很常见,它也是今后解决其他复杂函数值域(最值)问题的基础。此类函数看似生疏,而实际这类函数的图像,就是我们初中学过的反比例函数图像。 此类问题有三种类型,一种是函数式子决定定义域,不额外附加函数定义域;另一种是附加定义域。还有一种是可转化为()(0)ax b f x c cx d += ≠+型的函数,此类随着学习的深入,再行和大家见面。 下面我们以具体实例,说明如何依据函数解析式的结构特征,选择适当的方法步骤解决问题。 【例题1】:求函数21()3 x f x x +=-的值域; 【思路切入】:从函数结构可以得出,函数定义域由分式决定,为 {|3}x x R x ∈≠且,此时,将函数解析式的结构进行拆分变换,不难得出反比例函数结构,如此,得到解法程序: 1、将函数分解为反比例的结构; 2、根据反比例结构特性,或者利用图像,或者利用数式属性得到函数值域。 【解析】:原函数可化为212677()2333 x x f x x x x +-+===+---, 7303 x x ≠≠-且 ,2y ∴≠,函数()f x 值域为{|2}y y R y ∈≠且; 【例题2】:求函数21(),(2,4]1x f x x x -=∈-的值域;

分式函数的图像与性质

y ax =b a b a -2ab 2ab -x O y 高一数学选修课系列讲座(一) -----------------分式函数的图像与性质 一、概念提出 1、分式函数的概念 形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。如221x y x x +=+,212x y x +=-,41 3 x y x +=+等。 2、分式复合函数 形如 22 [()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。如 22112x x y +=-,sin 23sin 3 x y x +=-,12x y -+=等。 二、学习探究 探究任务一:函数(0)b y ax ab x =+≠的图像与性质 问题1:(,,,)ax b y a b c d R cx d +=∈+的图像就是怎样的? 例1 画出函数21 1 x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。 小结:(,,,)ax b y a b c d R cx d +=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处 理方法。 分式函数(,,,)ax b y a b c d R cx d += ∈+的图像与性质: (1)定义域: ; (2)值域: ; (3)单调性:单调区间为 ; (4)渐近线及对称中心:渐近线为直线 ,对称中心为点 ; (5)奇偶性:当 时为奇函数; (6)图象:如图所示 问题2:(0)b y ax ab x =+ ≠的图像就是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1 y x x =+的图像,并结合函数图像指出函数具有的性质。 小结:分式函数(,0)b y ax a b x =+>的图像与性质: (1)定义域: ; (2)值域: ; (3)奇偶性: ; (4)单调性:在区间 上就是增函数, 在区间 上为减函数; (5)渐近线:以 轴与直线 为渐近线; (6)图象:如右图所示 例3、根据y x =与1y x = 的函数图像,绘制函数1 y x x =-的图像,并结合函数图像指出函数具 x O y x O y

一次分式型函数学案

一次型分式函数图象的研究 教学目标 1.通过对反比例函数图象的研究,重新认识反比例函数图象. 2.会用图象的平移及“二线一点”法作一次分式型函数的图象. 教学重点 用图象的平移及“二线一点”法作一次分式型函数的图象. 教学难点 用图象的平移及“二线一点”法作一次分式型函数的图象. 教学过程 一、复习 1.复习已学过的函数的解析式与图象:一次函数(正比例函数);二次函数;反比例函数. 2.学生谈对反比例函数)0(≠=k x k y 的认识. 二、基本函数作图 例1.作下列函数图象 (1)x y 3=; (2)x y 2-=. 归纳1:反比例函数是以坐标轴为渐近线(无限接近)的双曲线,原点是图象的中心对称 点;对于(1),点)3,3(是该双曲线的一个顶点. 归纳2:一般地,函数)0(≠=k x k y 的图象是双曲线,以坐标轴为渐近线,原点是图象的中心对称点.当0>k 时图象分布在一、三象限,图象与直线x y =的交点是双曲线的顶点;当0

归纳:1-→x x 图象向右平移1个单位;2)()(-=→=x f y x f y 图象向下平移2个单位, 等等. 练习:指出函数3 21--=x y 的图象由那个函数经过怎样的平移得到,并作出函数3 21--=x y 的图象. 例3.作函数123--=x x y 的图象,并归纳一次型分式函数)(d b c a d cx b ax y ≠++=图象与函数函数)0(≠=k x k y 的图象的关系. 归纳:一次型分式函数)(d b c a d cx b ax y ≠++=本质上是一个反比例函数,两者的图象一般只相差一个平移. 练习:作函数21++=x x y 的图象. 四.“二线一点”法作图探究 例4.已知函数4 23-+=x x y . (1)作函数的图象; (2)并指出函数自变量x 的取值范围(即函数的定义域);因变量y 的取值范围(即 函数的值域). (3)x 的取值范围2≠x ,y 的取值范围2 1≠y 反映在图象上的特点是什么? (函数图象与直线2=x , 21=y 没有交点,即2=x , 2 1=y 是对应双曲线的渐近线) (4)找到了双曲线的渐近线,根据双曲线图象的大致形状,只要知道图象在“一、 三象限”还是在“二、四象限”就可以画出其大致图象.如何根据函数4 23-+=x x y 的解析式直接来确定“象限”?(一般找与坐标轴的交点来确定) (5)对于一般的一次型分式函数)(d b c a d cx b ax y ≠++=如何来确定渐近线,即确定x 与y 的取值范围? (6)观察例4、例3,发现与系数d c b a ,,,关系. 例5.作函数1 23--=x x y 的图象. 归纳:对于一次型分式函数)(d b c a d cx b ax y ≠++=的作法: (1)先确定x 与y 的取值范围:c d x -≠,c a y ≠,即找到双曲线的渐近线c d x -=,c a y =; (2)再取与一个坐标轴的交点确定图象在“一、三象限”还是在“二、四象限”; (3)根据双曲线的大致形状画出函数的图象. 练习:用平移法与“二线一点”法分别作函数1 32+-=x x y 的图象.

反比例、分式函数

反比例函数、一次分式函数 班级__________姓名____________ ______年____月____日 1、 理解分式函数的概念 2、 掌握一次分式函数的图像画法及性质 3、 掌握反比例函数的性质 【教学过程】 一、 知识梳理: 2、 一次分函数的定义 我们把形如(0,)cx d y a ad bc ax b +=≠≠+的函数称为一次分函数。 4、 一次分函数(0,)cx d y a ad bc ax b +=≠≠+的图象和性质 图象:其图象如图所示.

第 2 页 共 4 页 定义域:_________________;值域:____________________; 对称中心:___________________;渐近线方程:______________________; 单调性:当ad>bc 时,函数在区间(,)b a -∞-和(,)b a -+∞分别单调递减;当ad

一次分式函数

苏州市学案 一、课前准备: 【自主梳理】 1.一次分函数的定义 我们把形如y cx d (a ax b 2.一次分函数的图象和性质y cx d ( a 0, ad bc ) ax b 2.1 图象:其图象如图所示 . y x b a b c o x (, ) a a ax+b 一次分式型函数y = cx+d (x∈D) 0, ad bc) 的函数称为一次分函数。 y o c x y a y c b c ( , ) a ad bc a a x b ad bc a 2.2 定义域:2.3 值域:x x b ; a y y c ; a 2.4 对称中心:b , c; a a 2.5 渐近线方程: x b和 y c ; a a 2.6 单调性:当 ad>bc 时,函数在区间 ( , b ) 和 ( b , ) 分别单调递减; 当 ad

【自我检测】 1.函数 y 1 1 .的图象是 x 1

y y y y 1 1 1 1 O 1 x O 1 -1 O x -1 O x x (A) (B) (C) (D) 2.函数 f ( x) 3x 1 的定义域是 . 1 x x x 1 3. y 0 的值域是 . x 4.函数 f ( x) 2x 1 的单调增区间是 . x 3 5.函数 f ( x) 2x 1 的对称中心是 . x 3 6.函数 f ( x) x 是 函数.(填 “奇 ”“偶 ”“非奇非 偶 ”) x 二、课堂活动: 【例 1】填空题: ( 1)函数 f ( x) 2x 1 ( x 2,5 ),则 f x 的值域是 ________. x 3 ( 2)函数 f ( x) 2x 1 ( x 5, 4 (2,5) ),则 f x 的值域是 ________. x 3 ( 3)已知函数 f x 2x 1 ,若 x N , f x f 5 恒成立,则 a 的取值范围是 . x a ( 4)若函数 f (x) 2x 1 的图象关于直线 y = x 对称,则实数 a = . x a 2 】( 2004 年 江 苏 ) 设 函 数 f ( x) x 【 例 (x R) , 区 间 M=[a , b](a

求分式函数值域的几种方法-精品

求分式函数值域的几种方法-精品 2020-12-12 【关键字】情况、方法、条件、领域、问题、难点、良好、沟通、发现、掌握、研究、特点、关键、理想、思想、需要、途径、重点、反映、检验、化解、分析、树立、解决、方向 摘要:在高中数学教学、乃至高中毕业会考题和高考中,经常遇到求分式函数值域的问 题.关于分式函数的值域的求法,是高中数学教学中的一个难点.通过对分式函数的研究总结了求其值域的常见几种方法:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等. 关键词:分式函数 值域 方法. 1 引言 求分式函数值域是函数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决函数最值问题的一个重要工具.关于求函数值域与最值的方法也是多种多样的,归纳起来,常用的方法有:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.本文就中学阶段出现的各种类型的分式函数值域问题运用以上初等方法进行分析. 2 求分式函数值域的常见方法 2.1 用配方法求分式函数的值域 如果分式函数变形后可以转化为2 122 a y b a x b x c =+++的形式则我们可以将它的分母配方,用直接法求得函数的值域. 例1 求2 1 231 y x x =-+的值域. 解:2 131248y x = ? ?-- ?? ?, 因为2 31248x ? ?-- ?? ?≥18-, 所以函数的值域为:(],8-∞-∪()0,+∞.

例2 求函数221 x x y x x -=-+的值域. 解:2 1 11 y x x -= +-+, 因为2 2112x x x ? ?-+=- ?? ?34+≥34, 所以34- ≤21 01 x x -<-+, 故函数的值域为1,13?? -???? . 先配方后再用直接法求值域的时候,要注意自变量的取值范围.取“=”的条件. 2.2 利用判别式法求分式函数的值域 我们知道若()200,,ax bx c a a b R ++=≠∈有实根,则24b ac ?=-≥0常常利用这一结论来求分式函数的值域. 例1 求2234 34 x x y x x -+=++的值域. 解:将函数变形为()()()2133440y x y x y -+++-=①, 当1y ≠时①式是一个关于x 的一元二次方程. 因为x 可以是任意实数, 所以?≥0, 即()()()334144y y y +---7507y y =-+-≥0, 解得, 17 ≤ y ≤1或1y <≤7, 又当1y =时,0x =, 故函数的值域为1,77?? ???? . 例2 函数22 21 x bx c y x ++=+的值域为[]1,3,求b ,c 的值. 解:化为()20y x bx y c --+-=, ⑴当2y ≠时()()42x R b y y c ∈??=---≥0, ?()224428y c y c b -++-≥0,

分式函数的图像与性质

分式函数的图像与性质 1、分式函数的概念 形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。如221x y x x +=+,212x y x +=-,413 x y x +=+等。 2、分式复合函数 形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。如22112x x y +=-, sin 23sin 3x y x +=-,y =等。 ※ 学习探究 探究任务一:函数(0)b y ax ab x =+≠的图像与性质 问题1:(,,,)ax b y a b c d R cx d += ∈+的图像是怎样的? 例1、画出函数211 x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。 【分析】212(1)112111x x y x x x --+===+---,即函数211 x y x -=-的图像可以经由函数1y x =的图像向右平移1个单位,再向上平移2个单位得到。如下表所示:

由此可以画出函数211 x y x -=-的图像,如下: 单调减区间:(,1),(1,)-∞+∞; 值域:(,2)(2,)-∞+∞; 对称中心:(1,2)。 【反思】(,,,)ax b y a b c d R cx d += ∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定? 【小结】(,,,)ax b y a b c d R cx d +=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。 分式函数(,,,)ax b y a b c d R cx d += ∈+的图像与性质 (1)定义域:{|}d x x c ≠- ; (2)值域:{|}a y y c ≠; (3)单调性:单调区间为(,),(,+)d d c c -∞--∞; (4)渐近线及对称中心:渐近线为直线,d a x y c c =-=,对称中心为点(,)d a c c -; (5)奇偶性:当0a d ==时为奇函数;

次分式函数值域的求法

二次分式函数值域的求法 甘肃 王新宏 一 定义域为R 的二次分式函数用“判别式”法 解题步骤:1 把函数转化为关于x 的二次方程 2 方程有实根,△≥0 3 求的函数值域 1:求y =2 2222+++-x x x x 的值域 解:∵x 2+x+2>0恒成立 由y =2 2222+++-x x x x 得, (y -2)x 2+(y+1)x+y-2=0 ①当y-2=0时,即y=2时,方程为x=0∈R ②当y-2≠0时,即y ≠2时, ∵x ∈R ∴方程(y -2)x 2+(y+1)x+y-2=0有实根 ∴△=(y+1)2 -(y-2) ×(y-2) ≥0 ∴3y 2-18y+15≤0 ∴1≤y ≤5 ∴函数值域为[]5,1 练习1:求y =432+x x 的值域 ?? ????-43,43 二 分母最高次幂为一次的二次分式函数值域常转化为“√”函数或用“均值不等式”来做。 先来学习“√”函数。 形如y =x+ x k (x>0 ,k>0)的函数,叫“√”函数 图像

单调性:在x ∈[] k ,0时,单调递减。在x ∈[] +∞,k 时,单调递减。 值域:[]+∞,2k 解题步骤:①令分母为t,求出t 的范围 ②把原函数化为关于t 的函数 ③利用“√”函数的单调性或均值不等式来求值域 例2 求y =12122-+-x x x (32 1≤

分式函数求值域

分式型函数求值域的方法探讨 在教学中,笔者常常遇到一类函数求值域问题,此类函数是以分式函数形式出现,有一次式比一次式,二次式比一次式,一次式比二次式,二次式比二次,现在对这类问题进行探讨。 一、形如d cx b ax x f ++= )((0,≠≠b o a )(一次式比一次式)在定义域内求值域。 例1:求2 312)(++=x x x f ()32-≠x 的值域。 解:23134)32(3)32(2)(+--++=x x x x f =233132+-x 32233132,02331≠+-∴≠+-x x ∴其值域为}? ??≠32/y y 一般性结论,d cx b ax x f ++=)((0,≠≠b o a )如果定义域为{/x c d x -≠},则值域 }? ??≠c a y y / 例2:求2 312)(++=x x x f ,()2,1∈x 的值域。 分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,我们可以画出函数图像,求出其值域。 解:2312)(++=x x x f =233132+-x ,是由x y 31 -=向左平移32,向上平移32得出,通过图像观察,其值域为?? ? ??85,53 小结:函数关系式是一次式比一次式的时候,我们发现在此类函数的实质是反比例函数通过平时得出的,因此我们可以作出其图像,去求函数的值域。

二、形如求x a x x f + =)(()0≠a 的值域。 分析:此类函数中,当0a 时, 对函数求导,,1)(2'x a x f -=0)('>x f 时,),(a x -∞∈?+∞,a ),0)(',则则函数241t t y t -+=的最小值为_______. 解:41142-+=+-=t t t t t y ,∴>o t 由基本不等式地2-≥y

分式函数求最值 班 班

分式函数的图象及性质和值域(4,13班) 耿 在近几年的高考和模拟考试题目中,经常会出现求解模型函数为分式函数值域的题目,而分式函数的值域求法有共同的规律,本节课给大家介绍解法并总结出通法! 【知识要点】 1.函数(0,)ax b y c ad bc cx d +=≠≠+ (1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠单调区间为(,),(,+)d d c c -∞--∞(4)直线,d a x y c c =-=,对称中心为点(,)d a c c - (5)奇偶性:当0a d ==时为奇函数。(62.函数(0,0)b y ax a b x =+ >>的图象和性质: (1)定义域:{|0}x x ≠(2)值域:{|y y y ≥或(3)奇偶性:奇函数(4 )单调性:在区间+),(∞上是增函数;在区间上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。 3.函数(0,0)b y ax a b x = + ><的图象和性质: (1)定义域:{|0}x x ≠(2)值域:R (3调性:在区间(0,+)∞和(,0)-∞上是增函数。(5直线y ax =为渐近线(6)图象:如图所示。 (0)b y ax a x =+ <的图象(如图所示)和性质(略):

类型一:( ,, ,) ax b y a b c d R cx d + =∈ + (“一次比一次”型) 备注:本质上一定是反比例函数上下或左右平移而来,所以一定是中学对称函数,可以从图像观察出其值域范围。 例1。函数 1 1 + - = x y的图象是() A B C D 例2、画出函数 21 1 x y x - = - 的图像,依据函数图像,指出函数的单调区间、值域、对称中心。【分析】 212(1)11 2 111 x x y x x x --+ ===+ --- ,即函数 21 1 x y x - = - 的图像可以经由函数 1 y x = 的图像向右平移1个单位,再向上平移2个单位得到。如下表所示: 12 111 2 11 y y y x x x =??→=??→=+ -- 右上 由此可以画出函数 21 1 x y x - = - 的图像,如下: 单调减区间:(,1),(1,) -∞+∞; 值域:(,2)(2,) -∞+∞ U; 对称中心:(1,2)。 x O y x O y 1 2 x O y 1

一次分式函数最值问题

一次分式函数最值问题Last revision on 21 December 2020

拆分函数解析式结构,巧解问题 --------------函数()ax b f x cx d +=+值域(最值)问题的解法 在高中,初学函数之时,我们接触的具体函数并不多。前面我们已经给出了一元二次函数值域(最值)的求法步骤。除此,还有一类()(0)ax b f x c cx d +=≠+函数也很常见,它也是今后解决其他复杂函数值域(最值)问题的基础。此类函数看似生疏,而实际这类函数的图像,就是我们初中学过的反比例函数图像。 此类问题有三种类型,一种是函数式子决定定义域,不额外附加函数定义域;另一种是附加定义域。还有一种是可转化为()(0)ax b f x c cx d += ≠+型的函数,此类随着学习的深入,再行和大家见面。 下面我们以具体实例,说明如何依据函数解析式的结构特征,选择适当的方法步骤解决问题。 【例题1】:求函数21()3 x f x x +=-的值域; 【思路切入】:从函数结构可以得出,函数定义域由分式决定,为 {|3}x x R x ∈≠且,此时,将函数解析式的结构进行拆分变换,不难得出反比例函数结构,如此,得到解法程序: 1、将函数分解为反比例的结构; 2、根据反比例结构特性,或者利用图像,或者利用数式属性得到函数值域。 【解析】:原函数可化为212677()2333 x x f x x x x +-+===+---, 7303 x x ≠≠-且 ,2y ∴≠,函数()f x 值域为{|2}y y R y ∈≠且; 【例题2】:求函数21(),(2,4]1x f x x x -=∈-的值域;

题型08 必考的几类初等函数(分式一次型函数、二次函数、指数函数)(原卷版)

秒杀高考题型之必考的几类初等函数(分式一次型函数、二次函数、指数函数) 【秒杀题型一】:分式一次型函数:()ax b d y x cx d c += ≠-+。 『秒杀策略』:反比例函数()k f x x =推广为分式函数:()ax b d y x cx d c +=≠-+→把分子变量去掉,可转化 为:t y m x n =+-,图象为双曲线,有以下性质: ①定义域:,x R x n ∈≠; ②值域:,y R y m ∈≠,a m c =; ③单调性:单调区间为()(),,,n n -∞+∞,当0t >时为减函数,反之为增函数; ④对称中心:(),n m 。 秒杀方法:在选择题中考查增减性时...........,.如选项中有分式.......一次型...函数..,.一般情况下.....优先考虑....此选项。.... 1.(高考题)函数1 11--=x y 的图象是 ( ) 2.(高考题)在区间(),0-∞上为增函数的是 ( ) A.0.5log ()y x =-- B.1x y x = - C.2(1)y x =-+ D.21y x =+ 3.(高考题)函数()21 )(≥-=x x x x f 的最大值为 。 【秒杀题型二】:二次函数。 『秒杀策略』:二次函数解析式设法有三种:根据条件特点采用对应设法。①一般式:2y ax bx c =++; ②两根式:12()()y a x x x x =--; ③顶点式:2()y a x h k =-+。 1.(高考题)商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价()b b a >以及常数()01x x <<确定实际销售价格()c a x b a =+-,这里x 被称为乐观系数。经验表明,

求函数最值的方法归纳

求函数最值的常用以下方法: 1.函数单调性法 先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种求解方法在高考中是必考的,且多在解答题中的某一问中出现. 例1 设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为1 2,则a =________. 【思路】 先判断函数在指定区间上的单调性,再求出函数的最值,然后利用条件求得参数a 的值. 【解析】 ∵a >1,∴函数f (x )=log a x 在区间[a,2a ]上是增函数,∴函数在区间[a,2a ]上的最大值与最小值分别为log a 2a ,log a a =1.∴log a 2=1 2 ,a =4.故填4. 【讲评】 解决这类问题的重要的一步就是判断函数在给定区间上的单调性.这一点处理好了,以下的问题就容易了.一般而言,对一次函数、幂函数、指数函数、对数函数在闭区间[m ,n ]上的最值:若函数f (x )在[m ,n ]

上单调递增,则f(x)min=f(m),f(x)max=f(n);若函数f(x)在[m,n]上单调递减,则f(x)min=f(n),f(x)max=f(m);若函数f(x)在[m,n]上不单调,但在其分成的几个子区间上是单调的,则可以采用分段函数求最值的方法处理.2.换元法 换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和三角换元,我们可以根据具体问题及题目形式去灵活选择换元的方法,以便将复杂的函数最值问题转化为简单函数的最值问题,从而求出原函数的最值.如可用三角代换解决形如a2+b2=1及部分根式函数形式的最值问题. 例2 (1)函数f(x)=x+21-x的最大值为________. 【解析】方法一:设1-x=t(t≥0), ∴x=1-t2, ∴y=x+21-x=1-t2+2t

分式型函数求值域的方法探讨

分式型函数求值域的方法探讨 在教学中,笔者常常遇到一类函数求值域问题,此类函数是以分式函数形式出现,有一次式比一次式,二次式比一次式,一次式比二次式,二次式比二次,现在对这类问题进行探讨。 一、形如d cx b ax x f ++= )((0,≠≠b o a )(一次式比一次式)在定义域内求值域。 例1:求2312)(++=x x x f ()32 -≠x 的值域。 解:231 34) 3 2(3)32(2)(+--++=x x x x f =233132+-x Θ32233132,02331≠+-∴≠+-x x ∴其值域为}? ?? ≠ 32/y y 一般性结论,d cx b ax x f ++= )((0,≠≠b o a )如果定义域为{/x c d x -≠},则值域 }? ? ? ≠c a y y / 例2:求2 31 2)(++= x x x f ,()2,1∈x 的值域。 分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,我们可以画出函数图像,求出其值域。 解:2312)(++=x x x f =233132+-x ,是由x y 31 -=向左平移32,向上平移32 得出,通过图

像观察,其值域为?? ? ??85,53 小结:函数关系式是一次式比一次式的时候,我们发现在此类函数的实质是反比例函数通过平时得出的,因此我们可以作出其图像,去求函数的值域。 二、形如求x a x x f + =)(()0≠a 的值域。 分析:此类函数中,当0a 时, 对函数求导,,1)(2 ' x a x f - =0)(' >x f 时,),(a x -∞∈?+∞,a ),0)('

分式函数的图像与性质

分式函数的图像与性质 1、分式函数的概念 形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。如221 x y x x +=+, 212x y x +=-,41 3 x y x +=+等。 2、分式复合函数 形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。如221 12x x y +=-,sin 2 3sin 3x y x += - ,y = 等。 ※ 学习探究 探究任务一:函数(0)b y ax ab x =+≠的图像与性质 问题1:(,,,)ax b y a b c d R cx d += ∈+的图像是怎样的? 例1、画出函数21 1 x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。 【分析】212(1)112111x x y x x x --+===+---, 即函数211 x y x -=-的图像可以经由函数1 y x =的图像向右平移1个单位,再向上平移2个单位得到。如下表所示: 12 111211 y y y x x x = ??→=??→=+--右上 由此可以画出函数21 1 x y x -= -的图像,如下: 单调减区间:(,1),(1,)-∞+∞; 值域:(,2)(2,)-∞+∞; 对称中心:(1,2)。 【反思】(,,,)ax b y a b c d R cx d +=∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定? 【小结】(,,,)ax b y a b c d R cx d += ∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。

三角函数最值问题(典型题型)

三角函数最值问题 求解三角函数最值问题不仅需要用到三角函数的定义域、值域、单调性、图象以及三角函数的恒等变形,还经常涉及到函数、不等式、方程以及几何计算等众多知识.这类问题往往概念性较强,具有一定的综合性和灵活性,下面结合例子给出几种求最值的方法,供大家学习时参考。 1、利用三角函数的单调性求最值 例1:求函数x x x x x f 44sin cos sin 2cos )(-?-= ????? ?∈2,0πx 的最值 解:x x x x x x x x f 2sin 2cos 2sin )sin )(cos sin (cos )(2222-=--+= )42cos(2π+= x 4 5424,20ππ π π ≤+≤∴≤≤x x ,由余弦函数的单调性及图像知: 当442ππ=+ x , 即0=x 时 ,)42cos(π+x 取最大值22; 当ππ =+42x ,即83π=x 时,)4 2cos(π+x 取最小值-1; 故2)(,1)(min max -==x f x f 方法评析:本题虽然含有的三角函数的项的次数不尽相同,但最终能通过变形变为形如 θθcos sin b a +的形式,再用辅助角公式)sin(cos sin 22?θθθ++=+b a b a 化为标准 形式结合三角函数的单调性加以解决,这是一种最常见的求最值的方法。 2、利用三角函数的有界性或数形结合求最值 例2:求1 cos 2sin --= x x y 的最小值 解:(方法一)由1cos 2sin --=x x y 得:y x y x -=-2cos sin ,y x y -=-+∴2)sin(12? 即2 12)sin(y y x +-=-?,故11212≤+-≤-y y ,解之得43≥y , 故y 的最小值为 43 方法评析:通过变形,借助三角函数的有界性求函数最值是一种很常见的方法,一般在分式型且对自变量无特殊限制条件下使用。

相关主题
文本预览
相关文档 最新文档