当前位置:文档之家› 25.物体的动态平衡问题解题技巧

25.物体的动态平衡问题解题技巧

25.物体的动态平衡问题解题技巧
25.物体的动态平衡问题解题技巧

物体得动态平衡问题解题技巧

湖北省恩施高中 陈恩谱

一、总论

1、动态平衡问题得产生—-三个平衡力中一个力已知恒定,另外两个力得大小或者方向不断变化,但物体仍然平衡,典型关键词—-缓慢转动、缓慢移动……

2、动态平衡问题得解法——解析法、图解法

解析法--画好受力分析图后,正交分解或者斜交分解列平衡方程,将待求力写成三角函数形式,然后由角度变化分析判断力得变化规律;

图解法——画好受力分析图后,将三个力按顺序首尾相接形成力得闭合三角形,然后根据不同类型得不同作图方法,作出相应得动态三角形,从动态三角形边长变化规律瞧出力得变化规律.

3、动态平衡问题得分类——动态三角形、相似三角形、圆与三角形(2类)、其她特殊类型

二、例析

1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定——动态三角形

【例1】如图,一小球放置在木板与竖直墙面之间.设墙面对球得压力大小为F N1,球对木板得压力大小为FN2。以木板与墙连接点所形成得水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中

A.F N1始终减小,F N2始终增大

B.FN1始终减小,F N2始终减小 C 。FN1先增大后减小,F N2始终减小 D.F N 1先增大后减小,FN2先减小后增大

解法一:解析法——画受力分析图,正交分解列方程,解出F N1、F N2随夹角变化得函数,然后由函数讨论;

【解析】小球受力如图,由平衡条件,有

?

联立,解得:,

木板在顺时针放平过程中,θ角一直在增大,可知FN1、F N2都一直在减小。选B.

解法二:图解法——画受力分析图,构建初始力得三角形,然后“抓住不变,讨论变化”,不变得就是小球重力与FN1得方向,然后按F N2方向变化规律转动F N 2,即可瞧出结果.

【解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形成如右图所示闭合三角形,其中重力mg 保持不变,FN 1得方向始终水平向右,而F N 2得方向逐渐变得竖直。

则由右图可知F N 1、F N 2都一直在减小。

【拓展】水平地面上有一木箱,木箱与地面间得动摩擦因数为μ(0〈μ<1)。现对木箱施加一拉力F

,

F N1 F

θ

使木箱做匀速直线运动。设F得方向与水平地面得夹角为θ,如图所示,在θ从0逐渐增大到90°得过程中,木箱得速度保持不变,则

A 。F 先减小后增大 ? B.F 一直增大

C .F 一直减小 ??? D.F 先增大后减小

解法一:解析法——画受力分析图,正交分解列方程,解出F 随夹角θ变化得函数,然后由函数讨论; 【解析】木箱受力如图,由平衡条件,有 ? 其中? 联立,解得: 由数学知识可知,其中

当时,F最小,则θ从0逐渐增大到90°得过程中,F 先减小后增大。选A 。 解法二:图解法——可将弹力与滑动摩擦力合成为一个力,这个力得方向就是确定得,然后按“动态三角形法"得思路分析。

【解析】小球受力如图,将支持力F N 与滑动摩擦力F f合成为一个力F

,由可知,。

由平衡条件可知,将三个力按顺序首尾相接,可形成如右图所示闭合三

角形,其中重力mg 保持不变,F 合得方向始终与竖直方向成β角。

则由右图可知,当θ从0逐渐增大到90°得过程中,F 先减小后增大.

2、第二类型:一个力大小方向均确定,另外两个力大小方向均不确定,但就是三个力均与一个几何三角形得三边平行—-相似三角形

【例2】半径为得球形物体固定在水平地面上,球心正上方有一光滑得小滑轮,滑轮到球面得距离为,轻绳得一端系一小球,靠放在半球上得点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示,现缓慢地拉绳,在使小球由到得过程中,半球对小球得支持力与绳对小球得拉力得大小变化得情况就是

A 、变大,变小

B 、变小,变大

C 、变小,先变小后变大

D 、不变,变小 解法一:解析法(略)

解法二:图解法——画受力分析图,构建初始力得三角形,然后观察这个力得三角形,发现这个力得三角形与某个几何三角形相似,可知两个三角形对应边长比边长,三边比值相等,再

瞧几何三角形边长变化规律,即可得到力得大小变化规律。

【解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形成如右图所示闭合三角形。很容易发现,这三个力与得三边始终平行,即力得三角形与几何三角形相似.则有.

F N

F

mg

F f

θ

F

mg F f

F θ

β

F

F 合 mg β

F N

mg

F f

F N

mg

F f

O

O ’

其中,mg 、R 、h 均不变,L逐渐减小,则由上式可知,不变,变小.

3、第三类型:一个力大小方向均确定,一个力大小确定但方向不确定,另一个力大小方向均不确定—-圆与三角形

【例3】在共点力得合成实验中,如图,用A ,B两只弹簧秤把橡皮条上得节点拉到某一位置O ,这时两绳套AO ,BO 得夹角小于90°,现在保持弹簧秤A 得示数不变而改变其拉力方向使α角变小,那么要使结点仍在位置O ,就应该调整弹簧秤B得拉力得大小及β角,则下列调整方法中可行得就是 A、增大B 得拉力,增大β角 B 、增大B 得拉力,β角不变 C 、增大B 得拉力,减小β角 D 、B 得拉力大小不变,增大β

解法一:解析法(略)

解法二:图解法——画受力分析图,构建初始力得三角形,然后“化”——保持长度不变F A将F A 绕橡皮条拉力F

点不动,另一个端点在圆弧上滑动,即可瞧出结果。 【解析】如右图,由于两绳套A O、BO 得夹角小于90°,在力得三角形中,FA 、F B 得顶角为钝角,当顺时针转动时,F A 、F B得顶角逐渐减小为直角然后为锐角。

由图可知,这个过程中F B 一直增大,但β角先减小,再增大。故选ABC 。

4、第四类型:一个力大小方向均确定,另两个力大小方向均不确定,但就是另两个力得方向夹角保

持不变—-圆与三角形(正弦定理)

?【例4】如图所示装置,两根细绳拴住一球,保持两细绳间得夹角θ=120°不变,若把整个装置顺时针缓慢转过90°,则在转动过程中,CA 绳得拉力F T1,C B绳得拉力F T2得大小变化情况就是 A 、F T 1先变小后变大 B 、F T1先变大后变小 C 、F T2一直变小 D、F T2最终变为零

解法一:解析法1——让整个装置顺时针转过一个角度α,画受力分析图,水平竖直分解,由平衡条件列方程,解出F T1、F T2随α变化得关系式,然后根据得变化求解。

【解析】整个装置顺时针转过一个角度后,小球受力如图所示,设AC 绳与竖直方向夹角为α,则由平衡条件,有

联立,解得 ,

α从90°逐渐减小为0°,则由上式可知:FT1先变大后变小,F T2一直变小。

解法二:解析法2——画受力分析图,构建初始力得三角形,在这个三角形中,小球重力不变,F T1、FT

2得夹角(180°

-θ)保持不变,设另外两个夹角分别为α、β,写出这个三角形得正弦定理方程,即可根据α、β得变化规律得到F T1、F T2得变化规律。

【解析】如图,由正弦定理有

F

F B

A

F T2

mg

F T1

T1

整个装置顺时针缓慢转动90°过程得中θ角与mg 保持不变,α角从30°增大,β角从90°减小,易知F T1

先变大后变小,F T2一直变小。

解法三:图解法-—画受力分析图,构建初始力得三角形,由于这个三角形中重力不变,另两个力得夹角(180°—θ)保持不变,这类似于圆周角与对应弦长得关系,因此,作初始三角形得外接圆(任意两边得中垂线交点即外接圆圆心),然后让另两个力得交点在圆周上按F T 1、F T 2得方向变化规律滑动,即可瞧出结果。 【解析】如右图,力得三角形得外接圆正好就是以初态时得F T2为直径得圆周,易知F T1先变大到最大为圆周直径,然后变小,F T2一直变小。答案为:BCD

5、其她类型

【例5】如图所示.用钢筋弯成得支架,水平虚线MN 得上端就是半圆形,MN 得下端笔直竖立。一不可伸长得轻绳通过动滑轮悬挂一重物G 。现将轻绳得一端固定于支架上得A 点,另一端从C 点处沿支架缓慢地向最高点B靠近(C 点与A 点

等高),则绳中拉力

A.先变大后不变 ?

B.先不变后变大

C。先不变后变小??? D 。保持不变

解法一:解析法-—分两个阶段画受力分析图,绳端在CN 段、NB 段,在CN 段,正交分解列方程易算得左右两侧绳与水平方向夹角相同,再由几何关系易知这个夹角保持不变,则易瞧出结果;在NB 段,左右两侧绳与水平方向夹角也相同,但这个夹角逐渐增大,由方程易瞧出结果.

(解析略)

解法二:图解法--画滑轮受力分析图,构建力得三角形,如前所述分析夹角变化规律,可知这就是一个等腰三角形,其中竖直向下得拉力大小恒定,则易由图瞧出力得变化规律. 【解析】如右图,滑轮受力如图所示,将三个力按顺序首尾相接,形成一个等腰三角形。

由实际过程可知,这个力得三角形得顶角先保持不变,然后增大,则绳中张力先保持不变,后逐渐减小.选C。

三、练习

1、如图1所示,一光滑水球静置在光滑半球面上,被竖直放置得光滑挡板挡住,现水平向右缓慢地移动挡板,则在小球运动得过程中(该过程小球未脱离球面且球面始终静止),挡板对小球得推力F、半球面对小球得支持力F N 得变化情况就是( )

A.F 增大,FN 减小? ??

B.F 增大,F N 增大

C.F 减小,FN 减小 ? D 。F 减小,F N增大

【解析】小球受力如图,由平衡条件可知,

其中重力mg 保持不变,F 得方向始终水平向左,而F N 得方向逐渐变得水平。

T1A C

M N F T =G F 1

F 2

F T =G

F 1 F 2 N

F N mg

F

则由上图可知F 、F N 都一直在增大。 故B 正确

2、如图2所示就是一个简易起吊设施得示意图,AC 就是质量不计得撑杆,A端与竖直墙用铰链连接,一滑轮固定在A点正上方,C 端吊一重物。现施加一拉力F 缓慢将重物P向上拉,在A C杆达到竖直前( )

A .

B C绳中得拉力F T 越来越大? ?B 。B

C 绳中得拉力FT 越来越小 C.A C杆中得支撑力FN 越来越大 ???D.AC 杆中得支撑力FN越来越小 【解析】C 点受力如图,

由平衡条件可知,将三个力按顺序首尾相接,可形成如右图所示闭合三角形。很容易发现,这三个力与得三边始终平行,即力得三角形与几何三角形相似。则有。

4、如图所示,圆弧形货架摆着四个完全相同得光滑小球,O 为圆心。对圆弧面得压力最小得就是

A 。a 球 ???B.b球 ? C.c 球 ? D 。d 球

【解析】小球受力分析如图所示,其中小球重力相同,FN1FN1,

这三个力构成一个封闭得三角形如乙图所示,从a 位置到d位置F N1态三角形,易得a 球对圆弧面得压力最小。A 正确。

5、目前,我市每个社区均已配备了公共体育健身器材。如图所示器材为一秋千,用两根等长轻绳将一座椅悬挂在竖直支架上等高得两点。由于长期使用,导致两根支架向内发生了稍小倾斜,如图中虚线所示,但两悬挂点仍等高.座椅静止时用F 表示所受合力得大小,F1表示单根轻绳对座椅拉力得大小,与倾斜前相比( )

A.F 不变,F1变小 ? B.F 不变,F 1变大 ?C 。F 变小,F 1变小 ?D 。F 变大,F 1变大 【解析】座椅受力如图所示,将三个力按顺序首尾相接,形成一个封闭得三角形如图。两根支架向内

G

F 1

F 1

G

F 1

F 1 mg F N1 F N2

F T1=

G F N

F T F T1=G

发生了稍小倾斜,则这个力得三角形得顶角变小,从图中可以得到则绳中张力F1逐渐减小,由于座椅仍静止所受合力F 始终为零。选A.

6、如图所示,在倾角为θ得固定粗糙斜面上,一个质量为m 得物体被水平力F 推着静止于斜面上,物体与斜面间得动摩擦因数为μ,且μ<tan θ,求力F 得取值范围。

【解析】物体受力如图所示,将静摩擦力F f 与弹力F N 合成为一个力F 合,则F 合得方向允许在F N两侧最大偏角为α得范围内,其中.将这三个力按顺序首尾相接,形成如图所示三角形,图中虚线即为F合得方向允许得变化范围。

由图可知: 即:

7、如图所示,在倾角为θ得固定粗糙斜面上,一个质量为m得物体在拉力F 得作用下沿斜面向上做匀加速直线运动,已知物体与斜面间得动摩擦因数为μ,为使物体加速度大小为a ,试求力F 得最小值及其对应

得方向.

,

F f 合成为一个力F合,由可知,。

将三个力按顺序首尾相接,与三者得合力形成如图所示四边形,其中mg

、ma 不变,F 合

取不同方向时,F得大小也不同,当F 与F 合垂直时,F 取最小值。

由几何关系,得:,解得:

8、如图所示,一倾斜得匀质圆盘绕垂直于盘面得固定对称轴以恒定角速度ω转动,盘面上离转轴距离2、5 m 处有一小物体与圆盘始终保持相对静止。物体与盘面间得动摩擦因数为错误!(设最大静摩擦力等于

滑动摩擦力),盘面与水平面得夹角为30°,g 取10 m/s2

。则ω得最大值就是

A。错误! rad/s ?? ?B 。错误! rad/s ? ?? C 。1、0 rad/s ? ??D .5 ra d/s

【解析】垂直圆盘向下瞧,物体受力如图所示,静摩擦力Ff 与重力沿圆盘向下得分力m gsin30°得合力即向心力ma 。将这两个力按顺序首尾相接,与它们得合力m a形成闭合三角形,其中m gsin30°保持不变、ma 大小不变,静摩擦力.

由图易知,当小物体转到最低点时,静摩擦最大,为,解得.故选C。

mg F F 合 ma

F

α

高一物理动态平衡问题处理方法及答案

动态平衡分析 一 物体受三个力作用 例1. 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( ) A .F N 先减小,后增大 B .F N 始终不变 C .F 先减小,后增大 D.F 始终不变 正确答案为选项B 跟踪练习: 如图2-3所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( D )。 (A)N 变大,T 变小, (B)N 变小,T 变大 (C)N 变小,T 先变小后变大 (D)N 不变,T 变小 图2-1 图2-2 图2-3 图1-1 图1-2 F 1 G F 2 图1-3

例3.如图3-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m ,OA =1.5m ,求绳中张力的大小,并讨论: (1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化? (2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化? 解析:取绳子c 点为研究对角,受到三根绳的拉力,如图3-2所示分别为F 1、F 2、F 3,延长绳AO 交竖直墙于D 点,由于是同一根轻绳,可得:21F F =,BC 长度等于CD ,AD 长度等于绳长。设角∠OAD 为θ;根据三个力平衡可得:θ sin 21G F = ;在三角形AOD 中可 知,AD OD = θsin 。如果A 端左移,AD 变为如图3-3中虚线A ′D ′所示,可知A ′D ′不变,OD ′减小,θsin 减小,F 1变大。如果B 端下移,BC 变为如图3-4虚线B ′C ′所示,可知AD 、OD 不变,θsin 不变,F 1不变。 二 物体受四个力及以上 例 4 .如图所示,当人向左跨了一步后人与物体保持静止,跨后与垮前相比较,下列说法错误的是: A .地面对人的摩擦力减小 B .地面对人的摩擦力增加 C .人对地面压力增大 D .绳对人的拉力变小 跟踪练习: 如图所示,小船用绳牵引.设水平阻力不变,在小船匀速靠岸的过程中 A 、绳子的拉力不断增大B 、绳子的拉力保持不变 C 、船受的浮力减小 D 、船受的浮力不变 三 连接体问题 例5 有一个直角支架AOB ,AO 是水平放置,表面粗糙.OB 竖直向下,表面光滑.OA 图3-1 A B C G O A B C G D F 1 F 2 F 3 O θ 图3-2 A B C G D F 1 F 2 F 3 O θ A ′ D ′ 图3-3 A B C G D F 1 F 2 F 3 O θ C ′ B ′ 图3-4 F

25.物体的动态平衡问题解题技巧

物体的动态平衡问题解题技巧 湖北省恩施高中 陈恩谱 —、总论 1、 动态平衡问题的产生 ——三个平衡力中一个力已知恒定,另外两个力的大小或者方向不断变化, 但物体仍然平衡,典型关键词 一一缓慢转动、缓慢移动 …… 2、 动态平衡问题的解法一一解析法、图解法 解析法一一画好受力分析图后,正交分解或者斜交分解列平衡方程,将待求力写成三角函数形式,然 后由角度变化分析判断力的变化规律; 图解法一一画好受力分析图后,将三个力按顺序首尾相接形成力的闭合三角形,然后根据不同类型的 不同作图方法,作出相应的动态三角形,从动态三角形边长变化规律看出力的变化规律。 3、 动态平衡问题的分类一一动态三角形、相似三角形、圆与三角形( 2类)、其他特殊类型 二、例析 1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定 一- 动态三角形 【例1】如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为 F NI ,球对木板的压力 大小为F N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不 计摩擦,在此过程中 A . F NI 始终减小,F N 2始终增大 B . F NI 始终减小,F N 2始终减小 C . F NI 先增大后减小,F N 2始终减小 D . F NI 先增大后减小,F N 2先减小后增大 解法一:解析法一一画受力分析图,正交分解列方程,解出 F NI 、F N 2随夹角变化的函数,然后 由函数 讨论; 小。选B 。 解法二: 图解法一一画受力分析图,构建初始力的三角形,然后 抓住不变,讨论变化 ”不变的是小 球重力和F NI 的方向,然后按 F N 2方向变化规律转动 F N 2,即可看出结果。 【解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形 mg 成如右图所示闭合三角形,其中重力 mg 保持不变,F NI 的方向始终水平向右, 而F N2的方向逐渐变得竖直。 则由右图可知F NI 、F N 2都一直在减小。 F N 2 【解析】小球受力如图,由平衡条件,有 F N2sin v - mg = 0 F N 2 cos 二-F NI = 0 联立,解得:F N2 - mg mg 木板在顺时针放平过程中, 0角一直在增大,可知 F NI 、F N 2都一直在减

物体的受力(动态平衡)分析典型例题

物体的受力(动态平衡)分析及典型例题 受力分析就是分析物体的受力,受力分析是研究力学问题的基础,是研究力学问题的关键。 受力分析的依据是各种力的产生条件及方向特点。 一.几种常见力的产生条件及方向特点。 1.重力。 重力是由于地球对物体的吸引而使物体受到的力,只要物体在地球上,物体就会受到重力。 重力不是地球对物体的引力。重力与万有引力的关系是高中物理的一个小难点。 重力的方向:竖直向下。 2.弹力。 弹力的产生条件是接触且发生弹性形变。 判断弹力有无的方法:假设法和运动状态分析法。 弹力的方向与施力物体形变的方向相反,与施力物体恢复形变的方向相同。 弹力的方向的判断:面面接触垂直于面,点面接触垂直于面,点线接触垂直于线。 【例1】如图1—1所示,判断接触面对球有无弹力,已知球静止,接触面光滑。图a 中接触面对球 无 弹力;图b 中斜面对小球 有 支持力。 【例2】如图1—2所示,判断接触面MO 、ON 对球有无弹力,已知球静止,接触面光滑。水平面ON 对球 有 支持力,斜面MO 对球 无 弹力。 【例3】如图1—4所示,画出物体A 所受的弹力。 a 图中物体A 静止在斜面上。 b 图中杆A 静止在光滑的半圆形的碗中。 c 图中A 球光滑,O 为圆心,O '为重心。 【例4】如图1—6所示,小车上固定着一根弯成α角的曲杆,杆的另一端固定一个质 图1—1 a b 图1—2 图1—4 a b c

量为m 的球,试分析下列情况下杆对球的弹力的大小和方向:(1)小车静止;(2)小车以加速度a 水平向右加速运动;(3)小车以加速度a 水平向左加速运动;(4)加速度满足什么条件时,杆对小球的弹力沿着杆的方向。 3.摩擦力。 摩擦力的产生条件为:(1)两物体相互接触,且接触面粗糙;(2)接触面间有挤压;(3)有相对运动或相对运动趋势。 摩擦力的方向为与接触面相切,与相对运动方向或相对运动趋势方向相反。 判断摩擦力有无和方向的方法:假设法、运动状态分析法、牛顿第三定律分析法。 【例5】如图1—8所示,判断下列几种情况下物体A 与接触面间有、无摩擦力。 图a 中物体A 静止。图 b 中物体A 沿竖直面下滑,接触面粗糙。图 c 中物体A 沿光滑斜面下滑。图 d 中物体A 静止。 图a 中 无 摩擦力产生,图b 中 无 摩擦力产生,图c 中 无 摩擦力产生,图d 中 有 摩擦力产生。 【例6】如图1—9所示为皮带传送装置,甲为主动轮,传动过程中皮带不打滑,P 、Q 分别为两轮边缘上的两点,下列说法正确的是:( B ) A .P 、Q 两点的摩擦力方向均与轮转动方向相反 B .P 点的摩擦力方向与甲轮的转动方向相反, Q 点的摩擦力方向与乙轮的转动方向相同 C .P 点的摩擦力方向与甲轮的转动方向相同, Q 点的摩擦力方向与乙轮的转动方向相反 D .P 、Q 两点的摩擦力方向均与轮转动方向相同 【例7】如图1—10所示,物体A 叠放在物体B 上,水平地面光滑,外力F 作用于物体B 上使它们一起运动,试分析两物体受到的静摩擦力的方向。 图1—8 图1—9

物体的平衡练习修订版

物体的平衡练习修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

专题受力分析共点力的平衡 命题点一受力分析整体法与隔离法的应用 1.高中物理主要研究的九种力 例1如图4所示,物块A放在直角三角形斜面体B上面,B放在弹簧上面并紧挨着竖直墙壁,初始时A、B静止,现用力F沿斜面向上推A,但A、B仍未动.则施力F后,下列说法正确的是( ) 图4 A.A、B之间的摩擦力一定变大 B.B与墙面间的弹力可能不变 C.B与墙之间可能没有摩擦力 D.弹簧弹力一定不变 例2如图5所示,甲、乙两个小球的质量均为m,两球间用细线连接,甲球用细线悬挂在天花板上.现分别用大小相等的力F水平向左、向右拉两球,平衡时细线都被拉紧.则平衡时两球的可能位置是下列选项中的( ) 图5 变式1如图6所示,两段等长细线串接着两个质量相等的小球a、b,悬挂于O点.现在两个小球上分别加上水平的外力,其中作用在b球上的力大小为F、作用在a球上的力大小为2F,则此装置平衡时的位置可能是( ) 图6 1.动态平衡

动态平衡就是通过控制某一物理量,使物体的状态发生缓慢的变化,但变化过程中的每一个状态均可视为平衡状态,所以叫动态平衡. 2.常用方法 (1)平行四边形定则法:但也要根据实际情况采用不同的方法,若出现直角三角形,常用三角函数表示合力与分力的关系. (2)图解法:图解法分析物体动态平衡问题时,一般是物体只受三个力作用,且其中一个力大小、方向均不变,另一个力的方向不变,第三个力大小、方向均变化. (3)矢量三角形法 ①若已知F 合的方向、大小及一个分力F 1的方向,则另一分力F 2的最小值的条件为 F 1⊥F 2; ②若已知F 合的方向及一个分力F 1的大小、方向,则另一分力F 2的最小值的条件为F 2⊥F 合. 例3 (多选)(2017·全国卷Ⅰ·21)如图7,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,用手拉住绳的另一端N ,初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α(α>π2 ).现将重物向右上方缓慢拉起,并保持夹角α不变.在OM 由竖直被拉到水平的过程中( ) 图7 A.MN 上的张力逐渐增大 B.MN 上的张力先增大后减小 C.OM 上的张力逐渐增大 D.OM 上的张力先增大后减小

力学中的动态平衡问题优选稿

力学中的动态平衡问题集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

力学中的动态平衡问题 1、动态三角形法 特点:物体所受的三个力中,其中一个力的大小、方向均不变(通常为重力,也 可能是其它力),视为合力,一个分力的方向不变,大小变化,另一个分力则大 小、方向均发生变化的问题。 分析技巧:正确画出物体所受的三个力,将方向不变的分力F1的矢量延长,通过合力的末端做另一个分力F2的平行线,构成一个闭合三角形。看这个分力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形变长的变化对应力的变化。 1.如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N 1 ,球对木板的 压力大小为N 2 ,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不计摩擦,在此过程中() A.N 1始终增大,N 2 始终增大 B.N 1始终减小,N 2 始终减小 C.N 1先增大后减小,N 2 始终减小 D.N 1先增大后减小,N 2 先减小后增大 2.如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中() A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大 C.OB绳上的拉力减小D.OB绳上的拉力先减小后增大 2、相似三角形法

特点:物体所受的三个力中,一个力大小、方向不变(一般是重力,视为合力),其它二 个分力力的方向均发生变化。 分析技巧:先正确画出物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 3.一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示,现将细绳缓慢往右放,使杆BO 与杆AO间的夹角θ逐渐增大,则在此过程中,拉力F及杆BO所受压力F N 的大小变化情况是() A.F N 减小,F增大B.F N 、F都不变C.F增大,F N 不变D.F、F N 都减小 4.光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A到半球的顶点B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化情况是()。 A.N变大,T变小 B.N变小,T变大 C.N变小,T先变小后变大 D.N不变,T变小 3、辅助圆法 特点:三个力中一个为恒力,其它两个力方向和大小均发生变化,但其夹角不变,通常情况下可以采用辅助圆法 分析技巧:先对物体进行受力分析,将三个力的矢量首尾相连构成闭合三角形,然后作闭合三角形的外接圆,以恒力所在边为定弦,按题目要求移动定弦所对圆周角,观察其它两个力的变化情况 5.如图所示,直角尺POQ竖直放置,其中OP部分竖直,OQ部分水平,

高中物理物体的动态平衡问题解题技巧

高中物理物体的动态平衡问题解题技巧题型概述: 物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。 思维模板: 常用的思维方法有两种。(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。 分时间 以课标卷高考为例,高考物理一共8个选择题,按照高考选择题总时间在35-45分钟的安排,物理选择题时间安排在15-25分钟为宜,大约占所有选择题的一半时间(由于生物选择题和化学选择题的计算量不大,很多题目可以直接进行判断,所以物理选择题所占的时间比例应稍大些).在物理的8个选择题中,时间也不能平均分配,一般情况下,选择题的难度会逐渐增加,物理选择题也不会例外,难度大的题目大约需要3分钟甚至更长一点的时间,而难度较小的选择题一般1分钟就能够解决了,8个选择题中,按照2:5:1的关系,一般有2个简单题目,5个中档题目和1个难度较大的题目(开始时难题较小)

析本质 选择题一般考查的是考生对基本知识和基本规律的理解及应用这些知识进行一些定性推理,很少有较复杂的计算.解题时一定要注意一些关键词,例如“不正确的”“可能”与“一定”的区别,要讨论多种可能性.不要挑题做,应按题号顺序做,而且开始应适当慢一点,这样刚上场的紧张心情会逐渐平静下来,做题思维会逐渐活跃,不知不觉中能全身心进入状态.一般地讲,如遇熟题,题图似曾相识,应陈题新解;如遇陌生题,题图陌生、物理情景陌生,应新题常规解,如较长时间分析仍无思路,则应暂时跳过去,先做下边的试题,待全部能做的题目做好后,再来慢慢解决(此时解题的心情已经会相对放松,状态更易发挥).确实做不出来时,千万不要放弃猜答案的机会,先用排除法排除能确认的干扰项,如果能排除两个,其余两项肯定有一个是正确答案,再随意选其中一项,即使一个干扰项也不能排除仍不要放弃,四个选项中随便选一个.尤其要注意的是,选择题做完后一定要立即涂卡. 巧应对 高考物理选择题是所有学科中选择题难度最大的,主要难点有以下几种情况:一是物理本身在各个学科中就属于比较难的学科;二是物理选择题是不定项选择,题目答案个数不确定,造成在选择的时候瞻前顾后,不得要领;三是大部分选择题综合性很高,涉及的知识点比计算题和填空题还要多,稍有不慎,就会顾此失彼;四是有些选择题本身就是小型的计算题,计算量并不比简单的计算题小.

物体的动态平衡问题解题技巧

物体的动态平衡问题解题技巧 一、总论 1、动态平衡问题的产生——三个平衡力中一个力已知恒定,另外两个力的大小或者方向不断变化,但物体仍然平衡,典型关键词——缓慢转动、缓慢移动…… 2、动态平衡问题的解法——解析法、图解法 解析法——画好受力分析图后,正交分解或者斜交分解列平衡方程,将待求力写成三角函数形式,然后由角度变化分析判断力的变化规律; 图解法——画好受力分析图后,将三个力按顺序首尾相接形成力的闭合三角形,然后根据不同类型的不同作图方法,作出相应的动态三角形,从动态三角形边长变化规律看出力的变化规律。 3、动态平衡问题的分类——动态三角形、相似三角形、圆与三角形(2类)、等腰三角形等 二、例析 1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定——动态三角形 【例1】如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为F N1,球对木板的压力大小为F N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中 A .F N1始终减小,F N2始终增大 B .F N1始终减小,F N2始终减小 C .F N1先增大后减小,F N2始终减小 D .F N1先增大后减小,F N2先减小后增大 解法一:解析法——画受力分析图,正交分解列方程,解出F N1、F N2随夹角变化的函数,然后由函数讨论; 【解析】小球受力如图,由平衡条件,有 0sin 2N =-mg F θ 0cos 1N 2N =-F F θ 联立,解得:θsin 2N mg F =,θ tan 1N mg F = 木板在顺时针放平过程中,θ角一直在增大,可知F N1、F N2都一直在减 小。选B 。 解法二:图解法——画受力分析图,构建初始力的三角形,然后“抓住不变,讨论变化”,不变的是小球重力和F N1的方向,然后按F N2方向变化规律转动F N2,即可看出结果。 【解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形 成如右图所示闭合三角形,其中重力mg 保持不变,F N1的方向始终水平向右, 而F N2的方向逐渐变得竖直。 则由右图可知F N1、F N2都一直在减小。 【拓展】水平地面上有一木箱,木箱与地面间的动摩擦因数为μ(0<μ<1)。现对木箱施加一拉力F ,F N2 mg F N1 F N1 F N2 mg θ

动态平衡问题常见解法

动态平衡问题 苗贺铭 动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。因此,本文对动态平衡问题的常见解法梳理如下。 所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。即三个力能围成一个闭合的矢量三角形。 一、图解法 方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。 例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始 缓慢地转到水平位置.不计摩擦,在此过切程中( ) A.F N1始终减小 B. F N2始终减小 C. F N1先增大后减小 D. F N2先减小后增大 解析:以小球为研究对象,分析受力情况:重力G、 墙面的支持力和木板的支持力,如图所示:由矢量三 角形可知:始终减小,始终减小。 归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 二、解析法 方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。 例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变 大,F f变大 B. F N变小,F f变小 C. F N变大,F f变小 D. F N变小,F f变大 解析:设木板倾角为θ 根据平衡条件:F N=mgcosθ F f=mgsinθ 可见θ减小,则F N变大,F f变小;

动态平衡模型总结(原卷)

动态平衡受力分析 在有关物体平衡的问题中,有一类涉及动态平衡。这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。 基础知识必备 方法一:三角形图解法 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。 【例1】如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板对球的压力F N1和斜面对球的支持力F N2变化情况为()A.F N1、F N2都是先减小后增加 B.F N2一直减小,F N1先增加后减小 C.F N1先减小后增加,F N2一直减小 D.F N1一直减小,F N2先减小后增加 【练习1】如图所示,小球被轻质细绳系着,斜吊着放在光滑劈面上,小球质量为m,斜面倾角为θ,向右缓慢推动劈一小段距离,在整个过程中() A.绳上张力先增大后减小 B.绳上张力先减小后增大 C.劈对小球支持力减小 D.劈对小球支持力增大

力学中的动态平衡问题

力学中的动态平衡问题 1、动态三角形法 特点:物体所受的三个力中,其中一个力的大小、方向均不变(通常为重力,也可能是其它力),视为合力,一个分力的方向不变,大小变化,另一个分力则大小、方向均发生变化的问题。 分析技巧:正确画出物体所受的三个力,将方向不变的分力F1的矢量延长,通 过合力的末端做另一个分力F2的平行线,构成一个闭合三角形。看这个分力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形变长的变化对应力的变化。 1.如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N 1 ,球 对木板的压力大小为N 2 ,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不计摩擦,在此过程中() A.N 1始终增大,N 2 始终增大 B.N 1始终减小,N 2 始终减小 C.N 1先增大后减小,N 2 始终减小 D.N 1先增大后减小,N 2 先减小后增大 2.如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中()

A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大 C.OB绳上的拉力减小D.OB绳上的拉力先减小后增大 2、相似三角形法 特点:物体所受的三个力中,一个力大小、方向不变(一般是重力,视为合力),其它二个分力力的方向均发生变化。 分析技巧:先正确画出物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 3.一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示,现将细绳缓慢往右放,使杆BO与杆AO间的夹角θ逐渐增大,则在此过程中,拉力F及杆BO 所受压力F N 的大小变化情况是() A.F N 减小,F增大B.F N 、F都不变C.F增大,F N 不变D.F、F N 都减小 4.光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小

(完整版)动态平衡练习及例题

动态平衡问题的特征是指物体的加速度和速度始终为零。解决动态平衡问题的方法一般采用解析法和图解法。解析法是列平衡方程,找出各力之间的关系进行判断,适合多力动态平衡问题;图解法是利用平行四边形定则或三角形定则,做出若干平衡状态的示意图,根据力的有向线段的长度和角度的变化确定力的大小和方向的变化情况,适合三力动态平衡问题。 1、用与竖直方向成θ角(θ<45°)的倾斜轻绳a 和水平轻绳b 共同固定一个小球,这时绳b 的拉力为F1。现保持小球在原位置不动,使绳b 在原竖直平面内逆时转过θ角后固定,绳b 的拉力变为F2;再转过θ角固定,绳b 的拉力为F3, ( ) A .F1=F3>F2 B .F1

物体的受力(动态平衡)分析及典型例题

物体的受力(动态平衡)分析及典型例题 令狐采学 受力分析就是分析物体的受力,受力分析是研究力学问题的基础,是研究力学问题的关键。 受力分析的依据是各种力的产生条件及方向特点。 一.几种常见力的产生条件及方向特点。 1.重力。 重力是由于地球对物体的吸引而使物体受到的力,只要物体在地球上,物体就会受到重力。 重力不是地球对物体的引力。重力与万有引力的关系是高中物理的一个小难点。 重力的方向:竖直向下。 2.弹力。 弹力的产生条件是接触且发生弹性形变。 判断弹力有无的方法:假设法和运动状态分析法。 弹力的方向与施力物体形变的方向相反,与施力物体恢复形变的方向相同。

弹力的方向的判断:面面接触垂直于面,点面 接触垂直于面,点线接触垂直于线。 【例1】如图1—1所示,判断接触面对球有无 弹力,已知球静止,接触面光滑。图a 中接触面对 球无弹力;图b 中斜面对小球有支持力。 【例2】如图1—2所示,判断接触面MO 、ON 对球有无弹力,已知球静止,接触面光滑。水平面 ON 对球有支持力,斜面MO 对球无弹力。 【例3】如图1—4所示,画出物体A 所受的弹力。 a 图中物体A 静止在斜面上。 b 图中杆A 静止在光滑的半圆形的碗中。 c 图中A 球光滑,O 为圆心,O '为重心。 【例4】如图1—6所示,小车上固定着一根弯 成α角的曲杆,杆的另一端固定一个质量为m 的 球,试分析下列情况下杆对球的弹力的大小和方 向:(1)小车静止;(2)小车以加速度a 水平向 右加速运动;(3)小车以加速度a 水平向左加速 图1—1 a b 图1—2 图1—4 a b c

运动;(4)加速度满足什么条件时,杆对小球的 弹力沿着杆的方向。 3.摩擦力。 摩擦力的产生条件为:(1)两物体相互接触,且接触面粗糙;(2)接触面间有挤压;(3)有相对运动或相对运动趋势。 摩擦力的方向为与接触面相切,与相对运动方向或相对运动趋势方向相反。 判断摩擦力有无和方向的方法:假设法、运动状态分析法、牛顿第三定律分析法。 【例5】如图1—8所示,判断下列几种情况下物体A与接触面间有、无摩擦力。 图a中物体A静止。图b中物体A沿竖直面下滑,接触面粗糙。图c中物体A沿光滑斜面下滑。 图d中物体A静止。 图1—8 图a中无摩擦力产生,图b中无摩擦力产生,图c中无摩擦力产生,图d中有摩擦力产生。 【例6】如图1—9所示为皮带传送装置,甲为主动轮,传动过程中皮带不打滑,P、Q分别为两轮

力学动态平衡问题

力学动态平衡问题 所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢的变化,而在这个过程中物体又始终处于一系列的平衡状态中。 解决动态平衡问题的思路是,①明确研究对象。②对物体进行正确的受力分析。③观察物体受力情况,认清哪些力是保持不变的,哪些力是改变的。④选取恰当的方法解决问题。 根据受力分析的结果,我们归纳出解决动态平衡问题的三种常用方法,分别是“图解法”,“相似三角形法”和“正交分解法”。 1、图解法 在同一图中做出物体在不同平衡状态下的力的矢量图,画出力的平行四边形或平移成矢量三角形,由动态力的平行四边形(或三角形)的各边长度的变化确定力的大小及方向的变化情况。 适用题型: (1)物体受三个力(或可等效为三个力)作用,三个力方向都不变,其中一个力大小改变。 例1、重G 的光滑小球静止在固定斜面和竖直挡板之间,若对小球施加一通过球心竖直向下的力F 作用,且F 缓慢增大,问在该过程中,斜面和挡板对小球的弹力的大小F 1、F 2如何变化? 解析:选取小球为研究对象,小球受自身重力G ,斜面对小球的支持力F1,挡板对小球的弹力F2和竖直向下的压力F 四个力作用,画出受力示意图如图1-2所示。因为力F 和重力G 方向同为竖直向下,所以可以将它们等效为一个力,设为F ,这样小球就等效为三个力作用,力的示意图如图1-3所示。画出以F1和F2为邻边的力的平行四边形,因为三力平衡,所以F1和F2的合力F 合与F 等大反向(如图1-4所示)。各力的方向不变,当F 增大,F 合应随之增大,对应平行四边形的对角线变长,画出另一个状态的力的矢量图(如图1-5所示),由图中平行四边形边长的变化可知F1和F2都在增大。 根据物体在三个力的作用下平衡时,这三个力一定能构成一个封闭的矢量三角 形。这样也可以将上述三个力F 、F1、F2平移成矢量三角形(如图1-6所示),由F 增大,可画出另一个状态下的矢量三角形,通过图像中三角形边长的变化容易看出 F1和F2都在增大。 图1-1 图1-2 图1-3 图1-4 图1-5 图 1-6

物体的动态平衡问题解题技巧

物体的动态平衡问题解题技巧 省高中 恩谱 一、总论 1、动态平衡问题的产生——三个平衡力中一个力已知恒定,另外两个力的大小或者方向不断变化,但物体仍然平衡,典型关键词——缓慢转动、缓慢移动…… 2、动态平衡问题的解法——解析法、图解法 解析法——画好受力分析图后,正交分解或者斜交分解列平衡方程,将待求力写成三角函数形式,然后由角度变化分析判断力的变化规律; 图解法——画好受力分析图后,将三个力按顺序首尾相接形成力的闭合三角形,然后根据不同类型的不同作图方法,作出相应的动态三角形,从动态三角形边长变化规律看出力的变化规律。 3、动态平衡问题的分类——动态三角形、相似三角形、圆与三角形(2类)、其他特殊类型 二、例析 1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定——动态三角形 【例1】如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为F N1,球对木板的压力大小为F N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中 A .F N1始终减小,F N2始终增大 B .F N1始终减小,F N2始终减小 C .F N1先增大后减小,F N2始终减小 D .F N1先增大后减小,F N2先减小后增大 解法一:解析法——画受力分析图,正交分解列方程,解出F N1、F N2随夹角变化的函数,然后由函数讨论; 【解析】小球受力如图,由平衡条件,有 0sin 2N =-mg F θ0cos 1N 2N =-F F θ 联立,解得:θsin 2N mg F = ,θ tan 1N mg F = 木板在顺时针放平过程中,θ角一直在增大,可知F N1、F N2都一直在减小。选B 。 F N1 F mg θ

物体的动态平衡汇总

动态平衡问题 1.(湖南望城五中09届高三第一次月考卷.物理.5)如图所示,物体A 、B 用细绳连接后跨 过滑轮.A 静止在倾角为450的斜面上,B 悬挂着.已知质量m A = 2m B ,不计滑轮摩擦,现将 斜面倾角由450增大到500,但物体仍保持静止,那么下列说法中正确的是( ) A .绳子的张力将增大 B .物体A 对斜面的压力将减少 C .绳子的张力及A 受到的静摩擦力都不变 D .物体A 受到的静摩擦力将增大 2.(08北京海淀第一学期期中)如图所示,轻质光滑滑轮两侧用轻绳 连着两个物体A 与B,物体B 放在水平地面上,A 、B 均静止.已知A 和 B 的质量分别为m A 、m B ,绳与水平方向的夹角为θ(θ < 90°),重力 加速度为g,则 ( ) A.物体B 受到的摩擦力可能为零 B.物体B 受到的摩擦力为m A gcos θ C.物体B 对地面的压力可能为零 D.物体B 对地面的压力为m B g - m A gsin θ 3.如图所示,A 、B 两物体用细绳相连跨过光滑轻小滑轮悬挂起来,B 物体放在水平地面上, A 、 B 两物体均静止.现将B 物体稍向左移一点,A 、B 两物体仍静止, 则此时与原来相比( ). (A )绳子拉力变大 (B )地面对物体B 的支持力变大 (C )地面对物体B 的摩擦力变大 (D )物体B 受到的合力变大 4.如图所示,物体G 用两根绳子悬挂,开始时绳OA 水平,现将两绳同时 沿顺时针方向转过90°,且保持两绳之间的夹角α不变(α>90°),物体保 持静止状态.在旋转过程中,设绳OA 的拉力为T 1,绳OB 的拉力为T 2,则 ( ). (A )T 1先减小后增大 (B )T 1先增大后减小 (C )T 2逐渐减小 (D )T 2最终变为零 5. 如图所示,小球用细绳系住始终静止在倾角为θ的光滑斜面上,当细绳方向由水平逐渐向上偏移时,绳的拉力F 和斜面对小球的支持力F N 将( ) A. F 逐渐增大,F N 逐渐减小。 B. F 先增大后减小,F N 逐渐减小。 C. F 逐渐减小,F N 逐渐增大。 D. F 先减小后增大,F N 逐渐减小。 6.(2009上海崇明县高三期末)如图所示,两个完全相同的光滑球的质量为m ,放在竖直挡板和倾角为α中( ) A.A 、B 两球间的弹力不变; B.B 球对挡板的压力逐渐减小; C.B 球对斜面的压力逐渐增大; D.A 球对斜面的压力逐渐增大。 7.(湖北宜昌市一中2009届高三年级十月月考卷.物理.8)在固定于地面的斜面上垂直安放一个挡板,截面为 14 圆的柱状物体甲放在斜面上,半径与甲相等的光滑圆球乙被夹在甲与挡板之间,没有与斜 面接触而处于静止状态,如图13所示。现在从球心O 1处对甲施加一 平行于斜面向下的力F ,使甲沿斜面方向极其缓慢地移动,直至甲与 挡板接触为止。设乙对挡板的压力F 1,甲对斜面的压力为F 2,在此过程中( ) A .F 1缓慢增大,F 2缓慢增大 B .F 1缓慢增大,F 2缓慢减小 C .F 1缓慢减小,F 2缓慢增大 D .F 1缓慢减小,F 2缓慢不变

三力动态平衡问题的几种解法

三力动态平衡问题的几种解法 物体在几个力的共同作用下处于平衡状态,如果其中的某一个力或某几个力发生缓慢的变化,其他的力也随之发生相应的变化,在变化过程中物体仍处于平衡状态,我们称这种平衡为动态平衡。因为物体受到的力都在发生变化,是动态力,所以这类问题是力学中比较难的一类问题。因为在整个过程中物体一直处于平衡状态,所以过程中的每一瞬间物体所受到的合力都是零,这是我们解这类题的根据. 下面就举例介绍几种这类题的解题方法. 一,三角函数法 例1.(2014年全国卷1)如图,用橡皮筋将一小球悬挂在小车的架子上,系绕处于平衡状态。现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。与稳定在竖直位置时相比,小球的高度() A.一定升高B.一定降低 C.保持不变D.升高或降低由橡皮筋的劲度系数决定 解析:设L0为橡皮筋的原长,k为橡皮筋的劲度系数,小 车静止时,对小球受力分析得:F1=mg,弹簧的伸长 ,即小球与悬挂点的距离为,当小车的加速度稳定在一定值时,对小球进行受力分析如图: 得:,,解得:,弹簧的伸长: ,则小球与悬挂点的竖直方向的距离为: ,即小球在竖直方向上到悬挂点的距离减小, 所以小球一定升高,故A正确,BCD错误.故选A. 点评:这种方法适用于有两个力垂直的情形,这样才能构建直角三角形,从而根据直角三角形中的边角关系解题. 二,图解法 例2.如图所示,半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖

直的位置C的过程中,如图所示,OA绳受力大小变化情况是______,OB绳受力大小变化情况是______. 解析:对O点受力分析,根据O点合力是零可知绳OA和绳OB上拉力的合力跟重力大小相等,方向相反,也就是说这个合力的大小不变方向竖直向上。根据图像OA绳受力 变小,OB绳受力先变小后变大. 点评:这种方法适用于一个力大小方向都不变,另一个力方向不变,只有第三个力大小方向都变化的情况. 三,相似三角形法 例3.(2014年上海卷)如图,竖直绝缘墙上固定一带电小球A,将带电小球B用轻质绝缘丝线悬挂在A的正上方C处,图中AC=h。当B静止在与竖直方向夹角方 向时,A对B的静电力为B所受重力的倍,则丝线BC长度为。若A对B的静电力为B所受重力的0.5倍,改变丝线长度,使B仍能在处平衡。以后由于A 漏电,B在竖直平面内缓慢运动,到处A的电荷尚未漏完,在整个漏电过程中,丝线上拉力大小的变化情况是。

动态平衡问题

动态平衡问题 1.动态平衡: 指通过控制某些物理量使物体的状态发生缓慢变化。在这个过程中物体始终处于一系列平衡状态中。 2.动态平衡特征: 一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。 3.平衡物体动态问题分析方法: (1)图解分析法 对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出物体在若干状态下力的平衡图(力的平行四边形),再由动态力的平行四边形各边长度变化及角度变化确定力的大小及方向的变化情况。 动态平衡中各力的变化情况是一种常见题型。总结其特点有:合力大小和方向都不变;一个分力的方向不变,分析另一个分力方向变化时两个分力大小的变化情况。用图解法具有简单、直观的优点。 (2)相似三角形法 对受三力作用而平衡的物体,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 (3)解析法 根据物体的平衡条件列方程,在解方程时采用数学知识讨论某物理量随变量的变化关系。 【例1】如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A 套在粗糙的水平直杆MN上。现用水平力F拉着绳子上的一点O,使 小球B从图中实线位置缓慢上升到虚线位置,但圆环A始终保持在原 位置不动。则在这一过程中,环对杆的摩擦力Ff和环对杆的压力F N 的变化情况是( ) A、F f不变,FN不变 B、Ff增大,FN不变 C、Ff增大,FN减小 D、Ff不变,FN减小 【解析】以结点O为研究对象进行受力分析如图(a)。 由题可知,O点处于动态平衡,则可作出三力的平衡关系图如图(a)。 由图可知水平拉力增大。 以环、绳和小球构成的整体作为研究对象,作受力分析图如图(b)。 由整个系统平衡可知:FN=(mA+mB)g;Ff=F。

高中物理解决动态平衡问题的五种方法(带答案)

第03讲解决动态平衡问题的五种方法 通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法: (一)解析法 对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。 (二)结论法 若合力不变,两等大分力夹角变大,则分力变大. 若分力大小不变,两等大分力夹角变大,则合力变小. 1、粗细均匀的电线架在A、B两根电线杆之间。由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( ) A.冬季,电线对电线杆的拉力较大 B.夏季,电线对电线杆的拉力较大 C.夏季与冬季,电线对电线杆的拉力一样大 D.夏季,电线杆对地面的压力较大 2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉 力F

T (两个拉力大小相等)及它们的合力F的大小变化情况为() A.F T 减小,F不变B.F T 增大,F不变 C.F T 增大,F减小D.F T 增大,F增大 3、如图所示,硬杆BC一端固定在墙上的B点,另一端装有滑轮C,重物D 用绳拴住通过滑轮固定于墙上的A点。若杆、滑轮及绳的质量和摩擦均不计, 将绳的固定端从A点稍向下移,则在移动过程中( ) A.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大 C.绳的拉力不变,滑轮对绳的作用力增大 D.绳的拉力、滑轮对绳的作用力都不变

相关主题
文本预览
相关文档 最新文档