当前位置:文档之家› 相似三角形的判定方法

相似三角形的判定方法

相似三角形的判定方法
相似三角形的判定方法

(一)相似三角形

1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.

①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;

②相似三角形的特征:形状一样,但大小不一定相等;

③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.

2、相似三角形对应边的比叫做相似比.

①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.

②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽

△ABC的相似比,当它们全等时,才有k=k′=1.

③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.

3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.

4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.

①定理的基本图形有三种情况,如图其符号语言:

∵DE∥BC,∴△ABC∽△ADE;

(双A型)

②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;

③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.

(二)相似三角形的判定

1、相似三角形的判定:

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。

例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.

判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

简单说成:两边对应成比例且夹角相等,两三角形相似.

例1、△ABC 中,点D 在AB 上,如果AC 2

=AD ?AB ,那么△ACD 与△ABC 相似吗?说说你的理由.

例2、如图,点C 、D 在线段AB 上,△PCD 是等边三角形。 (1)当AC 、CD 、DB 满足怎样的关系时,△ACP ∽△PDB ? (2)当△ACP ∽△PDB 时,求∠APB 的度数。

判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。

简单说成:三边对应成比例,两三角形相似.

A

B

C

D

E F

第4题

不相似,请说明理由。

,求出相似比;如果

它们相似吗?如果相似,

和如图在正方形网格上有222111A C B A C B ??

强调:

①有平行线时,用预备定理;

②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;

③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等. 2、直角三角形相似的判定:

斜边和一条直角边对应成比例,两直角三角形相似.

例1、已知:如图,在正方形ABCD 中,P 是BC 上的点,且BP =3PC ,Q 是CD 的中点.求证:△ADQ ∽△QCP .

例2、如图,AB ⊥BD,CD ⊥BD,P 为BD 上一动点,AB=60 cm,CD=40 cm,BD=140 cm,当P 点在BD 上由B 点向D 点运动时,PB 的长满足什么条件,可以使图中的两个三角形相似?请说明理由

.

例3、如图AD ⊥AB 于D ,CE ⊥AB 于E 交AB 于F ,则图中相似三角形的对数有 对。

例4、已知:AD 是Rt △ABC 中∠A 的平分线,∠C =90°,

EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD (2)ND 2=NC ·NB

①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;

②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相

E

F

A B

C

似三角形”,其应用较为广泛.

(直角三角形被斜边上的高分成的两个直三角形的与原三角形相似)

③如图,可简单记为:在Rt △ABC 中,CD ⊥AB ,则△ABC ∽△CBD ∽△ACD . ④补充射影定理。

特殊情况:

第一:顶角(或底角)相等的两个等腰三角形相似。 第二:腰和底对应成比例的两个等腰三角形相似。 第三:有一个锐角相等的两个直角三角形相似。

第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。 第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形相似。

类型 斜三角形 直角三角形

全等三角形的判定 SAS SSS AAS (ASA ) HL 相似三角形 的判定

两边对应成比例夹角相等

三边对应成比例

两角对应相等

一条直角边与斜边对应成比例

二、重点难点疑点突破

1、寻找相似三角形对应元素的方法与技巧

正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功.通常有以下几种方法:

(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;

(2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.

(3)对应字母要写在对应的位置上,可直接得出对应边,对应角。 2、常见的相似三角形的基本图形:

学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法.如:

A B

C

D

E

A

B

C

D C

A B

C

D E

D

A

B

C

E

18.5 相似三角形的判定 同步练习1(含答案)

18.5 相似三角形的判定 自主学习 主干知识←提前预习勤于归纳→ 认真阅读教材,完成下列各题 1.判定两个三角形全等的主要依据有哪些? 答案:主要有:边角边公理,角边角公理,角角边定理,边边边公理,若两个三角形为直角三角形,则还有“HL”定理. 2.判定两个三角形相似的主要依据有哪些? 答案:主要依据有:两角对应相等,两三角形相似;两边对应成比例且夹角相等,两三角形相似;三边对应成比例,两三角形相似. 3.平行于三角形一边的直线,截其他两边所得的三角形与原三角形______. 答案:相似 4.以下选项中不正确的是( ) A.所有的等边三角形都相似 B.含30°角的直角三角形都相似 C.所有的直角三角形都相似 D.顶角相等的两等腰三角形相似 答案:C 点击思维←温故知新查漏补缺→ 1.对于说法: ①都含有80°角的两个等腰三角形相似;②都含有100°角的两个等腰三角形相似. 下列结论正确的是( )

A.只有①对 B.只有②对 C.①、②均对 D.①、②均不对 答案:B 解析:对于①,如图所示,显然不相似.但对于②,由内角和定理知,显然100°的角只能是顶角,由判定定理可知,②是正确的. 2.一个钢筋三脚架A 的三边长分别是20 cm 、60 cm 、50 cm,现在要做一个与其相似的钢筋三脚架B,已知三脚架B 的一边长为30 cm,试确定三脚B 的另外两边长. 答案:解析:设三脚架B 的另外两边长分别为x cm ,y cm. (1)当30 cm 的边长为最长边时, 30605020==y x ,解得x=10 cm ,y=25 cm ; (2)当30 cm 的边长为最短边时,y x 60503020==,解得x=75 cm ,y=90 cm. (3)当30 cm 的边长为另外一条边时, y x 60305020==,解得x=12 cm ,y=36 cm ; 所以三脚架B 的另外两边长为10 cm ,25 cm ,或12 cm ,36 cm ,或75 cm,90 cm.

角角相似三角形的判定练习

相似三角形的判定练习 【知能点分类训练】 知能点1 角角识别法 1.如图1,(1)若OA OB =_____,则△OAC∽△OBD,∠A=________. (2)若∠B=________,则△OAC∽△OBD,________与________是对应边. (3)请你再写一个条件,_________,使△OAC∽△OBD. 2.如图2,若∠BEF=∠CDF,则△_______∽△________,△______∽△_______. (1) (2) (3) 3.如图3,已知A(3,0),B(0,6),且∠ACO=?∠BAO,?则点C?的坐标为________,?AC=_______. 4.已知,如图4,△ABC中,DE∥BC,DF∥AC,则图中共有________对相似三角形.5.下列各组图形一定相似的是(). A.有一个角相等的等腰三角形 B.有一个角相等的直角三角形 C.有一个角是100°的等腰三角形 D.有一个角是对顶角的两个三角形 6.如图5,AB=BC=CD=DE,∠B=90°,则∠1+∠2+∠3等于(). A.45° B.60° C.75° D.90° (4) (5) (6) 7.如图6,若∠ACD=∠B,则△_______∽△______,对应边的比例式为_____________,∠ADC=________. 8.如图,在△ABC中,CD,AE是三角形的两条高,写出图中所有相似的三角形,简要说明理由.

9.如图,D ,E 是AB 边上的三等分点,F ,G 是AC 边上的三等分点,?写出图中的相似三角形,并求出对应的相似比. 10.如图,在直角坐标系中,已知点A (2,0),B (0,4),在坐标轴上找到点C (1,0)?和点D ,使△AOB 与△DOC 相似,求出D 点的坐标,并说明理由. 【综合应用提高】 11.已知:如图是一束光线射入室内的平面图,?上檐边缘射入的光线照在距窗户 2.5m 处,已知窗户AB 高为2m ,B 点距地面高为1.2m ,求下檐光线的落地点N?与窗户的距离NC . 12.如图,等腰直角三角形ABC 中,顶点为C ,∠MCN=45°,试说明△BCM ∽△ANC . 13.在ABCD 中,M ,N 为对角线BD 的三等分点,连接AM 交BC 于E ,连接EN 并延长交AD 于F .(1)试说明△AMD ∽△EMB ;(2)求FN NE 的值.

(完整版)相似三角形的判定方法

(一)相似三角形 1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽ △ABC的相似比,当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; (双A型) ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

人教版数学九年级下册 第二十七章 相似 27.2.1 相似三角形的判定 同步练习附答案学生版

人教版数学九年级下册 第二十七章 相似 27.2.1 相似三角形的判定 同步练 习 一、单选题(共9题;共18分) 1.如图,在 中, , , ,将 沿图示中的虚线 剪开, 剪下的三角形与原三角形不. 相似的是( ) A. B. C. D. 2.下列各组长度的线段(单位: )中,成比例线段的是( ) A. 1,2,3,4 B. 1,2,3,5 C. 2,3,4,5 D. 2,3,4,6 3.已知四条线段a,b,c,d 是成比例线段,即 = ,下列说法错误的是( ) A. ad=bc B. = C. = D. = 4.下列判断中,错误的有( ) A. 三边对应成比例的两个三角形相似 B. 两边对应成比例,且有一个角相等的两个三角形相似 C. 有一个锐角相等的两个直角三角形相似 D. 有一个角是100°的两个等腰三角形相似 5.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,AD :BD=5:3,CF=6,则DE 的长为( ) A. 6 B. 8 C. 10 D. 12 6.下列条件中,不能判断△ABC 与△DEF 相似的是( ) A. ∠A =∠D , ∠B =∠F B. 且∠B =∠D C. D. 且∠A =∠D 7.如图所示,在?ABCD.BE 交AC ,CD 于G ,F ,交AD 的延长线于E ,则图中的相似三角形有( )

A. 3对 B. 4对 C. 5对 D. 6对 8.如图,下列条件中不能判定△ACD∽△ABC的是() A. ∠ADC=∠ACB B. C. ∠ACD=∠B D. AC2=AD?AB 9.如图,AG:GD=4:1,BD:DC=2:3,则AE:EC 的值是() A. 3:2 B. 4:3 C. 6:5 D. 8:5 二、填空题(共4题;共4分) 10.如图,在△ABC中,D,E两点分别在AB,AC边上,DE∥B C.如果,AC=10,那么EC =________. 11.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=________时,△CPQ与△CBA相似. 12.的边长分别为的边长分别,则与________(选填“一定”“不一定” “一定不”)相似 13.如图所示,在△ABC中,已知BD=2DC,AM=3MD,过M作直线交AB,AC于P,Q两点.则 =________.

相似三角形分类整理(超全)

第一节:相似形与相似三角形 基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。 相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 1.几个重要概念与性质(平行线分线段成比例定理) (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c, A D a B E b C F c 可得 EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或 等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A D E B C 由DE ∥BC 可得:AC AE AB AD EA EC AD BD EC AE DB AD = ==或或.此推论较原定理应用更加广泛,条件是平行. (3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. (4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. (5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 ②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =d c ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。 2.比例的有关性质 ①比例的基本性质:如果 d c b a =,那么ad=b c 。如果ad=bc (a ,b ,c , d 都不等于0),那么 d c b a =。 ②合比性质:如果 d c b a =,那么d d c b b a ±=±。

相似三角形的判定方法

相似三角形的判定方法 证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。 方法一(预备定理) 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明) 方法二 如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似 方法三 如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似 方法四 如果两个三角形的三组对应边的比相等,那么这两个三角形相似 方法五(定义) 对应角相等,对应边成比例的两个三角形叫做相似三角形 一定相似的三角形 1.两个全等的三角形一定(肯定)相似。 2.两个等腰直角三角形一定(肯定)相似 (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) 3.两个等边三角形一定(肯定)相似。 直角三角形相似判定定理 1.斜边与一条直角边对应成比例的两直角三角形相似。 2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。 编辑本段三角形相似的判定定理推论 推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

中考数学《相似三角形判定》专题练习含解析考点分类汇编.doc

2019-2020 年中考数学《相似三角形的判定》专题练习含解析考点分类汇编 学习要求 1.掌握相似三角形的判定定理. 2.能通过证三角形相似,证明成比例线段或进行计算. 课堂学习检测 一、填空题 1. ______三角形一边的______和其他两边 ______,所构成的三角形与原三角形相似. 2.如果两个三角形的______对应边的 ______,那么这两个三角形相似. 3.如果两个三角形的______对应边的比相等,并且______相等,那么这两个三角形相似. 4.如果一个三角形的______角与另一个三角形的______,那么这两个三角形相似. 5.在△ ABC 和△ A′B′ C′中,如果∠ A= 56°,∠ B=28°,∠ A′= 56°,∠ C′=28°,那么这两个三角形能否相似的结论是______.理由是 ________________.6.在△ ABC 和△ A'B′ C′中,如果∠ A= 48°,∠ C=102°,∠ A′= 48°,∠ B′=30°,那么这两个三角形能否相似的结论是______.理由是 ________________.7.在△ ABC 和△ A'B′ C′中,如果∠ A= 34°, AC= 5cm, AB= 4cm,∠ A′= 34°,A'C′= 2cm, A′B′= 1.6cm,那么这两个三角形能否相似的结论是______,理由是____________________ . 8.在△ ABC 和△ DEF 中,如果 AB= 4,BC= 3,AC=6;DE= 2.4,EF= 1.2,FD = 1.6,那么这两个三角形能否相似的结论是____________,理由是 __________________.9.如图所示,△ABC 的高 AD ,BE 交于点 F,则图中的相似三角形共有______对. 第 9 题图第 10 题图 10.如图所示,□ABCD 中, G 是 BC 延长线上的一点, AG 与 BD 交于点 E,与 DC 交于点 F ,此图中的相似三角形共有______对. 二、选择题 11.如图所示,不能判定△ ABC∽△ DAC 的条件是 ( ) A .∠ B=∠ DAC B.∠ BAC=∠ ADC C. AC 2= DC· BC D. AD2= BD· BC 第 11 题第 12 题 12.如图,在平行四边形 ABCD 中, AB= 10, AD= 6,E 是 AD 的中点,在 AB 上取一点 F ,使△ CBF ∽△ CDE ,则 BF 的长是 ( ) A . 5 B . 8.2 C. 6.4 D . 1.8 13.如图所示,小正方形的边长均为 1,则下列选项中阴影部分的三角形与△ABC 相似的是 ( )

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则,,,…AB BC DE EF AB AC DE DF BC AC EF DF === ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 ③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 ○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ; 知识点二、相似三角形的判定

判定定理1:两角对应相等,两三角形相似. 符号语言: 拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。 (2)顶角或底角对应相等的两个等腰三角形相似。 例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出 AD AE BD CE = 吗?请说明理由。(用两种方法说明) 例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D. 求证:(1)2AB BD BC =?;(2)2AD BD CD =?;(3)CB CD AC ?=2 例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则 BD BE AD AF =例题精讲 A E D B C A B C D

吗?说说你的理由. 例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C (1) 求证:△ABF ∽△EAD ; (2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。 2分之3倍根号3 随练: 一、选择题 1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对 2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )C A D C B E F G F E D C B A

北师大版-数学-九年级上册-4.5 相似三角形判定定理的证明 教案

相似三角形判定定理的证明 预习导学: 1.相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似. 2.证明相似三角形判定定理时,先作辅助线,再根据条件选择适当的判定定理。 教学目标: 1.了解相似三角形判定定理,会证明相似三角形判定定理 2.掌握推理证明的方法,发展演绎推理能力 教学重点:会证明相似三角形判定定理 教学难点:掌握推理证明的方法,并提供应用能力 教学过程: 判定定理的证明: 定理1:两角分别相等的两个三角形相似 如果∠A =∠A ′,∠B =∠B ′, 那么,△ABC ∽△A′B′C′. 证明:在△ABC 的边AB (或延长线)上截取AD=A’B’,过点D 作BC 的平行线, 交AC 于点E,则∠ADE=∠B, ∠AED=∠C, AD AE AB AC =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). 过点D 作AC 的平行线,交BC 于点F,则 AD CF AB CB =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴ AE CF AC CB =

∵DE ∥BC ,DF ∥AC ∴四边形DFCE 是平行四边形. ∴DE=CF ∴AE DE AC CB = ∴AD AE DE AB AC BC == 而∠ADE=∠B, ∠DAE=∠BAC, ∠AED=∠C, ∴△ADE ∽△ABC. ∵∠A=∠A’, ∠ADE=∠B’, AD=A’B’, ∴△ADE ≌△A’B’C’ ∴△ABC ∽△A’B’C’. 定理2:两边对应成比例且夹角相等,两三角形相似. 探究2 如果∠B =∠B1, 那么,△ABC ∽△A1B1C1. 自己思考,与同学交流 定理3:三边对应成比例,两三角形相似. 如果 1111 ,AB BC k A B B C ==, AB BC AC A B B C A C ==''''''

相似三角形的判定定理3

第3课时相似三角形的判定定理3 1.掌握相似三角形的判定定理3. 2.了解两个直角三角形相似的判定方法. 3.深化对相似三角形的三个判定方法的理解,并能够运用相似三角形的判定方法解决相似三角形的有关问题. 阅读教材P35-36,自学“例2”与“思考”,理解相似三角形判定定理3及直角三角形相似的判定方法. 自学反馈学生独立完成后集体订正 ①如果一个三角形的两个角与另一个三角形的两个角对应,那么这两个三角形相似. ②如果两个直角三角形中,有一条直角边和斜边对应成比例,那么这两个直角三角形. ③要判定两个直角三角形相似,最简单的方法就是再找对应相等,就可以根据相似三角形的判定3,判定这两个直角三角形相似. ④如图所示,已知∠ADE=∠B,则△AED∽.理由是. ⑤顶角对应相等的两个等腰三角形相似吗?为什么? 要根据已知条件选择适当的方法. 活动1 小组讨论 例1 如图,在△ABC中,∠C=60°,BE⊥AC于E,AD⊥BC于D. 求证:△CDE∽△CAB. 证明:∵∠C+∠CAD=90°,∠C+∠CBE=90°, ∴∠CAD=∠CBE. 又∵∠C=∠C,∴△CAD∽△CBE.

∴CA CB = CD CE . 又∵∠C=∠C,∴△CDE∽△CAB. 在寻求不到另一个角相等的情况下,寻求夹相等的角的两边的比相等,是解本类题型的有效方法. 活动2 跟踪训练(独立完成后展示学习成果) 1.如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF的交点. ①求证:△BCF∽△DCE; ②若BC=5,CF=3,∠BFC=90°,求DG∶GC的值. 求线段的比值一般的方法是寻找两线段所在的三角形相似. 2.如图所示,在⊙O中,AB=AC,则△ABD∽,若AC=12,AE=8,则AD= . 3.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB、CD上滑动,当CM= 时,△AED与以M、N、C为顶点的三角形相似. 要考虑到线段的对应分两种情况. 活动1 小组讨论 例2 已知:如图,∠ABC=∠CDB=90°,AC=a,BC=b,当BD与a,b之间满足怎样的关系时,这两个三角形相似?

相似三角形的定义及其判定同步练习及答案

相似三角形的定义及其判定——典型题专项训练知识点 1 对相似三角形定义的理解 1.下列说法中错误的是( ) A.两个全等三角形一定相似 B.两个直角三角形一定相似 C.两个相似三角形的对应角相等,对应边成比例 D.相似的两个三角形不一定全等 2.已知△ABC∽△A′B′C′,且BC∶B′C′=AC∶A′C′,若AC=3,A′C′=4.5,则△A′B′C′与△ABC的相似比为( ) A.1∶3 B.3∶2 C.3∶5 D.2∶3 3.2017·贵阳期末一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是( ) A.6 B.9 C.10 D.15 4.如图4-4-1,已知△ADE∽△ACB,且∠ADE=∠C,则AD∶AC等于( ) 图4-4-1 A.AE∶AC B.DE∶CB C.AE∶BC D.DE∶AB 5.若△ABC∽△A′B′C′,AB=2,BC=3,A′B′=1,则B′C′等于( ) A.1.5 B.3 C.2 D.1 6.如图4-4-2所示,已知△ABC∽△ADE,AD=6 cm,BD=3 cm,BC=9.9 cm,∠A =70°,∠B=50°.

求:(1)∠ADE的度数; (2)∠AED的度数; (3)DE的长. 图4-4-2 知识点 2 利用两角分别相等判定三角形相似 7.如图4-4-3所示的三个三角形,相似的是( ) 图4-4-3 A.(1)和(2) B.(2)和(3) C.(1)和(3) D.(1)和(2)和(3) 8.教材习题4.5第3题变式题如图4-4-4,在Rt△ABC中,CD是斜边AB上的高,则图中相似三角形有( ) A.0对 B.1对 C.2对 D.3对 图4-4-4 图4-4-5 9.如图4-4-5,添加一个条件:__________(写出一个即可),使△ADE∽△ACB.

相似三角形的判定

相似三角形的判定 中考要求 重难点 1.相似定义,性质,判定,应用和位似 2.相似的判定和证明 3.相似比的转化 课前预习 相似三角形的由来 两千六百多年前,埃及有个国王,想知道已经给他盖好了的大金字塔的实际高度,于是,命令祭司们去丈量.可是,没有一个祭司知道该怎样测量,往这个问题面前,祭司们个个束手无策.既然,人是不可能爬到那么高大的塔顶上去的;即使爬上去了,由于塔身是斜的,又怎样来量呢?一时,金字塔的高度成了一个难题.国王一气之下,杀死了几个祭司,同时悬赏求解答. 有一个叫法涅斯的学者,看到国王的招字后,决心解決这个难题.他想了好几个解题的方案,但都行不通.失败并没使他灰心.法涅斯索性来到外面,一边踱步,一边思索著解決的辦法,以致撞到树上.于是,他转了个圈,又走下去.太阳把他的影子投到地上,他走到那里,影子也跟到那里.这时,他突然看到自己的影子,于是想:是不是可以请太阳来帮忙呢?在古埃及人的眼里,太阳是万能的,太阳能给人温暖,能帮助人们确定方向,法涅斯眼前一亮,他清楚记得,早上和傍晚每个物体都拖著一个长长的影子,而中午每个物体的影子都很短…那么,是不是有一个时刻,物体的影子就等于物体的高度怩?﹁他自言自

语起来. 想到这里,法涅斯就找了一根竿子,竖在太阳底下,认真观察、测量起來.经过几天的观察、测量,法涅斯终于证实了自己的想法一有一个时候,物体的影子等于物体的高度.于是,他去测量好金字塔底边的长度,并把数据记下来.然后,他毫不犹豫地揭下了悬挂的招字.国王得到“有人揭下招字”的报告后,高兴万分,派人把法涅斯召进王官,盛情款待,一切准备停当后,国王选择了一个风和日丽的日子,举行测塔仪式.测塔这天,国王在祭司们的陪同下,和法捏斯一起来到金字塔旁.看热闹的人黑压压一片,喧闹着,拥挤著,他们等待着壮观的一刻到来,法涅斯站在测塔指挥台上,俨然像个天使,一动也不动地注视着自己的影子.看看时间快到了,太阳光给每一个在旁的人和巨大的金字塔都投下了黑黑的影子.当法涅斯确定他自己的影子已等于他的身高时,便发出了测塔的命令。这时,助手们立即测出了金字塔的阴影CD 的长.接着,法涅斯十分准确地算出了金字塔的高度,最后,他还把测量金字塔高度的秘密告訴大家.场上,发出一阵热烈的观呼声.当然,法涅斯利用了相似三角形的原理测得了塔高.在法捏斯以前,还沒有人知道这个原理呢!法捏斯第一次发现、利用这个原理.在那个时代,这是一个伟大的创举! 在这个基础上,法涅斯进一步研究,得出一个法则:在任意两個对应角相等的三角形中,对应边的比率也相等.从而,找到了在任何季节里,在任何时候都能测塔高的方法. 例题精讲 模块一 相似三角形的判定 ?角对应相等、边对应成比例,三角形相似 对应角相等,对应边成比例的三角形叫做相似三角形. 如图,在ABC △与A B C '''△中,',','A A B B C C ∠=∠∠=∠∠=∠, ''''''AB BC AC A B B C A C == ,则ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于” . A ' B ' C ' C B A 相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”. 【例1】 如图,已知四边形ABCD 是平行四边形.求证:MEF MBA △∽△. M F E D C B A

相似三角形的判定及证明技巧讲义

- 1 - / 4 相似三角形(三) 知识点(一):相似三角形的证明技巧 1.相似三角形的基本图形 2.相似三角形判定定理(3条) 3.相似三角形的具体解题方法 1.“三点定形法”:即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 例1、已知:如图△ABC中,CE⊥AB,BF⊥AC.求证:AE?AB=AC?AF.(判断“横定”还是“竖定”?) 例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。 分析方法: 1)先将积式______________ 2)______________(“横定”还是“竖定”?) 练习1.已知:如图,△ABC中,∠ACB=90°,AB的垂直平分线交AB于D,交BC延长线于F。 求证:CD2=DE·DF。

A D E F B C

2.过渡法(或叫代换法) 有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明. (1)等量过渡法(等线段代换法) 遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。 例1:如图3,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的 延长线于E.求证:DE2=BE·CE. - 2 - / 4 (2)等比过渡法(等比代换法) 当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代

《相似三角形的判定(3)》

27.2.1 相似三角形的判定(3) 一、教学目标 1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.2.掌握“两角对应相等,两个三角形相似”的判定方法. 3.能够运用三角形相似的条件解决简单的问题. 二、重点、难点 1.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似” 2.难点:三角形相似的判定方法3的运用. 3.难点的突破方法 (1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法. (2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据. (3)如果两个三角形是直角三角形,则只要再找到一对锐角相等即可说明这两个三角形相似. 三、例题的意图 本节课安排了两个例题,例1是教材P35的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的方法、让学生自己写出证明过程.并让学生掌握遇到等积式,应先将其化为比例式的方法.例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课的学习打基础. 四、课堂引入 1.复习提问: (1)我们已学习过哪些判定三角形相似的方法? (2)如图,△ABC中,点D在AB上,如果AC2=AD?AB,那么△ACD与△ABC 相似吗?说说你的理由.

(3)如(2)题图,△ABC 中,点D 在AB 上,如果∠ACD=∠B ,那么△ACD 与△ABC 相似吗?——引出课题. 五、例题讲解 例1(教材P35例2). 证明:略(见教材P35例2). 例2 (补充)已知:如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F ,若AB=4,AD=5,AE=6,求DF 的长. 分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似. 解:略(DF= 3 10). 六、课堂练习 1.教材P36的练习1、2. 2.已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE . 3.下列说法是否正确,并说明理由. (1)有一个锐角相等的两直角三角形是相似三角形; (2)有一个角相等的两等腰三角形是相似三角形. 七、课后练习 1.已知:如图,△ABC 的高AD 、BE 交于点F .求证:FD EF BF AF .

初三相似三角形的判定培优同步讲义

初三相似三角形的判定培优同步讲义 学科教师辅导讲义 体系搭建 一、知识框架 二、知识概念 (一)相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形. 1、相似三角形是相似多边形中的一种; 2、应结合相似多边形的性质来理解相似三角形; 3、相似三角形应满足形状一样,但大小可以不同; 4、母子型:已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 5、斜交型: 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。 (有“反 A 共 角型”、“反 A 共角共边型”、 “蝶型”)b5E2RGbCAP 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂 直型”) 考点 1:三角形相似判定方法的运用 例 1、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点 D ,则图中相似三角形共有( ) A .1 对 B .2 对 C .3 对 D .4 对 p1EanqFDPw 例 2、如图,下列条件不能判定△ADB ∽△ABC 的是( ) A .∠ABD=∠ACB B .∠ADB=∠ABCDXDiTa9E3d C .AB 2 =AD?AC D .= 典例分析 A B C D A B C D E 12 A

A B B C C D D E E 124 1 2 E C B D A B C D E A E
( )
A D C B 例 3、已知:在梯形 ABCD 中,AD∥BC,∠ABC=90°,BC=2AD,E 是 BC 的中点,连接 AE、 AC.RTCrpUDGiT (1)点 F 是 DC 上一点,连接 EF,交 AC 于点 O(如图 1),求证:△AOE∽△COF; (2)若点 F 是 DC 的中点,连接 BD,交 AE 与点 G(如图 2),求证:四边形 EFDG 是菱形. 例 4、如图,在△ABC 中,AB=AC=1,BC=,在 AC 边上截取 AD=BC,连接 BD. (1)通过计算,判断 AD2 与 AC?CD 的大小关系; (2)求∠ABD 的度数. 考点 2:网格图中相似三角形的判定 例 1、下列四个三角形中,与图中的三角形相似的是() A.B.C.D. 实战演练 课堂狙击 1、下列命题中,是真命题的为() A.锐角三角形都相似

相似三角形的判定分类习题集

相似三角形的判定的习题分类编选 一、利用“两角对应相等的两个三角形相似”证明三角形相似. 1.如图,(1)当∠C=_________时,△OAC∽△OBD.(2)当∠B=_________时,△OAC∽△ODB。 (3)当∠A=_____________,△OAC与△OBD相似. 2.如图2,若∠BEF=∠CDF,则△_____,_∽△_______,△_____∽△______. 3.下列各组图形一定相似的是(). A.有一个角相等的等腰三角形 B.有一个角相等的直角三角形 C.有一个角是100°的等腰三角形 D.有一个角是对顶角的两个三角形 4.如图3,已知A(2,0),B(0,4),且∠ACO=?∠BAO,?则点C?的坐标为________ 5.如图4,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,那么与△ABC相似的三角形有______个 图1 图2 图3 图4 图5 图 6 6在△ABC中,M是AB上一点,若过M的直线所截得的三角形与原三角形相似,则满足条件的直线最多有_____条.7.如图5,在△ABC中,CD,AE是三角形的两条高,则图中的相似三角形有_______对. 8.如图6,等腰直角三角形ABC中,顶点为C,∠MCN=45°,图中有______对相似三角形 9.如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上, 则图中与△DBE相似的三角形是________. 10、如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE. 写出图中两对相似三角形(不得添加辅助线);并证明这两对三角形相似. 11、如图,⊿ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F. (1)求证:⊿ABD≌⊿BCE。 (2)求证:⊿AEF∽⊿BEA (3)求证:BD2=AD·DF。 12、如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B. (1)求证:△ADF∽△DEC。(2)若AB=4,AD=33,AE=3,求AF的长. 13如图,四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD?于点E. 求证:△CDE∽△FAE.

完整版相似三角形的判定方法

(一)相似三角形 1定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1 ?所以全等三角形是相似三角形的特例?其 区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ ABC A B,的对应边的比,即相似比为k,则△ A B' 0 △ ABC的相似比「当它们全等时,才有k=k' =1 ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小 的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ?/ DE // BC ,???△ ABC ADE ; ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理. 它不但本身有着广泛的 应用,同时也是证明相似三角形三个判定定理的基础,故把它称为预备定理”; ③有了预备定理后,在解题时不但要想到见平行,想比例”,还要想到见平行,想相似 (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角 形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,/ 仁/ 2=7 3,求证:△ AB(0A ADE A (双A型)

相似三角形的判定(3)

桐城市吕亭初中 教 案 吕亭初中: 鲍俊

2012年10月25日

(2)会准确的运用两个三角形相似的条件来判定三角形是否相似. 课堂教学预设 师生互动 【活动一】 一、情景导入 让我们以热烈的掌声欢迎各位老师的光临指导下面将是你们展示自己,积极思考,实现自我价值的时间﹗大家有没有信心﹗ 二、回顾:说出三角形相似的方法。 师:复习提问: 我们学习过哪些判定三角形相似的方法? 生:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。(2)两角对应相等的两个三角形相似(3)两边对应成比例且夹角相等的两个三角形相似 【活动二】新课讲授 三、思想:数学上有一种思想叫类比思想:在三角形全等判定方法中,除了 ASA AAS SAS 外,还有什么判定方法? 还有SSS ,那么三角形相似呢? 是不是有相似的结论呢? 是否有△ABC ∽△A ’B ’C ’? 师:1、提出问题:首先,由三角形全等的SSS 判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能 否判定这两个三角形相似呢? 2、带领学生画图探究; 3、【归纳】 三角形相似的判定方法: 如果两个三角形的三组对应边的比相等, 那么这两个三角形相似. 师:1、提出问题:怎样证明这个命题是正确的呢? 2、教师带领学生探求证明方法. 生:已知:如图在△ABC 和△A ’B ’ C ’中 A ’B ’:AB= A ’C ’ :AC=B ’C ’:BC. 求证:△ABC ∽△A ’B ’C ’ B' C'A' A B C A'B'B'C'A'C'AB BC AC ==

数学:24.2《相似三角形的判定》同步练习(沪科版九年级上)

24.2相似三角形的判定 第1题. 如图,AC BD ⊥,垂足为C ,过D 点作DF AB ⊥,垂足为F ,交AC 于E 点.请找出图中所有的相似三角形,并说明理由. 答案:解:(1)因为90A A AFE ACB ∠=∠∠=∠=, 所以AFE ACB △∽△. (2)因为90AEF DEC AFE DCE ∠=∠∠=∠=,, 所以AFE DCE △∽△. 所以A D ∠=∠. (3)因为A D ∠=∠,90AFE DFB ∠=∠=, 所以AFE DFB △∽△. (4)因为D A ∠=∠,90DCE ACB ∠=∠=, 所以DCE ACB △∽△. (5)因为D A ∠=∠,90DFB ACB ∠=∠=, 所以DFB ACB △∽△. (6)因为D A ∠=∠,90DCE DFB ∠=∠=, 所以DCE DFB △∽△. 知识点:三角形相似的条件 试题类型:运算题 试题难度:容易 考查目标:基本技能 第2题.如图,一艘军舰从点A 向位于正东方向的C 岛航行,在点A 处测得B 岛在其北偏东75,航行75nmile 到达点D 处,测得B 岛在其北偏东15,继续航行5n mile 到达C 岛,此时接到通知,要求这艘军舰在半小时内赶到正北方向的B 岛执行任务,则这艘军舰航行 速度至少为多少时才能按时赶到B 岛? 答案:解:根据题意,可得1590A CBD BCD ACB ∠=∠=∠=∠=,. 所以.BCD ACB △∽△ 由相似三角形对应边成比例,得 BC AC DC BC =,即80 5BC BC =. A F B C D E A D

所以2 40020BC BC ==,. 要求军舰在半小时内赶到正北方向的B 岛执行任务,因此航行速度至少是 200.540=÷(n mile/h) 知识点:三角形相似的条件 试题类型:应用题 试题难度:中等 考查目标:双基简单应用 第3题. 如图,点E C 、分别在AB AD 、上,BC 与DE 相交于一点O ,若B D ∠=∠, 则图中相似三角形有几对?分别写出来说明理由. 答案:2对BAC DAE BOE DOC △∽△,△∽△.理由略 知识点:三角形相似的条件 试题类型:运算题 试题难度:容易 考查目标:基本技能 第4题. 如图,已知:3:4DE BC AD DB =∥,,若5DE =cm ,求BC 的长. 答案: 35 3 cm 知识点:三角形相似的条件 试题类型:运算题 试题难度:中等 考查目标:基本技能 第5题. 如图,已知ABC ACB ∠=∠,若3AD =cm ,7AB =cm ,试求AC 的长. 21cm 知识点:三角形相似的条件 试题类型:运算题 试题难度:中等 考查目标:基本技能 第6题. 如图,4cm 9cm 5cm 12cm AO DO AB BC O ====,,,,为BC 的中点,求 CDO △的周长. 答案:解:由12cm BC =,O 为BC 的中点,得 6BO CO ==cm . 由4cm 9cm AO DO ==,,得 2 3 AO BO CO DO ==. 因为两边对应成比例且夹角相等的两个三角形相似, 所以AOB COD △∽△. 由相似三角形对应边成比例,得 AB AO CD CO =,即52 3 CD =. A C O D B E A D E C B A D C A B O C

相关主题
文本预览
相关文档 最新文档