当前位置:文档之家› 24.3.2-相似三角形的判定同步练习及答案(第一课时)

24.3.2-相似三角形的判定同步练习及答案(第一课时)

24.3.2-相似三角形的判定同步练习及答案(第一课时)
24.3.2-相似三角形的判定同步练习及答案(第一课时)

24.3.2 相似三角形的判定(第一课时)

◆随堂检测

1、(1)如图,AB与CD相交于点O,AC与BD不平行,当_________=__________或

___________=____________时,△AOC∽△DOB;

(2)如图,AD与BC相交于点O,AB∥CD,则__________∽___________.

2、如图,△ABC中,∠ACB=90°,CD⊥AB于D,则∠B=_________,∠A=________,因

此△ABC∽_________∽_____________.

3、如图,点D、E在△ABC的边AB、AC上.

(1)若∠1=∠2,则__________∽___________;

(2)若∠2=∠B,则__________∽___________.

4、如图,在△ABC中,DE∥BC,AD=3 cm,BD=2 cm,△ADE与△ABC的关系是________,

若相似,相似比是________.

4题图5题图

5、如图,D、E分别为△ABC中AB、AC边上的点,请你添加一个条件,使△ADE与△ABC

相似,你添加的条件是_____________(只需填上你认为正确的一种情况即可).

◆典例分析

如图.AD ⊥BC 于D ,BE ⊥AC 于E ,AD 、BE 相交于F ,则图中相似三角形共有几对?它们分别是哪些?为什么?

分析:本题给出的是垂直条件,可以得出几个直角相等,然

后要注意充分利用题中的公共角,判断三角形相似主要利用

“两个角对应相等,两个三角形相似”这一性质.

解:图中相似三角形共有六对,它们分别是

①△ADC ∽△BEC ,②△ADC ∽△AEF ,③△BEC ∽△BDF ,④△BDF ∽△AEF ,⑤△BDF ∽△ADC ,⑥△AEF ∽△BE C.

∵AD ⊥BC ,BE ⊥AC ,∴∠ADB =∠ADC =∠AEB =∠CEB =90°

(1)∵∠ADC =∠BEC =90°,∠C =∠C ,∴△ADC ∽ △BEC

(2)∵∠ADC =∠AEF =90°,∠DAC =∠EAF ,∴△ADC ∽△AEF.

(3)∵∠BEC =∠BDF =90°,∠EBC =∠DBF ,∴△BEC ∽△BDF .

(4)∵∠BDF =∠AEF =90°,∠BFD =∠AFE ,∴△BDF ∽△AEF .

(5)由△BEC ∽△ADC 得∠DBF =∠DAC .∵∠BDF =∠ADC =90°,∴△BDF ∽△ADC

(6)由△BEC∽△ADC,得∠EBC=∠EAF,∵∠AEF=∠BEC,∴△AEF∽△BEC.

点评:此题目是一个基本图形,以后解题时会经常遇到,此题也可以由相似的传递性得出图中四个直角三角形都相似,经过组合得出6对三角形相似.

◆课下作业

●拓展提高

1、已知△ABC 与△A ′B ′C ′中,∠B =∠B ′=75°,∠C =50°,∠A ′=55°.

求证:△ABC ∽△A ′B ′C ′.

2、如图,在R t △ABC 中,∠ACB =90°,作CD ⊥AB 于点D ,写出图中所有得到相似三角形,并进行证明.

3、如图,D 、E 分别是△ABC 边AB 、AC 上的点,DE ∥B C. 证明:AE CE AD BD .

E C D A

F B 13题 4、下列各组图形中有可能不相似的是( ) A .各有一个角是45°的两个等腰三角形 B .各有一个角是60°的两个等腰三角形 C .各有一个角是105°的两个等腰三角形 D .两个等腰直角三角形

5、 如图,AB ∥CD ,AD 与BC 相交于点O ,那么在下列比例式中,正确的是( ) A .

AD OA CD AB = B .BC OB OD OA = C.

OC OB CD AB = D .OD

OB AD BC = 6、如图,在△ABC 中,AB =AC =1,点D,E 在直线BC 上运动.设BD =x , CE =y ,

(l )如果∠BAC =300,∠DAE =l050

,试确定y 与x 之间的函数关系式;

(2)如果∠BAC =α,∠DAE =β,当α, β满足怎样的关系时,(l )中y 与x 之间的函数关系式还成立?试说明理由.

● 体验中考

1、(2008上海市)如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果

23BE BC =,那么BF FD = .

2、(2008年杭州市)在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点D ,BC =3,AB =5,写出其中的一对相似三角形是 ______和 __ ;并写出它的面积比 .

D C B

A 14题

参考答案:

随堂检测:

1、解:(1)由图可知有对顶角,AOC DOB ∠=∠根据两角对应相等,两个三角形相似, ∠A=∠D 或∠C =∠B ,△ AOC ∽△DOB ; (2)△AOB △DOC

2、∠ACD ∠BCD ∠ACD ∠CBD

3、(1) △ADE △ACD (2) △ACD △ABC

4、由DE ∥BC 可得,,ADE B A A ADE ∠=∠∠=∠∴?Q ∽3,.5AD ABC AB ?=相似比为

5、∠C =∠ADE (或∠B =∠AED 等)

拓展提高:

1、证明:∵∠B =75°,∠C =50°,∴∠A =55°,∴∠B =∠B ′,∠A =∠A ′, ∴△ABC ∽△A ′B ′C ′.

2、△ACD ∽△ABC ,△BCD ∽△BAC ,△ACD ∽△CBD ,证明略.

3、由DE ∥BC ,得△ADE ∽△ABC ,AC AB AB AD =,AE AC AD AB =,即AE

CE AE AD DB AD +=+, 两边同时减去1,得AE CE AE AD DB AD +=-+1-1,即AE

CE AD DB =. 4.解:各有一个角是60°的两个等腰三角形都是等边三角形,一定相似;各有一个角是105°的两个等腰三角形中,105°一定是顶角,所以两个三角形中三个角都对应相等,一定相似;两个等腰直角三角形中三个角都对应相等,一定相似;各有一个角是45°的两个等腰三角形中,不能确定45°是顶角还是底角,所以不一定相似.所以选A

5、由AB ∥CD ,可得△ABO ∽,..AB OB DCO C CD OC

?∴

=所以选 6、(l)在△ABC 中,AB =AC =1,∠BAC =300, ∴∠ABC =∠ACB =750

,∴∠ABD =∠ACE =1050,

∵∠DAE =1050.∴∠DAB =∠CAE =750,又∠DAB +∠ADB =∠ABC =750,

∴∠CAE =∠ADB ,∴△ADB ∽△EAC .∴AB BD EC AC

=,即11,y=1x x y =所以. (2)当α、β满足关系式0902αβ-

=时,函数关系式1y=x 成立. 理由如下:要使1y=x ,即AB BD EC AC

=成立,须且只须△ADB∽△EAC. 由于∠ABD =∠ECA ,故只须∠ADB =∠EAC .

又∠ADB +∠BAD =∠ABC =0902α-

,∠EAC +∠BAD =β-α, 所以只0902α-

=β-α,须即0902αβ-=. 体验中考:

1、由四边形ABCD 是平行四边形可得AD ∥BC ,AD =BC ,2,3BE BE AD BC ∴==由ADF ?∽2,.3

BE BE EBF FD AD ?==可得 2、分三种情况:

(1)△ADC ∽△CDB

43

; (2)△ADC ∽△ACB 45

; (3)△CDB ∽△ACB 34

相似三角形的判定和应用

相似三角形的判定和应用 知识点: 1. 对应角________,对应边_________的两个三角形叫做相似三角形. 2. 相似三角形的对应角________,对应边_________. 3. 相似三角形中,对应边的比叫做___________(或相似系数). 4.证明两个三角形相似的方法: (1)先证_____组对应角相等. (2)先证两边对应成比例,并且____________. (3)先证三边对应___________. 5.如图1,如果ΔABC与ΔA/B/C/的相似比是AB∶A/B/=k,那么ΔA/B/C/与ΔABC的相似比是_ . 6.在图2和图3中: 要证明ΔADE∽ΔABC,只需先证明_________(填一个条件)。 7.在图3中,若DE∥BC,DB∶DA=9∶4,则ΔABC与ΔADE的相似比是______. 8.如图4, ABCD中,G是BC边延长线上一点,AG交DB、DC于E、F, 则图中的相似三角形共有_____对;若AE∶EF=4∶3则ΔAFD与ΔGFC的相似比是______. 9.如图5,当∠ADC=∠____时,ΔABC∽ΔACD;当A2=_________时,ΔABC∽ΔACD. 10. ΔABC的三边长为3、4、5,ΔA/B/C/的最短边为5,若ΔABC∽ΔA /B / C /,则ΔA/B/C/的面积为____. 一、选择题 1.如图,DE∥BC,EF∥AB,则图中相似三角形一共有() A.1对 B.2对 C.3对 D.4对 第1题第2题第3题第4题第5题 2.如图,P是Rt ABC △斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作() A. 1条 B. 2条 C. 3条 D. 4条 3.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件不能使ΔABE和ΔACD相似的是() A. ∠B=∠C . ∠ADC=∠AEB C. BE=CD,AB=AC D. AD∶AC=AE∶AB 4.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有() A ΔADE∽ΔAEF B ΔECF∽ΔAEF C ΔADE∽ΔECF D ΔAEF∽ΔABF 5.如图,E是□ABCD的边BC的延长线上的一点,连结AE交CD于F,图中有相似三角形() 1

18.5 相似三角形的判定 同步练习1(含答案)

18.5 相似三角形的判定 自主学习 主干知识←提前预习勤于归纳→ 认真阅读教材,完成下列各题 1.判定两个三角形全等的主要依据有哪些? 答案:主要有:边角边公理,角边角公理,角角边定理,边边边公理,若两个三角形为直角三角形,则还有“HL”定理. 2.判定两个三角形相似的主要依据有哪些? 答案:主要依据有:两角对应相等,两三角形相似;两边对应成比例且夹角相等,两三角形相似;三边对应成比例,两三角形相似. 3.平行于三角形一边的直线,截其他两边所得的三角形与原三角形______. 答案:相似 4.以下选项中不正确的是( ) A.所有的等边三角形都相似 B.含30°角的直角三角形都相似 C.所有的直角三角形都相似 D.顶角相等的两等腰三角形相似 答案:C 点击思维←温故知新查漏补缺→ 1.对于说法: ①都含有80°角的两个等腰三角形相似;②都含有100°角的两个等腰三角形相似. 下列结论正确的是( )

A.只有①对 B.只有②对 C.①、②均对 D.①、②均不对 答案:B 解析:对于①,如图所示,显然不相似.但对于②,由内角和定理知,显然100°的角只能是顶角,由判定定理可知,②是正确的. 2.一个钢筋三脚架A 的三边长分别是20 cm 、60 cm 、50 cm,现在要做一个与其相似的钢筋三脚架B,已知三脚架B 的一边长为30 cm,试确定三脚B 的另外两边长. 答案:解析:设三脚架B 的另外两边长分别为x cm ,y cm. (1)当30 cm 的边长为最长边时, 30605020==y x ,解得x=10 cm ,y=25 cm ; (2)当30 cm 的边长为最短边时,y x 60503020==,解得x=75 cm ,y=90 cm. (3)当30 cm 的边长为另外一条边时, y x 60305020==,解得x=12 cm ,y=36 cm ; 所以三脚架B 的另外两边长为10 cm ,25 cm ,或12 cm ,36 cm ,或75 cm,90 cm.

(完整版)相似三角形的判定方法

(一)相似三角形 1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽ △ABC的相似比,当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; (双A型) ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

相似三角形的判定练习题

… 相似三角形的判定练习题 1、如图,点D 在△ABC 的边AC 上,添加 条件,可判定△ADB 与△ABC 相似。 2、如图,在△ABC 中.∠ACB=90°,CD ⊥AB 于点D ,则图中相似三角形有 。 3、如图,在?ABCD 中,E 、F 分别是AD 、CD 边上的点,连接BE 、AF ,他们相交于G ,延长BE 交CD 的延长线于点H ,则图中的相似三角形是 。 4、如图,P 为线段AB 上一点,AD 与BC 交干E ,∠CPD=∠A=∠B ,BC 交PD 于E ,AD 交PC 于G ,则图中相似三角形 有 。 & 5、如图,已知AB=AC ,∠A=36°,AB 的中垂线MD 交AC 于点D 、交AB 于点M .下列结论: ①BD 是∠ABC 的平分线;②△BCD 是等腰三角形;③△ABC ∽△BCD ;④△AMD ≌△BCD .正确的有 。 6、如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论中正确的是 ①∠EAF=45°;②△ABE ∽△ACD ;③EA 平分∠CEF ;④BE 2 +DC 2 =DE 2 7、如图,在△ABC 中,∠ACB=90°,∠A=30°,将△ABC 绕点C 顺时针旋转得到△A′B′C,点B′在AB 上,A′B′交AC 于F ,则图中与△AB'F 相似的三角形有(不再添加其它线段)是 。 8、如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF= 4 1 CD ,下列结论:①∠BAE=30°,②△ABE ∽△AEF ,③AE ⊥EF ,④△ADF ∽△ECF .其中正确的为 。 、 9、在△ABC 中,∠C=90°,D 是边AB 上一点(不与点A ,B 重合),过点D 作直线与另一边相交,使所得的三角形与原三角形相似,这样的直线有 条。 10、在△ABC 中,AB=6,AC=4,P 是AC 的中点,过P 点的直线交AB 于点Q ,若以A 、P 、Q 为顶点的三角形和以A 、B 、C 为顶点的三角形相似,则AQ 的长为 11、如图,AD ∥BC ,∠D=90°,DC=7,AD=2,BC=4.若在边DC 上有点P 使△PAD 和△PBC 相似,求PD 的值。 ? # 12、如图,在矩形ABCD 中,对角线AC 、BD 相交于点G ,E 为AD 的中点,连接BE 交AC 于F ,连接FD ,若∠BFA=90°,求证:①△ BEA ∽△ACD ;②△FED ∽△DEB ;③△CFD ∽△ABG # 13、如图,△ABC 与△AFG 是两个全等的等腰直角三角形,∠BAC=∠F=90°,BC 分别与AF ,AG 相交于点D ,E .找出图中所有不全等的相似三角形并证明。 ! % 14、如图,四边形ABCD 是平行四边形.O 是对角线AC 的中点,过点O 的直线EF 分别交AB 、DC 于点E 、F ,与CB 、AD 的延长线分 别交于点G 、H . (1)写出图中所有不全等的两个相似三角形(并选择一种情况证明); (2)除AB=CD ,AD=BC ,OA=OC 这三对相等的线段外,图中还有多对相等的线段, 请选出其中一对加以证明. ]

教案:4.4 两个相似三角形的判定(2)

4.4两个相似三角形的判定(2) 教学目标: 1、经历三角形相似的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的探索过程. 2、掌握“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的两个三角形相似的判定方法. 3、能运用上述两个判定方法判定两个三角形相似. 重点与难点: 1、本节教学的重点是相似三角形的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”及其应用. 2、例3的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判断两个三角形的三边是否对应成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点. 知识要点: 三角形相似的条件: 1、有两个角对应相等的两个三角形相似. 2、两边对应成比例,且夹角相等的两个三角形相似. 3、三边对应成比例的两个三角形线相似. 重要方法: 1、利用两对对应角相等证相似,关键是找出两对对应角. 2、三边对应成比例的两个三角形相似中,三边对应是有序的即:大

C 对大,小对小,中对中. 3、两边对应成比例且夹角相等的两个三角形相似,一定要弄清边与角的位置关系.即边是指夹角的两边,角是成比例的两边的夹角. 4、在相似三角形条件(3)中,如果对应相等的角不是两条对应边的夹角,那么这两个三角形不一定相似,如在图4-3-14△ABC 中,AB =AC ,∠A =120°,在△A ′B ′C ′中,A ′B ′=A ′C ′,∠A ′=30°,可以说AB ∶A ′B ′=AC ∶A ′C ′,∠B =∠A ′,但两个三角形不相似. 教学过程: 一、复习 1、我们已经学习了几种判定三角形相似的方法?(1)平行于三角形一边直线定理 ∵DE ∥BC ,∴△ADE ∽△ABC (2 ∠A ′,∠B=∠B ′,∴△ABC ∽△A ′B ′C ′(3 ∵∠ACB=Rt ∠,CD ⊥AB ,∴△ABC ∽△ACD ∽△CDB 二、新课 1、合作学习 A B C A ′ B ′ C ′ 4-3-14

人教版数学九年级下册 第二十七章 相似 27.2.1 相似三角形的判定 同步练习附答案学生版

人教版数学九年级下册 第二十七章 相似 27.2.1 相似三角形的判定 同步练 习 一、单选题(共9题;共18分) 1.如图,在 中, , , ,将 沿图示中的虚线 剪开, 剪下的三角形与原三角形不. 相似的是( ) A. B. C. D. 2.下列各组长度的线段(单位: )中,成比例线段的是( ) A. 1,2,3,4 B. 1,2,3,5 C. 2,3,4,5 D. 2,3,4,6 3.已知四条线段a,b,c,d 是成比例线段,即 = ,下列说法错误的是( ) A. ad=bc B. = C. = D. = 4.下列判断中,错误的有( ) A. 三边对应成比例的两个三角形相似 B. 两边对应成比例,且有一个角相等的两个三角形相似 C. 有一个锐角相等的两个直角三角形相似 D. 有一个角是100°的两个等腰三角形相似 5.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,AD :BD=5:3,CF=6,则DE 的长为( ) A. 6 B. 8 C. 10 D. 12 6.下列条件中,不能判断△ABC 与△DEF 相似的是( ) A. ∠A =∠D , ∠B =∠F B. 且∠B =∠D C. D. 且∠A =∠D 7.如图所示,在?ABCD.BE 交AC ,CD 于G ,F ,交AD 的延长线于E ,则图中的相似三角形有( )

A. 3对 B. 4对 C. 5对 D. 6对 8.如图,下列条件中不能判定△ACD∽△ABC的是() A. ∠ADC=∠ACB B. C. ∠ACD=∠B D. AC2=AD?AB 9.如图,AG:GD=4:1,BD:DC=2:3,则AE:EC 的值是() A. 3:2 B. 4:3 C. 6:5 D. 8:5 二、填空题(共4题;共4分) 10.如图,在△ABC中,D,E两点分别在AB,AC边上,DE∥B C.如果,AC=10,那么EC =________. 11.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=________时,△CPQ与△CBA相似. 12.的边长分别为的边长分别,则与________(选填“一定”“不一定” “一定不”)相似 13.如图所示,在△ABC中,已知BD=2DC,AM=3MD,过M作直线交AB,AC于P,Q两点.则 =________.

《相似三角形的判定预备定理-》

相似三角形的判定——预备定理 【教学目标】 知识技能:掌握用相似三角形的定义和预备定理判断两个三角形相似 过程方法:在探索相似三角形判定定理过程中,体现解决问题的方法 情感态度:在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质. 【教学重点】预备定理的证明与应用 【教学难点】预备定理的证明 【教学过程】 一.复习引入 活动1 。 回顾相似三角形的定义,定义既是判定也是性质;平行线分线段成比例 出示问题:如图,DE 学生猜想:相似。能得到△ADE ∽△ABC 吗 教师活动:教师出示并提出问题,组织学生思考. (1)△ADE 与△ABC 满足“对应角相等”吗为什么 (2)△ADE 与△ABC 满足对应边成比例吗由“DE ∥BC ”的条件可得到哪些线段的比相等 (3)根据以前学习的知识如何把DE 移到BC 上去(作辅助线DF ∥AC ) 学生活动:学生小组讨论:要证△ADE ∽△ABC 只需证∠A=∠A ,∠B=∠2,∠C=∠3←——由平行得 =AD AE DE AB AC BC ? =?? 由DE ∥BC 得 相似定义 只需证出:DE AD BC AB =或DE AE BC AC = 由于DE 、BC 不在同一直线上,故可以通过做辅助线平移DE ,将DE 、BC 放在同一直线上 ; 证明: 过D 点作DF ∥AC 交BC 于F ∵DE ∥BC ,DF ∥AC ∴四边形DFCE 是□ ∴DE=CF ∵DF ∥AC ∴CF AD BC BD = ∴DE AD BC BD = ∵DE ∥BC ∴ = AD AE BD AC ∵DE ∥BC ∴∠A=∠A ,∠1=∠B ,∠2=∠C ∴△ADE ∽△ABC BC DE AC AE AB AD = =∴ B

相似三角形的判定方法

相似三角形的判定方法 证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。 方法一(预备定理) 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明) 方法二 如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似 方法三 如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似 方法四 如果两个三角形的三组对应边的比相等,那么这两个三角形相似 方法五(定义) 对应角相等,对应边成比例的两个三角形叫做相似三角形 一定相似的三角形 1.两个全等的三角形一定(肯定)相似。 2.两个等腰直角三角形一定(肯定)相似 (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) 3.两个等边三角形一定(肯定)相似。 直角三角形相似判定定理 1.斜边与一条直角边对应成比例的两直角三角形相似。 2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。 编辑本段三角形相似的判定定理推论 推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

相似三角形的判定与性质综合运用经典题型(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. 相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD 是等边三角形,A 、C 、D 、B 在同一直线上,且∠APB=120°. 求证:⑴△PAC ∽△BPD ;⑵ CD 2 =AC ·BD. 例2、如图,在等腰△ABC 中, ∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=45°(1)求证:△ABD ∽△DCE ; (2)设BD=x ,AE=y ,求y 关于x 函数关系式及自变量x 值范围,并求出当x 为何值时AE 取得最小值? (3)在AC 上是否存在点E ,使得△ADE 为等腰三角形?若存在,求AE 的长;若不存在,请说明理由? 例3、如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B :1)求证:△ADF ∽△DEC ; 2)若AB=4, 3 3=AD ,AE=3 ,求AF 的长。 考点二:射影定理: 例4、如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=4cm,AD=8cm,求AC 、BC 及BD 的长。 例5、如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,且AF=1 4 AD ,EG ⊥CF 于点G , (1)求证:△AEF ∽△BCE ; (2)试说明:EG 2 =CG ·FG. 例6、已知:如图所示的一张矩形纸片ABCD (AD>AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE . (1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为24cm 2 ,求△ABF 的周长; (3)在线段AC 上是否存在一点P ,使得2AE 2 =AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由. 考点三:相似之共线线段的比例问题: 例7、已知如图,P 为平行四边形ABCD 的对角线AC 上一点,过P 的直线与AD 、BC 、CD 的延长线、AB 的延长线分别相交于点E 、F 、G 、H. 求证:PG PH PF PE = 例8、如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:PC 2 =PE ?PF ;(2)若菱形边长为8,PE=2,EF=6,求FB 的长. 例9、如图,CD 是Rt △ABC 斜边上的高,E 为AC 的中点,ED 交CB 的延长线于F . 求证:BD ?CF=CD ?DF . 例10、如图:已知在等边三角形ABC 中,点D 、E 分别是AB 、BC 延长线上的 点,且BD=CE ,直线CD 与AE 相交于点F .(1)求证:DC=AE ;(2)求证:AD 2 =DC ?DF . 例11、如图,E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC ,CD 于点M ,F ,BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)找出与△ABH 相似的三角形,并证明;(2)若E 是BC 中点,BC=2AB ,AB=2,求EM 的长. 例12、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:(1)AE=CG ;(2)AN ?DN=CN ?MN . 例13、如图,在Rt △ABC 中,CD 是斜边AB 上的高,点M 在CD 上,DH ⊥ BM 且与AC 的延长线交于点E .求证:(1)△AED ∽△CBM ; (2)AE ?CM=AC ?CD . 例14、如图,△ABC 是直角三角形,∠ACB=90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F .(1)求证:FD 2 =FB ?FC ; (2)若G 是BC 的中点,连接GD ,GD 与EF 垂直吗?并说明理由. 例15、如图,四边形ABCD 、CDEF 、EFGH 都是正方形. (1)⊿ACF 与⊿ACG 相似吗?说说你的理由.(2)求∠1+∠2的度数. 考点四:相似三角形的实际应用: 例16、如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上. (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长PQ 是宽PN 的2倍,则边长是多少? 例17、已知左,右并排的两棵大树的高分别是AB=8m 和CD=12m ,两树的 根 A B C D F

相似三角形的判定定理2

A B C A 1 B 1 C 1 A B C D O 1、 相似三角形判定定理2 如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 可简述为:两边对应成比例且夹角相等,两个三角形相似. 如图,在ABC ?与111A B C ?中,1A A ∠=∠,1111 AB AC A B AC = ,那么ABC ?∽111A B C ?. 【例1】 如图,四边形ABCD 的对角线AC 与BD 相交于点O , 2OA =,3OB =,6OC =,4OD =. 求证:OAD ?与OBC ?是相似三角形. 相似三角形判定定理2 知识精讲

A B C D A B C D E 【例2】 如图,点D 是ABC ?的边AB 上的一点,且2AC AD AB =g . 求证:ACD ?∽ABC ?. 【例3】 如图,在ABC ?与AED ?中, AB AC AE AD = ,BAD CAE ∠=∠. 求证:ABC ?∽AED ?. 【例4】 下列说法一定正确的是( ) A .有两边对应成比例且一角相等的两个三角形相似 B .对应角相等的两个三角形不一定相似 C .有两边对应成比例且夹角相等的两个三角形相似 D .一条直线截三角形两边所得的三角形与原三角形相似 【例5】 在ABC ?和DEF ?中,由下列条件不能推出ABC ?∽DEF ?的是( ) A .A B A C DE DF = ,B E ∠=∠ B .AB AC =,DE DF =,B E ∠=∠ C .AB AC DE DF = ,A D ∠=∠ D .AB AC =,DE DF =,C F ∠=∠

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则,,,…AB BC DE EF AB AC DE DF BC AC EF DF === ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 ③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 ○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ; 知识点二、相似三角形的判定

判定定理1:两角对应相等,两三角形相似. 符号语言: 拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。 (2)顶角或底角对应相等的两个等腰三角形相似。 例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出 AD AE BD CE = 吗?请说明理由。(用两种方法说明) 例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D. 求证:(1)2AB BD BC =?;(2)2AD BD CD =?;(3)CB CD AC ?=2 例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则 BD BE AD AF =例题精讲 A E D B C A B C D

吗?说说你的理由. 例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C (1) 求证:△ABF ∽△EAD ; (2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。 2分之3倍根号3 随练: 一、选择题 1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对 2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )C A D C B E F G F E D C B A

相似三角形判定练习试题

成功源于努力! 相似三角形的判定(提高) 一、选择题 1. 已知△A1B1C1与△A2B2C2的相似比为4:3,△A2B2C2与△A3B3C3的相似比为4:5,则△A1B1C1与△A3B3C3的相似比为() A. 16:15 B. 15:16 C. 3:5 D. 16:15或15:16 2.如图,P是RtΔABC的斜边BC上异于B、C的一点,过点P做直线截ΔABC,使截得的三角形与ΔABC相似,满足这样条件的直线共有(). A.1条B.2条C.3条D.4条 3. 如图,在△ABC中,M是AC边中点,E是AB上一点,且AE= AB,连结EM并延长,交BC的延长线于D,此时BC:CD为() A. 2:1 B. 3:2 C. 3:1 D. 5:2 4. 如图,在平行四边形ABCD中,E是AD上的一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是(). A.∠AEF=∠DEC B.FA∶CD=AE∶BC C.FA∶AB=FE∶EC D.AB=DC 5.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,则图中相似三角形有().

A.4对B.3对C.2对D.1对 6. 如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP 与△ECP相似的是() A. ∠APB=∠EPC B. ∠APE=90° C. P是BC的中点 D. BP:BC=2:3 二、填空题 7. 如图, ∠1=∠2=∠3, 则图中与△CDE相似三角形是________和________ 8. 如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有_________对. 9. 如图,是正方形ABCD的外接圆,点F是AB的中点,CF的延长线交于点E,则CF:EF 的值是________.

相似三角形的定义及其判定同步练习及答案

相似三角形的定义及其判定——典型题专项训练知识点 1 对相似三角形定义的理解 1.下列说法中错误的是( ) A.两个全等三角形一定相似 B.两个直角三角形一定相似 C.两个相似三角形的对应角相等,对应边成比例 D.相似的两个三角形不一定全等 2.已知△ABC∽△A′B′C′,且BC∶B′C′=AC∶A′C′,若AC=3,A′C′=4.5,则△A′B′C′与△ABC的相似比为( ) A.1∶3 B.3∶2 C.3∶5 D.2∶3 3.2017·贵阳期末一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是( ) A.6 B.9 C.10 D.15 4.如图4-4-1,已知△ADE∽△ACB,且∠ADE=∠C,则AD∶AC等于( ) 图4-4-1 A.AE∶AC B.DE∶CB C.AE∶BC D.DE∶AB 5.若△ABC∽△A′B′C′,AB=2,BC=3,A′B′=1,则B′C′等于( ) A.1.5 B.3 C.2 D.1 6.如图4-4-2所示,已知△ABC∽△ADE,AD=6 cm,BD=3 cm,BC=9.9 cm,∠A =70°,∠B=50°.

求:(1)∠ADE的度数; (2)∠AED的度数; (3)DE的长. 图4-4-2 知识点 2 利用两角分别相等判定三角形相似 7.如图4-4-3所示的三个三角形,相似的是( ) 图4-4-3 A.(1)和(2) B.(2)和(3) C.(1)和(3) D.(1)和(2)和(3) 8.教材习题4.5第3题变式题如图4-4-4,在Rt△ABC中,CD是斜边AB上的高,则图中相似三角形有( ) A.0对 B.1对 C.2对 D.3对 图4-4-4 图4-4-5 9.如图4-4-5,添加一个条件:__________(写出一个即可),使△ADE∽△ACB.

初三相似三角形的判定培优同步讲义

初三相似三角形的判定培优同步讲义 学科教师辅导讲义 体系搭建 一、知识框架 二、知识概念 (一)相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形. 1、相似三角形是相似多边形中的一种; 2、应结合相似多边形的性质来理解相似三角形; 3、相似三角形应满足形状一样,但大小可以不同; 4、母子型:已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 5、斜交型: 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。 (有“反 A 共 角型”、“反 A 共角共边型”、 “蝶型”)b5E2RGbCAP 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂 直型”) 考点 1:三角形相似判定方法的运用 例 1、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点 D ,则图中相似三角形共有( ) A .1 对 B .2 对 C .3 对 D .4 对 p1EanqFDPw 例 2、如图,下列条件不能判定△ADB ∽△ABC 的是( ) A .∠ABD=∠ACB B .∠ADB=∠ABCDXDiTa9E3d C .AB 2 =AD?AC D .= 典例分析 A B C D A B C D E 12 A

A B B C C D D E E 124 1 2 E C B D A B C D E A E
( )
A D C B 例 3、已知:在梯形 ABCD 中,AD∥BC,∠ABC=90°,BC=2AD,E 是 BC 的中点,连接 AE、 AC.RTCrpUDGiT (1)点 F 是 DC 上一点,连接 EF,交 AC 于点 O(如图 1),求证:△AOE∽△COF; (2)若点 F 是 DC 的中点,连接 BD,交 AE 与点 G(如图 2),求证:四边形 EFDG 是菱形. 例 4、如图,在△ABC 中,AB=AC=1,BC=,在 AC 边上截取 AD=BC,连接 BD. (1)通过计算,判断 AD2 与 AC?CD 的大小关系; (2)求∠ABD 的度数. 考点 2:网格图中相似三角形的判定 例 1、下列四个三角形中,与图中的三角形相似的是() A.B.C.D. 实战演练 课堂狙击 1、下列命题中,是真命题的为() A.锐角三角形都相似

初中数学 27.2.1 相似三角形的判定(1)教案

课题 27.2.1相似三角形的判定(一)【总第3课时】 教学任务分析 活道镇初级中学 陆炳泉 教学目的: (1) 会用符号“∽”表示相似三角形如△ABC ∽ △C B A '''; (2) 知道当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k . (3) 理解掌握平行线分线段成比例定理 (4) 在平行线分线段成比例定理探究过程中,让学生运用“操作—比较—发现—归纳”分析 问题. (5) 在探究平行线分线段成比例定理过程中,培养学生与他人交流、合作的意识和品质. 重点、难点 教学重点: 理解掌握平行线分线段成比例定理及应用. 教学难点: 掌握平行线分线段成比例定理应用. 一. 创设情境 谈话复习引入课题 (1)相似多边形的主要特征是什么? (2)在相似多边形中,最简单的就是相似三角形. 在△ABC 与△A′B′C′中, 如果△A=△A ′, △B=△B ′, △C=△C ′, 且k A C CA C B BC B A AB =' '=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC△△A ′B ′C ′,k 就是它们的相似比. 反之如果△ABC△△A ′B ′C ′, 则有△A=△A ′, △B=△B ′, △C=△C ′, 且A C CA C B BC B A AB ' '=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系? 教师活动:明确 (1)在相似多边形中,最简单的就是相似三角形。 (2)用符号“∽”表示相似三角形如△ABC ∽ △C B A '''; (3)当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k . 活动1 (教材P 40页 探究1) 如图27.2-1),任意画两条直线l 1 , l 2,再画三条与l 1 , l 2 相交的平行线l 3 , l 4, l 5.分别量度l 3 , l 4, l 5.在l 1 上截得的两条线段AB, BC 和在l 2 上截得的两条线段DE, EF 的长度, AB ︰B C 与DE ︰EF 相等吗?任意平移l 5 , 再量度AB, BC, DE, EF 的长度, AB ︰B C 与DE ︰EF 相等吗?

完整版相似三角形的判定方法

(一)相似三角形 1定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1 ?所以全等三角形是相似三角形的特例?其 区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ ABC A B,的对应边的比,即相似比为k,则△ A B' 0 △ ABC的相似比「当它们全等时,才有k=k' =1 ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小 的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ?/ DE // BC ,???△ ABC ADE ; ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理. 它不但本身有着广泛的 应用,同时也是证明相似三角形三个判定定理的基础,故把它称为预备定理”; ③有了预备定理后,在解题时不但要想到见平行,想比例”,还要想到见平行,想相似 (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角 形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,/ 仁/ 2=7 3,求证:△ AB(0A ADE A (双A型)

相似三角形的判定(二)

3.3 相似三角形的判定(二) 一、教学目标 1.掌握“三组对应边的比相等的两个三角形相似”、“两组对应边的比相等且它们夹角相等的两个三角形相似”的判定定理. 2.经历探索两个三角形相似条件的过程,体验画图操作、类比猜想、分析归纳得出数学结论的过程; 3.能够运用三角形相似的条件解决简单的问题; 4.通过问题的探索过程,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。 二、重点、难点 1.重点:掌握两种判定定理,会运用两种判定方法判定两个三角形相似. 2.难点:(1)三角形相似的条件归纳、证明; (2)会准确的运用两个三角形相似的条件来判定三角形是否相似. 三、教学过程 (一)复习已学过的知识 问题:(1) 判断两个三角形相似,你有哪些方法? 方法1:通过定义(不常用) 方法2:通过平行线(条件特殊,使用起来有局限性) (2) 思考:有没有其它简单的办法判断两个三角形相似? (3) 全等三角形与相似三角形有怎样的关系? 设计意图: 引导学生复习学过的知识,承前启后,激发学生学习新知的欲望。 (二)类比联想、猜想相似三角形的判定方法。 (1)问题:判定一般三角形全等有哪些判定方法? (2)由全等三角形是相似三角形的特例,启发我们类比全等三角形的判定方法猜想相 设计意图: 回顾三角形全等条件,用类比展开思维,按顺序展开探究。三、证明猜想,形成定理 1.猜想一:类比三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条对应边的比相等,那么能否判定这两个三角形相似呢? 2.带领学生画图探究: (1)任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗? (2)教师借助几何画板对两个三角形三组对应角进行度量,对猜想结论得到数据准确的验证,初步形成结论。 (3)学生口述命题:如果两个三角形的三组对应边的比相等,那么这两个三角形相似。3.怎样证明这个命题是正确的呢? (命题是否正确,需要理论严谨的证明,教师带领学生探求证明方法) 如图,在ABC ?和' ' 'C B A ?中, ' ' ' ' ' 'C A AC C B BC B A AB = =, 求证:ABC ?∽' ' 'C B A ? 分析:(1)要证两个三角形相似,目前只有两个途径。一个是三角形相似的定义(显然条件不具备);二个是上节课学习的利用平行线来判定三角形相似的定理。为了使用它,就必须创造具备定理的基本图形的条件。怎样创造呢? (2)学生会想到把小的三角形移动到大的三角形上,然而如何实现平移呢? (3)引导学生整理证明思路,教师板书证明过程。 证明:在线段' 'B A(或它的延长线)上截取AB D A= ',过点D作DE∥' 'C B,交' 'C A 于点E,根据前面的定理可得DE A' ?∽' ' 'C B A ?. ' ' ' ' ' ' ' ' C A E A C B DE B A D A = = ∴. , ' ' ' ' ' ' ' AB D A C A AC C B BC B A AB = = =, 又 . ' ' ' ' ' C A AC C A E A = ∴ . 'AC E A= ∴ 同理 DE=BC. DE A' ? ∴≌ABC ?. ABC ? ∴∽' ''C B A ?. 4.命题改成定理 三角形相似的判定方法 1 如果两个三角形的三组对应边的比相等,那么这两个三角形相似.

数学:24.2《相似三角形的判定》同步练习(沪科版九年级上)

24.2相似三角形的判定 第1题. 如图,AC BD ⊥,垂足为C ,过D 点作DF AB ⊥,垂足为F ,交AC 于E 点.请找出图中所有的相似三角形,并说明理由. 答案:解:(1)因为90A A AFE ACB ∠=∠∠=∠=, 所以AFE ACB △∽△. (2)因为90AEF DEC AFE DCE ∠=∠∠=∠=,, 所以AFE DCE △∽△. 所以A D ∠=∠. (3)因为A D ∠=∠,90AFE DFB ∠=∠=, 所以AFE DFB △∽△. (4)因为D A ∠=∠,90DCE ACB ∠=∠=, 所以DCE ACB △∽△. (5)因为D A ∠=∠,90DFB ACB ∠=∠=, 所以DFB ACB △∽△. (6)因为D A ∠=∠,90DCE DFB ∠=∠=, 所以DCE DFB △∽△. 知识点:三角形相似的条件 试题类型:运算题 试题难度:容易 考查目标:基本技能 第2题.如图,一艘军舰从点A 向位于正东方向的C 岛航行,在点A 处测得B 岛在其北偏东75,航行75nmile 到达点D 处,测得B 岛在其北偏东15,继续航行5n mile 到达C 岛,此时接到通知,要求这艘军舰在半小时内赶到正北方向的B 岛执行任务,则这艘军舰航行 速度至少为多少时才能按时赶到B 岛? 答案:解:根据题意,可得1590A CBD BCD ACB ∠=∠=∠=∠=,. 所以.BCD ACB △∽△ 由相似三角形对应边成比例,得 BC AC DC BC =,即80 5BC BC =. A F B C D E A D

所以2 40020BC BC ==,. 要求军舰在半小时内赶到正北方向的B 岛执行任务,因此航行速度至少是 200.540=÷(n mile/h) 知识点:三角形相似的条件 试题类型:应用题 试题难度:中等 考查目标:双基简单应用 第3题. 如图,点E C 、分别在AB AD 、上,BC 与DE 相交于一点O ,若B D ∠=∠, 则图中相似三角形有几对?分别写出来说明理由. 答案:2对BAC DAE BOE DOC △∽△,△∽△.理由略 知识点:三角形相似的条件 试题类型:运算题 试题难度:容易 考查目标:基本技能 第4题. 如图,已知:3:4DE BC AD DB =∥,,若5DE =cm ,求BC 的长. 答案: 35 3 cm 知识点:三角形相似的条件 试题类型:运算题 试题难度:中等 考查目标:基本技能 第5题. 如图,已知ABC ACB ∠=∠,若3AD =cm ,7AB =cm ,试求AC 的长. 21cm 知识点:三角形相似的条件 试题类型:运算题 试题难度:中等 考查目标:基本技能 第6题. 如图,4cm 9cm 5cm 12cm AO DO AB BC O ====,,,,为BC 的中点,求 CDO △的周长. 答案:解:由12cm BC =,O 为BC 的中点,得 6BO CO ==cm . 由4cm 9cm AO DO ==,,得 2 3 AO BO CO DO ==. 因为两边对应成比例且夹角相等的两个三角形相似, 所以AOB COD △∽△. 由相似三角形对应边成比例,得 AB AO CD CO =,即52 3 CD =. A C O D B E A D E C B A D C A B O C

相关主题
文本预览
相关文档 最新文档