当前位置:文档之家› BD GPS GLONASS GALILEO多星座卫星导航信号模拟器

BD GPS GLONASS GALILEO多星座卫星导航信号模拟器

BD GPS GLONASS GALILEO多星座卫星导航信号模拟器
BD GPS GLONASS GALILEO多星座卫星导航信号模拟器

Consultative

Committee for Space Data Systems

REPORT CONCERNING SPACE

DATA SYSTEM STANDARDS

TELEMETRY

SUMMARY OF

CONCEPT AND RATIONALE

CCSDS 100.0-G-1

GREEN BOOK

DECEMBER 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE

AUTHORITY

* * * * * * * * * * * * * * * * * * * * * * * * *

*Issue:Green Book, Issue 1*

*Date:January 1987*

*Location:CCSDS Plenary Meeting*

*November 1986*

*Frascati, Italy*

* * * * * * * * * * * * * * * * * * * * * * * * *

This report reflects the consensus of the technical panel experts of the following member Agencies of the Consultative Committee for Space Data Systems (CCSDS):

o British National Space Centre (BNSC)/United Kingdom.

o Centre National D'Etudes Spatiales (CNES)/France.

o Deutsche Forschungs-u. Versuchsanstalt fuer Luft und Raumfahrt e.V (DFVLR)/ West Germany.

o European Space Agency (ESA)/Europe.

o Indian Space Research Organization (ISRO)/India.

o Instituto de Pesquisas Espaciais (INPE)/Brazil.

o National Aeronautics and Space Administration (NASA)/USA.

o National Space Development Agency of Japan (NASDA)/Japan.

The panel experts of the following observer Agencies also technically concur with this report:

o Chinese Academy of Space Technology (CAST)/People's Republic of China.

o Department of Communications, Communications Research Centre

(DOC-CRC)/Canada.

This report is published and maintained by:

CCSDS Secretariat

Communications and Data Systems Division (Code-TS)

National Aeronautics and Space Administration

Washington, DC 20546, USA

Issue 1i December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE

FOREWORD

This CCSDS report presents the conceptual framework and rationale for the CCSDS Telemetry System. The background information provided here will be found helpful in understanding the two CCSDS technical Recommendations for Telemetry.

This report supports CCSDS Recommendations for "Packet Telemetry" (Reference [1]) and "Telemetry Channel Coding" (Reference [2]).

Through the process of normal evolution, it is expected that expansion, deletion or modification to this report may occur. This report is therefore subject to CCSDS document management and change control procedures which are defined in Reference [3].

Questions relative to the contents or status of this report should be addressed to the CCSDS Secretariat.

Issue 1ii December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE

DOCUMENT CONTROL

Issue Title Date Status/Remarks CCSDS 100.0-G-1Report Concerning Space December Current Issue

Data System Standards,1987

Telemetry: Summary of

Concept and Rationale, Issue 1

Issue 1iii December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE

[This page intentionally left blank.]

Issue 1iv December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE

Issue 1v December 1987CONTENTS Sections Page

REFERENCES......................................................................................................... vii 1DOCUMENT PURPOSE, SCOPE AND ORGANIZATION................................. 1-1

1.1

PURPOSE...................................................................................................... 1-11.2

SCOPE............................................................................................................ 1-11.2

ORGANIZATION.......................................................................................... 1-12OVERVIEW OF CCSDS TELEMETRY SYSTEM.............................................. 2-1

2.1

INTRODUCTION.......................................................................................... 2-12.2TELEMETRY SYSTEM CONCEPT............................................................. 2-2

2.2.1PACKETIZATION LAYER............................................................... 2-3

2.2.2SEGMENTATION LAYER.............................................................. 2-3

2.2.3TRANSFER FRAME LAYER.......................................................... 2-3

2.2.4CHANNEL CODING LAYER.......................................................... 2-5

2.2.5RELATIONSHIP BETWEEN TELEMETRY AND

TELECOMMAND SYSTEMS........................................................... 2-7

3TELEMETRY SYSTEM DESCRIPTION AND RATIONALE............................. 3-1

3.1PACKET TELEMETRY................................................................................ 3-1

3.1.1INTRODUCTION.............................................................................. 3-1

3.1.2TELEMETRY SOURCE PACKET.................................................... 3-2

3.1.3FLOW CONTROL MECHANISMS................................................. 3-6

3.1.4TELEMETRY TRANSFER FRAME................................................ 3-10

3.2

TELEMETRY CHANNEL CODING............................................................ 3-15

3.2.1INTRODUCTION.............................................................................. 3-15

3.2.2CONVOLUTIONAL CODE.............................................................. 3-19

3.2.3PERIODIC CONVOLUTIONAL INTERLEAVING........................ 3-19

3.2.4REED-SOLOMON CODE ................................................................ 3-20Annexes

A

GLOSSARY OF TELEMETRY TERMINOLOGY............................................... A-1B

"APPLICATION NOTES" FOR PACKET TELEMETRY.................................... B-1C SUMMARY OF SEGMENTATION OPTIONS.................................................... C-1

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE Issue 1vi December 1987

D TELEMETRY TRANSFER FRAM

E ERROR DETECTION

ENCODING/DECODING GUIDELINE................................................................ D-1Figures

2-1

Layered Telemetry Service Model.......................................................................... 2-42-2

Telemetry Data Structures....................................................................................... 2-62-3

Telemetry/Telecommand Relationships.................................................................. 2-83-1

Telemetry Data Flow............................................................................................... 3-33-2

"Source Packet" (Version 1) Format....................................................................... 3-43-3

Telemetry Segment (Version 2) Format.................................................................. 3-93-4

Telemetry Transfer Frame Format........................................................................... 3-113-5

Coding System Block Diagram................................................................................ 3-173-6

Performance of Various Codes in a Gaussian Channel........................................... 3-18D-1

Encoder.................................................................................................................... D-4D-2Decoder................................................................................................................... D-4Table

C-1Summary of Segmentation Options........................................................................ C-3

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE

REFERENCES

[1]"Packet Telemetry", Recommendation CCSDS 102.0-B-2, Issue 2, Blue Book,

Consultative Committee for Space Data Systems, January 1987 or later issue. [2]"Telemetry Channel Coding", Recommendation CCSDS 101.0-B-2, Issue 2, Blue Book,

Consultative Committee for Space Data Systems, January 1987 or later issue. [3]"Reference Model of Open Systems Interconnection", International Organization for

Standardization, Draft International Standard DIS-7498, February 1982 or later issue.

[4]Rice, R.F., and Hilbert, E., US Patent 3988677, October 26, 1976.

[5]Morakis, J.C., "Discussion of Synchronization Words", NASA Technical Memorandum

86222, NASA-Goddard Space Flight Center, Greenbelt, Maryland, May 15, 1985. [6]"Procedures Manual for the Consultative Committee for Space Data Systems", Issue 1,

Consultative Committee for Space Data Systems, August 1985 or later issue.

[7]Cager, R., "Spacecraft Identification Requirements Analysis", CCSDS Panel 1-C

Telecommand Action Item 6.26, June 3-7, 1985.

[8]"Telecommmand: Summary of Concept and Service", Report CCSDS 200.0-G-6, Issue 6,

Green Book, Consultative Committee for Space Data Systems, January 1987 or later issue.

[9]"Telecommand, Part 2: Data Routing Service, Architectural Specification",

Recommendation CCSDS 202.0-B-1, Issue 1, Blue Book, Consultative Committee for Space Data Systems, January 1987 or later issue.

[10]Rice, R.F., Channel Coding and Data Compression System Considerations for Efficient

Communication of Planetary Imaging Data, Technical Memorandum 33-695, NASA-Jet Propulsion Laboratory, Pasadena, California, June 15, 1974.

[11]Rice, R.F., End-to-End Imaging Rate Advantages of Various Alternative Communication

Systems, JPL Publication 82-61, NASA-Jet Propulsion Laboratory, Pasadena, California, September 1, 1982

[12]Rice, R.F., Mission Science Value/Cost Savings from the Advanced Imaging

Communications System, JPL Publication 84-33, NASA-Jet Propulsion Laboratory, Pasadena, California, July 15, 1984.

Issue 1vii December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE [13]Miller, R.L., et al., On the Error Statistics of Viterbi Decoding and the Performance of

Concatenated Codes, JPL Publication 81-9, NASA-Jet Propulsion Laboratory, Pasadena, California, September 1, 1981.

[14]Odenwalder, J.P., Concatenated Reed-Solomon/Viterbi Channel Coding for Advanced

Planetary Missions, Final Report, Contract 953866, December 1, 1974.

[15]Liu, K.Y., The Effects of Receiver Tracking Phase Error on the Performance of

Concatenated Reed-Solomon/Viterbi Channel Coding System, JPL Publication 81-62, NASA-Jet Propulsion Laboratory, Pasadena, California, September 1, 1981.

[16]Odenwalder, J.P., et al., Hybrid Coding Systems Study, Final Report, NASA-Ames

Research Center Contract NAS2-6722, Linkabit Corporation, San Diego, California, September 1972.

[17]Perlman, M., and Lee, J.J., Reed-Solomon Encoders - Conventional vs Berlekamp's

Architecture, JPL Publication 82-71, NASA-Jet Propulsion Laboratory, Pasadena, California, December 1, 1982.

[18]Tracking and Data Relay Satellite System (TDRSS) Users' Guide, STDN 101.2, Rev. 5,

NASA-Goddard Space Flight Center, Greenbelt, Maryland, September 1984.

The latest issues of CCSDS documents may be obtained from the CCSDS Secretariat at the address indicated on page i.

Issue 1viii December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE 1DOCUMENT PURPOSE, SCOPE AND ORGANIZATION

1.1PURPOSE

This report contains the concept and supporting rationale for the Telemetry System developed by the Consultative Committee for Space Data Systems (CCSDS). It has been prepared to serve two major purposes:

(1)To provide an introduction and overview for the Telemetry System concept upon

which the detailed CCSDS Telemetry Recommendations (References [1] and [2]) are

based.

(2)To summarize the specific individual Recommendations and to supply the supporting

rationale.

This document is a CCSDS informational Report and is therefore not to be taken as a CCSDS Recommendation for Data System Standards.

1.2 SCOPE

The concepts, protocols and data formats developed for the Telemetry System described herein are designed for flight and ground data systems supporting conventional, contemporary free flyer spacecraft. Data formats are designed with efficiency as a primary consideration, i.e., format overhead is minimized. The results reflect the consensus of experts from many space agencies.

1.3 ORGANIZATION

An overview of the CCSDS Telemetry System is presented in Section 2, which introduces the notion of architectural layering to achieve transparent and reliable delivery of scientific and engineering sensor data (generated aboard remote space vehicles) to the users located in space or on Earth.

Section 3 presents a more detailed description of the Telemetry System and rationale for the two specific CCSDS Telemetry Recommendations.

Annex A presents a Glossary in order to familiarize the reader with the terminology used throughout the CCSDS Telemetry System.

Issue 1Page 1-1December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE Annex B contains application notes which describe how a Project may implement complete or partial compatibility with the CCSDS Telemetry Recommendations [1] and [2].

Annex C summarizes the segmentation options available for segmenting very long Source Packets.

Annex D is a guideline for Transfer Frame error detection coding.

Issue 1Page 1-2December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE 2OVERVIEW OF CCSDS TELEMETRY SYSTEM

2.1 INTRODUCTION

The purpose of a telemetry system is to reliably and transparently convey measurement information from a remotely located data generating source to users located in space or on Earth. Typically, data generators are scientific sensors, science housekeeping sensors, engineering sensors and other subsystems on-board a spacecraft.

The advent of capable microprocessor based hardware will result in data systems with demands for greater throughput and a requirement for corresponding increases in spacecraft autonomy and mission complexity. These facts, along with the current technical and fiscal environments, create a need for greater telemetering capability and efficiency with reduced costs. Traditionally, most of the telemetry resources used by a science mission have been wholly contained within a cognizant Project office and, with the exception of the tracking network, are completely dedicated to that mission. The lack of effective standardization among various missions forces the "multi-mission" tracking network to implement the lowest level of telemetry transport service, i.e., bit transport. Higher level data delivery services, oriented more toward computer-to-computer transfers and typical of modern day commercial and military networks, must be custom designed and implemented on a mission-to-mission basis.

The intent of the CCSDS Telemetry System is not only to ease the transition toward greater automation within individual space agencies, but also to ensure harmony among the agencies, thereby resulting in greater cross-support opportunities and services.

The CCSDS Telemetry System is broken down into two major conceptual categories: a "Packet Telemetry" concept (Reference [1]) and a "Telemetry Channel Coding" concept (Reference [2]).

Packet Telemetry is a concept which facilitates the transmission of space-acquired data from source to user in a standardized and highly automated manner. Packet Telemetry provides a mechanism for implementing common data structures and protocols which can enhance the development and operation of space mission systems. Packet Telemetry addresses the following two processes:

(1)The end-to-end transport of space mission data sets from source application processes

located in space to distributed user application processes located in space or on Earth.

(2)The intermediate transfer of these data sets through space data networks; more

specifically, those elements which contain spacecraft, radio links, tracking stations

and mission control centers as some of their components.

Issue 1Page 2-1December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE The Packet Telemetry Recommendation contained in Reference [1] is primarily concerned with describing the telemetry formats which are generated by spacecraft in order to execute their roles in the above processes.

Telemetry Channel Coding is a method by which data can be sent from a source to a destination by processing it in such a way that distinct messages are created which are easily distinguishable from one another. This allows reconstruction of the data with low error probability, thus improving the performance of the channel. The Telemetry Channel Coding Recommendation contained in Reference [2] describes several space telemetry channel coding schemes. The characteristics of the codes are specified only to the extent necessary to ensure interoperability and cross-support.

Together, Packet Telemetry and Telemetry Channel Coding services provide to the user reliable and transparent delivery of telemetry information.

2.2 TELEMETRY SYSTEM CONCEPT

The system design technique known as layering was found to be a very useful tool for transforming the Telemetry System concept into sets of operational and formatting procedures. The layering approach is patterned after the International Organization for Standardization's Open Systems Interconnection layered network model (Reference [3]), which is a seven layer architecture that groups functions logically and provides conventions for connecting functions at each layer. Layering allows a complex procedure such as the telemetering of spacecraft data to the users to be decomposed into sets of peer functions residing in common architectural strata. Within each layer, the functions exchange data according to established standard rules or "protocols". Each layer draws upon a well defined set of services provided by the layer below, and provides a similarly well defined set of services to the layer above. As long as these service interfaces are preserved, the internal operations within a layer are unconstrained and transparent to other layers. Therefore, an entire layer within a system may be removed and replaced as dictated by user or technological requirements without destroying the integrity of the rest of the system. Further, as long as the appropriate interface protocol is satisfied, a customer (user) can interact with the system/service at any of the component layers. Layering is therefore a powerful tool for designing structured systems which change due to the evolution of requirements or technology.

A companion standardization technique that is conceptually simple, yet very robust, is the encapsulation of data within an envelope or "header". The header contains the identifying information needed by the layer to provide its service while maintaining the integrity of the envelope contents.

Issue 1Page 2-2December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE Figure 2-1 illustrates the CCSDS Telemetry System in terms of a layered service model. It should be noted that the CCSDS Packet Telemetry and Telemetry Channel Coding Recommendations only address the five lower layers of this model.

2.2.1PACKETIZATION LAYER

Within Packet Telemetry, spacecraft generated application data are formatted into end-to-end transportable data units called TM Source Packets. These data are encapsulated within a primary header which contains identification, sequence control and packet length information, and an optional trailing error control field. A TM Source Packet is the basic data unit telemetered to the user by the spacecraft and generally contains a meaningful quantity of related measurements from a particular source.

2.2.2 SEGMENTATION LAYER

To provide assistance with data flow control, the Packet Telemetry Recommendation provides the capability to segment large packetized transportable data units into smaller communication oriented TM Source Packets (Version 1 format) or TM Segments (Version 2 format) for transfer through the space data channel. Consequently, the TM Source Packets and/or TM Segments are of proper size for placement into the data field of the data unit of the next lower layer.

2.2.3 TRANSFER FRAME LAYER

The TM Transfer Frame is used to reliably transport Source Packets and Segments through the telemetry channel to the receiving telecommunications network. As the heart of the CCSDS Telemetry System, the TM Transfer Frame protocols offer a range of delivery service options. An example of such a service option is the multiplexing of TM Transfer Frames into "Virtual Channels" (VCs).

The TM Transfer Frame begins with an attached frame synchronization marker and is followed by a primary header. The primary header contains frame identification, channel frame count information and frame data field status information.

The transfer frame data field may be followed by an optional trailer containing an operational control field and/or a frame error control field. The first of these fields provides a standard mechanism for incorporating a small number of real-time functions (e.g., telecommand verification or spacecraft clock calibration). The error control field provides the capability for Issue 1Page 2-3December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE

Issue 1Page 2-4December 1987

PROVIDES USERS A METHOD TO INVESTIGATE PHYSICAL PHENOMENA BY USING THEIR INSTRUMENTS IN SPACE FOR DATA COLLECTION AND THEIR APPLICATION PROCESSES FOR ANALYSIS.PROVIDES TRANSLATION OF PHYSICAL MEASUREMENTS INTO SETS OF APPLICATION DATA UNITS.

PROVIDES END-TO-END DELIVERY OF APPLICATION DATA UNITS.(OPTIONAL) PREPARES LONGER PACKETIZED DATA UNITS FOR MULTIPLEXING AND TRANSFER THROUGH A SPACE DATA CHANNEL.PROVIDES RELIABLE TRANSFER OF PACKETS AND SEGMENTS IN A COMMON STRUCTURE FOR THEIR TRANSPORT THROUGH THE SPACECRAFT-TO-GROUND COMMUNICATION LINK.PROTECTS TRANSFER FRAMES AGAINST ERRORS INDUCED DURING TRANSMISSION THROUGH THE NOISY PHYSICAL COMMUNICATIONS CHANNEL.PROVIDES THE PHYSICAL CONNECTION, VIA RADIO FREQUENCY SIGNALS, BETWEEN A TRANSMITTING SPACECRAFT AND THE RECEIVING https://www.doczj.com/doc/d916188886.html,YER

SERVICE PROVIDED BY LAYER Figure 2-1: Layered Telemetry Service Model

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE detecting errors which may have been introduced into the frame during the data handling process.

The delivery of transfer frames requires the services provided by the lower layers (e.g., carrier, modulation/detection, and coding/decoding) to accomplish its role.

2.2.4 CHANNEL CODING LAYER

Since a basic system requirement is the error-free delivery of the TM Transfer Frames, Telemetry Channel Coding is used to protect the transfer frames against telemetry channel noise-induced errors. Reference [2] describes the CCSDS Recommendataion for Telemetry Channel Coding, including specification of a convolutionally encoded inner channel concatenated with a Reed-Solomon block-oriented outer code (Reference [4]). The basic data units of the CCSDS Telemetry Channel Coding which interface with the layer below are the Channel Symbols output by the convolutional encoder. These are the information bits representing one or more transfer frames as parity-protected channel symbols.

The RF channel physically modulates the channel symbols into RF signal patterns interpretable as bit representations. Within the error detecting and correcting capability of the channel code chosen, errors which occur as a result of the physical transmission process may be detected and corrected by the receiving entity.

Full advantage of all CCSDS Telemetry System services could be realized if a Project complied with all CCSDS Recommendations. Alternatively, Projects can interface with any layer of the Telemetry System as long as they meet the interface requirements as specified in the two Recommendations (References [1] and [2]).

Figure 2-2 illustrates how the various telemetry data structures map into one another. There is presently no attempt to define the data structures of the top two layers of the telemetry system;

i.e., the Application Process layer and the System Management layer. Telemetry Source Packets may be segmented and placed into the data field of telemetry segments, which are preceded by a header. The Source Packets and/or the Segments are placed into the data field of the Transfer Frame which is preceded by a transfer frame header. If the specified Reed-Solomon code is used in the channel coding scheme, the transfer frame is placed into the Reed-Solomon data space of the Reed-Solomon codeblock, and the codeblock is preceded by an attached synchronization marker.

Issue 1Page 2-5December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE

2.2.5RELATIONSHIP BETWEEN TELEMETRY AND TELECOMMAND SYSTEMS

A different level of understanding is revealed by considering interactions between the Telemetry System and other systems in the operational environment. In conceptual fashion, Figure 2-3 shows the balanced relationship between the Telemetry System and the uplink Telecommand System. The two systems work hand-in-hand to assure the transfer of user directives from the sending end (traditionally on the ground) to the receiving end (controlled process, device or instrument). Of course, the Telemetry System does a great deal more than simply returning command receipt status information to the sender: its usual function is to provide reliable, efficient transfer of all spacecraft data (housekeeping, sensor readings, etc.) back to users.

Issue 1Page 2-7December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE

Figure 2-3: Telemetry/Telecommand Relationships

Issue 1Page 2-8December 1987

CCSDS REPORT CONCERNING TELEMETRY: SUMMARY OF CONCEPT AND RATIONALE 3TELEMETRY SYSTEM DESCRIPTION AND RATIONALE This section describes the services and protocols characterizing the Telemetry System and presents the rationale for detailed structure of the data units. The section is partitioned into the two major parts of the CCSDS Telemetry System: Packet Telemetry and Telemetry Channel Coding. Within the Packet Telemetry section, discussion is organized according to three main protocol and format areas: 1) TM Source Packet, 2) Source Packet Segmentation, and 3) TM Transfer Frame. The CCSDS Telemetry Channel Coding section is divided into the three main subject coding methods: 1) Convolutional Code, 2) Periodic Convolutional Interleaving, and 3) Reed-Solomon Code.

3.1 PACKET TELEMETRY

3.1.1 INTRODUCTION

Packet Telemetry represents an evolutionary step from the traditional Time-Division Multiplex (TDM) method of transmitting scientific, applications and engineering data from spacecraft sources to users located in space or on Earth. The Packet Telemetry process conceptually involves:

(1)Encapsulating, at the source, observational data (to which may be added ancillary

data to subsequently interpret the observational data), thus forming an autonomous

"packet of information in real time on the spacecraft.

(2)Providing a standardized mechanism whereby autonomous packets from multiple

data sources on the spacecraft can be inserted into a common "frame" structure for

transfer to another space vehicle or to Earth through noisy data channels, and

delivered to facilities where the packets may be extracted for delivery to the user. The Packet Telemetry process has the conceptual attributes of:

(1)Facilitating the acquisition and transmission of instrument data at a rate appropriate

for the phenomenon being observed.

(2)Defining a logical interface and protocol between an instrument and its associated

ground support equipment which remains constant throughout the life cycle of the

instrument (bench test, integration, flight, and possible re-use).

(3)Simplifying overall system design by allowing microprocessor-based symmetric

design of the instrument control and data paths ("Telecommand Packets in, Issue 1Page 3-1December 1987

GPS、GSG、北斗及卫星信号模拟器

GPS系统概述 GPS 是英文Global Positioning System(全球定位系统)的简称,而其中文简称为“球位系”。GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。 一、GPS构成 1.空间部分 GPS的空间部分是由24颗工作卫星组成,它位于距地表20—200km的上空,均匀分布在6 个轨道面上(每个轨道面4 颗) ,轨道倾角为55°。此外,还有3 颗有源备份卫星在轨运行。卫星的分布使得在全球任何地方、任何时间都可观测到4 颗以上的卫星,并能在卫星中预存的导航信息。GPS的卫星因为大气摩擦等问题,随着时间的推移,导航精度会逐渐降低。 2. 地面控制系统 地面控制系统由监测站(Monitor Station)、主控制站(Master Monitor Station)、地面天线(Ground Antenna)所组成,主控制站位于美国科罗拉多州春田市(Colorado Spring)。地面控制站负责收集由卫星传回之讯息,并计算卫星星历、相对距离,大气校正等数据。 3.用户设备部分 用户设备部分即GPS 信号接收机。其主要功能是能够捕获到按一定卫星截止角所选择的待测卫星,并跟踪这些卫星的运行。当接收机捕获到跟踪的卫星信号后,就可测量出接收天线至卫星的伪距离和距离的变化率,解调出卫星轨道参数等数据。根据这些数据,接收机中的微处理计算机就可按定位解算方法进行定位计算,计算出用户所在地理位置的经纬度、高度、速度、时间等信息。接收机硬件和机内软件以及GPS 数据的后处理软件包构成完整的GPS 用户设备。GPS 接收机的结构分为天线单元和接收单元两部分。接收机一般采用机内和机外两种直流电源。设置机内电源的目的在于更换外电源时不中断连续观测。在用机外电源时机内电池自动充电。关机后,机内电池为RAM存储器供电,以防止数据丢失。目前各种类型的接受机体积越来越小,重量越来越轻,便于野外观测使用。其次则为使用者接收器,现有单频与双频两种,但由于价格因素,一般使用者所购买的多为单频接收器。 二、GPS原理 GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。可见GPS导航系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收

仿真器接氧传感器及调试方法

天然气仿真器与氧传感器连接及其调试方法 前面文章说过天然气仿真器必须接氧传感器,并测试是不是正常仿真的。很多改装厂这个过程不规范,不接线或者仿真设置不正确,甚至给出“天然气烧气故障灯亮是正常的”这种错误的解释。 接线方法是断开氧传感器的信号线,用仿真器的白色线接传感器,黄色线接行车电脑输入。 接线完毕后一定要在烧油和烧气两种状态下分别测量黄色线和搭铁之间的直流电压为10S在0-1v波动8次左右,以此判断仿真器直通和烧气仿真信号是不是正常的。如果不是这样,可按照下面方法调试DIP开关和电 位器。 一、仿真器电路板上有DIP开关,如图(图是两个开关的):, DIP开关不论有几个,(2个或3个,不会有4个的)必定有一种状态是这样的:烧油时氧传感器信号直接通过仿真器,仿真器不起作用,这个可在烧油状态时测量白色线和黄色线上的电压同时波动得知;烧气时氧传感器信号被截止,由仿真器输出一个信号(黄线)给行车电脑ECU。 相关设置如下并把它写在纸上备用: 2个开关的有如下几种设置: ON ON ON OFF OFF ON OFF OFF 3个开关的有如下几种设置: ON ON ON ON ON Off ON OFF ON ON OFF OFF OFF ON ON OFF ON OFF OFF OFF ON OFF OFF OFF 二、动手测量 第1步:用油启动

第2步:先测量白色线对电瓶负极电压,观察一定时间(如10S)内电压及指针摆动次数和幅度,记在纸上, 在此称“油态电压” 第3步:设置(按照写在纸上的顺序)DIP开关,测量黄色线对电瓶负极电压及摆动情况如和“油态电压”相同请在此DIP状态上打勾,并完成所有设置的测量,这些设置在此简称“直通设置” 第4步:切换到烧气 第5步:测量这几种“直通设置”时黄色线对电瓶负极的电压及摆动情况,必有一种设置电压摆动幅度与“油态电压”相近,这时调整电位器,使其电压波动次数和幅度和“油态电压”相同。 四、完成设置 记下刚才筛选出的DIP开关状态并设置,关闭发动机,拨出钥匙,取下电瓶负极,3分钟后,安装电瓶负极,用钥匙转至电源档,自检,30秒后,关闭,拨出钥匙,30秒后再次插入、自检,启动,先油然后切换到气,分别测量黄色线对电瓶负极电压及摆动情况,(一般10S内电压在0-1v波动7-8次)。 如有必要再调整,这个过程一定要有耐心。

用CMOS技术实现高速模数转换器

用CMOS技术实现高速模数转换器 通信用接收器的发展趋势是必需在信号刚一进入接收器信号通道时就进行取样,并配备有精确的测试仪,而要达到这个目标就要依赖超高速模拟数字转换器来实现。美国国家半导体首推的 ADC081000 芯片是一款模拟输入带宽高达 1.8 GHz 的 8 位 1GSPS 模拟数字转换器,它采用 0.18 微米 (mm) 的互补金属氧化半导体 (CMOS) 工艺技术制造。下文简述了结构及动作的原理,并较详细介绍了上文提到的在动作过程中起什么重要作用。 环顾目前的市场,大部分超高速模拟数字转换器都采用双极互补金属氧化半导体 (BiCMOS) 工艺技术制造,因此 ADC081000 芯片是市场上第一款完全采用 CMOS 技术制造的模拟数字转换器产品。由于双极晶体管的补偿电压比 CMOS 晶体管低,而增益则较高,因此工程师一向喜欢采用双极芯片设计模拟数字转换器前端,例如取样及保持放大器等信号调节电路。对于需要支持高频率操作的系统来说,双极芯片尤其受工程师欢迎。但双极芯片的缺点是需要较高的供电,其功耗远比采用 CMOS 技术的同类芯片大。ADC081000 芯片的实际功耗只有 1W 左右。相比之下,市场上功耗最低的 BiCMOS 模拟数字转换器则耗用超过 3W 的功率。要装设怎样的散热器才可将如此大量的热量全部散发?这却是一个令人极为头痛的问题。ADC081000 芯片不但性能卓越,而且符合通信系统及高性能测试仪表所需的动态规格,可提供 7 以上的有效位数 (ENOB),远超尼奎斯特(nyquist)的规定。 结构及运作原理 高速模拟数字转换器有多种结构可供选择,其中以快闪式、流水线式或折叠/内插式等三种最受欢迎。采用快闪式及折叠/内插式的结构可让数字 CMOS 工艺发挥更大的灵活性。折叠式模拟数字转换器的优点是速度快,而且所需的比较器比快闪式模拟数字转换器少。内插式模拟数字转换器则只需极少量输入放大器,而且所需的输入电容也较低。我们所知的折叠/内插式结构便是这两种技术的集成,其优点是管芯体积较小、功耗较低、而动态性能又很高,因此 ADC081000 芯片便采用这种结构,图 1 所示的就是这款芯片的结构框图。 1GSPS 的速度提供足够的计时时间: 以 ADC081000 这类高速、高性能的集成电路来说,它们所需的时钟信号绝对不能附随任何噪音,以确保外部时钟不会将不受欢迎的噪音带进系统,影响系统的整体动态性能。ADC081000 芯片所需的时钟必须属于低相位噪音 (低抖动) 时钟,而且必须能以千兆赫 (GHz) 以上的频率操作。传统的石英振荡器虽然可以提供低抖动的时钟信号,但市场上只有极少石英振荡器能提供振荡频率超过几百兆赫 (MHz) 的时钟信号。为了确保振荡频率及低相位噪音符合要求,我们可以采用高频率压控振荡器 (VCO)、锁相环路 (PLL) 及石英振荡器,并按图 2 所示的设计将之集成一体,这是目前最佳的方法。

基于Ucos的多通道数据采集系统(DOC)(可编辑修改word版)

课程设计(论文)任务书 信息工程学院物联网专业2014-2 班 一、课程设计(论文)题目基于Ucos 的多通道数据采集系统 二、课程设计(论文)工作自2017 年06 月26 日起至2017 年06 月30 日止。三、 课程设计(论文) 地点:嵌入式系统实验室 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)使学生掌握嵌入式开发板(实验箱)各功能模块的基本工作原理; (2)培养嵌入式系统的应用能力及嵌入式软件的开发能力; (3)使学生较熟练地应用嵌入式操作系统及其API 开发嵌入式应用软件; (4)培养学生分析、解决问题的能力; (5)提高学生的科技论文写作能力。 2.课程设计的任务及要求 1)基本要求: (1)分析所设计嵌入式软件系统中各功能模块的实现机制; (2)选用合适嵌入式操作系统及其API; (3)编码实现最终的嵌入式软件系统; (4)在实验箱上调试、测试并获得最终结果。 2)创新要求: 在基本要求达到后,可进行创新设计,如改善嵌入式软件实时性能;扩展嵌入式软件功能及改善其图形用户界面。 3)课程设计论文编写要求 (1)要按照书稿的规格打印誊写课程设计论文。 (2)论文包括目录、正文、小结、参考文献、谢辞、附录等(以上可作微调)。 (3)课程设计论文装订按学校的统一要求完成。 4)课程设计评分标准: (1)学习态度:20 分; (2)回答问题及系统演示:30 分 (3)课程设计报告书论文质量:50 分。 成绩评定实行优秀、良好、中等、及格和不及格五个等级。不及格者需重做。 5)参考文献: (1)罗蕾.《嵌入式实时操作系统及应用开发》北京航空航天大学出版社 (2)Jean https://www.doczj.com/doc/d916188886.html,brosse. 《嵌入式实时操作系统uC/OS-II》北京航空航天大学出版社 (3)王田苗.《嵌入式设计与开发实例》.北京航空航天大学出版社 (4)北京博创科技公司. 《嵌入式系统实验指导书》

卫星导航信号模拟器在海军工程大学的使用案例

卫星导航信号模拟器在海军工程大学的使用案例 关键词:卫星信号模拟器,卫星模拟器,卫星导航信号模拟器 卫星导航信号模拟器在海军工程大学成功使用,卫星导航信号模拟器模拟GPS定位导航授时信号,用于组合导航接收的研发、生成、检定。同时也选配测试评估软件系统,对学术实验里的船舶定位及运动轨迹的面模拟提供了极大的技术后盾。 GPS卫星导航信号模拟器是支持GPS卫星仿真信号,同时支持模拟时间信息及定位运动轨迹的各种信号输出,能满足卫星接收机的测试需求,可替代国外高昂GPS模拟器。 模拟器使用的优势 1、多频化,多频是车载和船用卫星接收机未来发展的必然方向。可以实现多系统多频点卫星信号组合仿真的模拟器将成为必然趋 势。 2、高精度、高动态化,随着卫星接收机性能的提升和软件无线电理论的发展和新型模拟器架构的提出,卫星信号模拟器的授时精 度及定位轨迹精度也会随之提高,以实现高性能接收机的算法和功能验证。 3、真实化、实时化,卫星模拟器提供的仿真信号越接近实际卫星的信号就越能验证接收机的真实工作性能,这就需要其融入仿真 的信号中,未来模拟器将更多地要求任意时空的实时仿真,单一的 录播转发式的卫星信号仿真最终将被淘汰,录播将作为辅助功能存在。

4、小型化、专业化、标准化针对不同市场的需求,更为专业的接收机验证模拟器和小型嵌入式模拟器将分别占据高低端市场。另一方面,国内对于接收机已经实施了部分标准,模拟器作为一种标准的信号源也需要一个行业标准进行规范。多家研究院所现在都在拟定模拟器的规范,以期申报为国家标准。 5、与测试系统融为一体的“硬件在环”仿真未来的模拟器将提供多样的标准化接口,提供与被测系统的交互,构成完整的闭环测试回路,在验证接收机性能的同时验证定位数据处理和使用方案的可行性。 6、软件、硬件和AGHS架构模拟器互补并存软件模拟器价格相对低廉,信号建模和调理方法灵活、简便易行;硬件模拟器具有实时性高、可实施“硬件在环”仿真和接收机系统进行整体测试等优 势;AGHS架构模拟器则各取其半。在未来一段时间里,这种“三足鼎立”之势不会改变。 7、成为接收机检定的标准源我国现行接收机检定手段多依赖于标准检定场的各种基线,然而标准检定场对于场地地质、视野及周边环境有较高要求,建设维护费用高昂,且检定场易受基线向量误差、点位漂移误差、天气等诸多不确定因素影响。卫星模拟器可以为接收机提供时空无约束的仿真信号,在未来将逐步取代检定场基线成为接收机检定的标准工具。 卫星模拟器同时也可以用在和卫星相关的实验中,如导航定位设备,电子围栏设备,共享单车,共享汽车等应用环境。在这些实验场

A题_无线运动传感器节点设计

2020年TI杯大学生电子设计竞赛 无线运动传感器节点设计(A题) 1. 任务 基于TI模拟前端芯片ADS1292和温度传感器LMT70设计制作无线运动传感器节点,节点采用电池供电,要求能稳定采集和记录使用者的心电信息、体表温度和运动信息。 2. 要求 (1)基于ADS1292模拟前端芯片设计心电检测电路,完成使用者的心电信号实时测量,要求:(30分) ①实时采集和记录使用者的心电信号,实现动态心电图的测试与显示; ②分析计算使用者的心率,心率测量相对误差不大于5%。 (2)基于LMT70温度传感器测量使用者体表温度,要求:(20分) ①实时采集和记录使用者的体表温度,温度采样率不低于10次/分钟; ②体表温度测量误差绝对值不大于2℃。 (3)基于加速度计等传感器检测使用者运动信息,实现运动步数和运动距离的统计分析,要求:(20分) ①运动距离记录相对误差不大于10%; ②运动步数记录相对误差不大于5%。 (4)无线运动传感器节点能通过无线上传使用者的基本心电信号、体表温度和运动信息,并在服务器(手机)端实时显示动态心电图、体表温度和运动信息,要求传输时延不大于1秒。(25分) (5)其他。(5分) (6)设计报告。(20分)

3. 说明 (1)作品进行心电信号测试时,可以通过直接输入心电信号模拟器进行校准,在确认作品达到题目要求的测量精度后,再对具体的使用者进行心电信号测试。目前市面上有多种心电信号模拟器产品,各赛区可以自行选择心电信号模拟器作为标准信号,对作品进行测试。 (2)作品设计中进行体表温度测量的温度传感器LMT70,需要使用引线连接并裸露在外,便于测试。在进行测试校验和实测时,可以通过使用标准体温计来测量使用者掌心温度,与本作品测量使用者掌心温度来进行比对。 (3)本作品测量的使用者运动信息,可以通过使用者在标定5米长的直线上来回运动进行测试,统计运动步数和运动距离。 (4)本作品的无线运动传感器节点需要实现无线上网、上传节点传感数据到服务器中,然后在服务器中实现数据管理和数据显示。参赛者可以使用手机或笔记本电脑作为服务器端。如果使用笔记本电脑作为服务器端,则必须将电脑作为本作品的组成部分,在作品封存时一并封存。

全球卫星导航定位技术的原理及应用论文

浅析全球卫星导航定位技术原理及应用 一、前言 导航定位的需求,可以说不是历来就有的,在人类早期物质生产活动中以牧猎为主,日出而作,日落而息。当时人们离不开森林和水草,或是随着水草的兴衰而漂泊不定,根本不需要什么明确的定位。但是,随设社会的发展,到了农业时代,在人们开发农田,兴修水利等相应活动中就逐渐产生了测绘定位的需求,可以说在这时,导航定位就在慢慢酝酿之中。等到了工业时代,人类的活动遍及全球,而一些工程比如航海、航空、洲际交通工程,通信工程,矿产资源勘探工程,地球生态及环境变迁的研究,就需要精确地定位。这些需求促使导航定位技术的发展,并把这项技术带到一个前所未有的发展时期,它的手段也从光学机械过渡到光电子精密机械仪器的时代。社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电子信息时代和航天探索时代。当1957年前苏联发射了人类第一颗人造地球卫星,人类跟踪无线电信号中发现了卫星无线电信号的多普勒频移现象,这预示着一种全新的天空定位技术的可行性,由此,人类进入了卫星定位和导航的时代。 二、简介 1:全球卫星导航定位系统(global navigation and positioning satellite system)采用极轨道星座和无源定位方式为美国提供全球覆盖的导航及定位系统。简称GPS。其轨道高度约为2×104 km,在6条轨道上运行有24颗卫星,每12 h绕地球一周,能保证地球上任何地点的用户都能至少同时看到4颗卫星。它属于非静止卫星定位系统。移动用户利用导航定位接收机来接收4颗(或4颗以上)卫星的导航定位信号,并测量不同信号的到达时间,求出移动用户的三维空间坐标,自动给出经度和纬度显示,从而实现用户的自主定位。也可通过无线传输手段将用户定位信息传送到调度中心,实现对移动用户的调度控制。 GPS向用户广播的导航信号为双频,分别为1 575.42MHz 和1 226.60MHz。采用多种直接序列扩频码的码分多址和伪码测距技术。直接序列扩频码主要有P码和C/A码。P码的定位精度高,三维精度可达5 m之内;C/A码定位精度较低,三维精度在50m内。目前C/A 码是对民用免费开放的。因为它是无源定位系统,移动用户的数量没有限制。 2:全球定位系统(Global Positioning System) 简单地说,这是一个由覆盖全球的24颗卫星组成的卫星系统。这个系统可以保证在任意时刻,地球上任意一点都可以同时观测到4颗卫星,以保证卫星可以采集到该观测点的经纬度和高度,以便实现导航、定位、授时等功能。这项技术可以用来引导飞机、船舶、车辆以及个人,安全、准确地沿着选定的路线,准时到达目的地。 全球定位系统(GPS)是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。 3:卫星导航系统 顾名思义,就是“全球卫星导航系统”。主要采用最新GPS技术在导航通讯领域的最新应用系统。卫星导航全球性大众化民用,刚刚开始,有百种应用类型。卫星导航的生命期至

基于LabVIEW的多通道数据采集系统信号处理

目:基于LabVIEW的多通道数据采集系统 2010 年 03 月 20 日 互联网会议PPT资料大全技术大会产品经理大会网络营销大会交互体验大会 毕业设计开题报告 1.结合毕业论文课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 1. 本课题的研究背景及意义 近年来,以计算机为中心、以网络为核心的网络化测控技术与网络化测控得到越来越多的应用,尤其是在航空航天等国防科技领域。网络化的测控系统大体上由两部分组成:测控终端与传输介质,随着个人计算机的高速发展,测控终端的位置原来越多的被个人计算机所占据。其中,软件系统是计算机系统的核心,设置是整个测控系统的灵魂,应用于测控领域的软件系统成为监控软件。传输介质组成的通信网络主要完成数据的通信与采集,这种数据采集系统是整个测控系统的主体,是完成测控任务的主力。因此,这种“监控软件-数据采集系统”构架的测控系统在很多领域得到了广泛的应用,并形成了一套完整的理论。 2. 本课题国内外研究现状 早期的测控系统采用大型仪表集中对各个重要设备的状态进行监控,通过操作盘进行集中式操作;而计算机系统是以计算机为主体,加上检测装置、执行机构与被控对象共同构成的整体。系统中的计算机实现生产过程的检测、监督和控制功能。由于通信协议的不开放,因此这种测控系统是一个自封闭系统,一般只能完成单一的测控功能,一般通过接口,如RS-232或GPIB接口可与本地计算机或其他仪器设备进行简单互联。随着科学技术的发展,在我国国防、通信、航空、气象、环境监测、制造等领域,要求测控和处理的信息量越来越大、速度越来越快。同时测控对象的空间位置日益分散,测控任务日益复杂,测控系统日益庞大,因此提出了测控现场化、远程化、网络化的要求。传统的单机仪器已远远不能适应大数量、高质量的信息采集要求,产生由计算机控制的测控系统,系统内单元通过各种总线互联,进行信息的传输。 网络化的测控技术兴起于国外,是在计算机网络技术、通信技术高速发展,以及对大容量分布的测控的大量需求背景下发展起来,主要分为以下几个阶段:第一阶段: 起始于20世纪70年代通用仪器总线的出现,GPIB实现了计算机与测控系统的首次 结合,使得测量仪器从独立的手工操作单台仪器开始总线计算机控制的多台仪器的测控系统。此阶段是网络化测控系统的雏形与起始阶段。第二阶段:

GPS信号模拟器卫星状态参数的算法研究(精)

GPS信号模拟器卫星状态参数的算法研 究 GPS信号模拟器卫星状态参数的算法研究 类别:通信网络 1 轨道参数的计算模拟器的一项关键任务就是要连续生成导航电文,包括星历、历书和UTC数据。其中,通过GPS接收机接收或从GPS的官方网站上下载得到的历书和UTC参数满足模拟器的设计要求,但接收或下载得到的星历数据则需经过外推。本节即利用摄动力方程以及拉格朗日行星运行方程推导计算了星历数据中的6个轨道参数(a,e,i,Ω,ω,M),并对其进行仿真验证。 1.1 轨道参数的计算将V在轨道参数上展开,根据拉格朗日行星运行方程对其求导,最终可得时刻历元t对应的6个轨道参数:式中:X(t0)为初始历元t0对应的X值,其中X∈(a,e,i,Ω,ω,M);X(t)为仿真历元t对应的X值;a为椭圆轨道长半轴;e为椭圆轨道偏心率;i为轨道面倾角;Ω为升交点赤径;ω为近地点角距;M为平近点角;p=a(1-e2) 为带,J2扰动项的轨道平均角速度最终,历元时刻t对应的所有星历数据均可通过上述6个轨道参数计算得到。 1. 2 仿真验证图1为从IGS网站下载得到的2005-4-20,0:0:0.00历元时刻的RINEX格式的星历文件,设定用户接收机位置(经度、纬度、高程)为(113°19′00″E、39°00′08″N、100 m),各轨道面相对赤道平面约为55°倾角。通过推导计算图3中所有参数,可以得到不同轨道面的GPS星座分布图、卫星地迹随时间的变化规律和GDOP值,上述3组仿真结果证明外推得到的卫星轨道参数符合模拟器的性能要求。 1. 3 GPS星座分布图图2为历元时刻2005-4-20,0:00:0.00的轨道参数对应的GPS卫星星座分布图。该图表明,6个轨道面以60°间隔均匀分布,每个轨道平面上以90°间隔均匀分布4颗工作卫星。从而外推得到的卫星星座分布符合真实GPS卫星星座分布。图3为外推得到的1号卫星的仰角(实线)和方位角(虚线)在2 4 h内随时间的变化规律。由图可知,1号卫星的运行周期为11 h58″,地面观察者可以在第二天提前4′在地球上同一地点看到同样一颗卫星。这里仅图示了一颗工作卫星仰角和方位角的变化规律,其他工作卫星的仰角和方位角也符合同样的变化规律。如图所示,外推确定的卫星的仰角和方位角随时间的变化规律与真实GPS卫星变化规律相符。图4为外推得到的星座分布的GDOP值。在该仿真过程中,每隔1 800 s计算一组轨道参数,所得GDOP值在1.5和5之间。因此,外推得到的轨道参数对GPS接收机可用。综上,外推得到的6个轨道参数确定的卫星星座分布及变化规律符合真实GPS卫星运行规律,其计算方法满足GPS信号模拟器的设计及性能要求。 2 结论通过对作用在GPS卫星上的地球中心引力以及主要摄动力进行分析,本文给出了GPS卫星6个轨道参数的外推计算方法。最后通过仿真计算,说明了计算得到的卫星轨道参数满足模拟器的设计及性能要求。

全球四大卫星定位系统

全球四大卫星定位系统 一.GPS系统(美国) 二.北斗系统(中国) 三.GLONASS系统(俄罗斯) 四.伽利略卫星导航系统(欧盟) GPS系统(美国) GPS系统是美国从上世纪70年代开始研制,历时20年,耗资近200亿美元,于1994年全面建成的新一代卫星导航与定位系统。GPS利用导航卫星进行测时和测距,具有在海、陆、空全方位实时三维导航与定位能力。它是继阿波罗登月计划、航天飞机后的美国第三大航天工程。如今,GPS已经成为当今世界上最实用,也是应用最广泛的全球精密导航、指挥和调度系统。 GPS系统概述GPS系统由空间部分、地面测控部分和用户设备三部分组成。 (1)空间部分GPS系统的空间部分由空间GPS卫星星座组成。 (2)控制部分控制部分包括地球上所有监测与控制卫星的设施。 (3)用户部分GPS用户部分包括GPS接收机和用户团体。 主要功能: 导航 测量 授时

标准:全球定位系统(GPS)测量规范GB/T 18314-2001 Specifications for global positioning system (GPS) surveys 种类: GPS卫星接收机种类很多,根据型号分为测地型、全站型、定时型、手持型、集成型;根据用途分为车载式、船载式、机载式、星载式、弹载式。 北斗卫星导航系统 中国北斗卫星导航系统(BeiDou Navigation Satellite System, 统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。 段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户 度0.2米/秒,授时精度10纳秒。 系统构成 北斗卫星导航系统空间段由5颗静止轨道卫星和30颗非静止轨 道卫星组成,中国计划2012年左右,“北斗”系统将覆盖亚太地区,

北斗信号模拟器实用方法

北斗信号模拟器实用方法 1.1.1数据库操作方法 本课题对数据库操作主要是使用的ADO Data控件的提供的方法来实现的。 4.2.4.1ADO Data控件的AddNew方法向表中增加一条记录 功能:为可更新的Recordset对象创建新记录。 语法:recordest.Addnew FieldList, Values 参数说明:Fieldlist 可选。新记录中字段的单个或一组字段名称或者序列位置。 Values 可选。新记录中字段的单个或一组值。如果Fields是数组,那么Values 也必须是有相同成员数的数组,否则将发生错误。字段名称的次序必须与每个数组中的字段值得次序想匹配。 4.2.4.2ADO Data控件的RecordSource属性查询记录 功能:RecordSource属性用来返回或者设置语句或返回一个记录集的查询. 语法:obiect.RecordSourse[=value] 参数说明:Object 一个对象表达式,其值为“应用于”列表中的一个对象 Value 一个字符串表达式,他指定了一个记录源 4.2.4.3ADO Data控件的Delete方法删除一条记录 功能:删除当前记录或者记录组 语法:recordset.Delete AffectRecords 参数说明: AffectRecords AffectEnum值,确定Delete方法所影响的记录数目。 4.2.4.4ADO Data控件的Updata方法修改记录。 功能:保存对Recordset对象的当前记录所做的所有更改. 语法:recordset.Update Fields, Value 参数说明:Fields 可选。变体型,代表单个名称;或者变体型数组,代表需要修改的字段(单个或者多个)名称或序号位置。 Values 可选。变体型,代表单个值;或者变体型数组,代表新记录中字段(单个或多个)值。 修改记录应该分为4步:

全球四大卫星导航系统对比

简单对比全球四大卫星导航系统 2011年12月27日,对于中国的高精度测绘定位领域来说是一个不平凡的日子,中国北斗卫星导航系统(CNSS)正式向中国及周边地区提供连续的导航定位和授时服务,这是世界上第三个投入运行的卫星导航系统。 在此之前,美国的全球定位系统(GPS)和俄罗斯的格洛纳斯卫星导航系统(GLONASS)早在上世纪90年代就已经建成并投入运行。与此同时,欧盟也在打造自己的卫星导航系统——“伽利略”计划。 那么,这四大卫星导航系统之间到底有着怎么样的区别和联系呢?下面,就让我们来逐个分析一下,通过四大卫星导航系统的优劣分析,给大家一个较为明显的概念。 四大卫星导航系统各有优势,详情如下: GPS:成熟 GPS,作为大家最为熟悉的定位导航系统,她最大的特点就是技术方面最为成熟。 美国“全球定位系统”(GPS),是目前世界上应用最广泛、也是技术最成熟的导航定位系统。GPS空间部分目前共有30颗、4种型号的导航卫星。1994年3月,由24颗卫

星组成的导航“星座”部署完毕,标志着GPS正式建成。 中国北斗:互动开放 北斗卫星导航系统是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统。北斗卫星导航系统由空间段、地面段和用户段三部分组成。目前市面上定位导航仪器公司如国外的天宝、拓普康,国内的华测导航等都已支持北斗卫星导航定位系统。 欧盟伽利略:精准 伽利略定位系统是欧盟一个正在建造中的卫星定位系统,有“欧洲版GPS”之称。伽利略定位系统总共发射30颗卫星,其中27颗卫星为工作卫星,3颗为候补卫星。该系统除了30颗中高度圆轨道卫星外,还有2个地面控制中心。 俄罗斯格洛纳斯:抗干扰能力强 早在美苏冷战时期,美国和苏联就各项技术特别是空间技术方面争锋相对,在美国GPS技术遍布全国的同时,苏联也没闲着,一直忙于研发自己的全球导航定位系统。俄罗斯的这套格洛纳斯系统便是其不断努力的结果。格洛纳斯由24颗卫星组成,也是由军方负责研制和控制的军民两用导航定

多通道高精度模数转换器AD7718 原理与应用

多通道高精度模数转换器AD7718原理与应用 解放军信息工程大学信息工程学院六系(450002)陈铖武安河 摘要:本文从外部引脚和内部可编程寄存器两方面讲解了多通道高精度模数转换器AD7718,并通过一个24bits分辨率的数据采集电路介绍了AD7718的应用。 关键词:模数转换器 AD7718 数据采集 The Principle And Application Of 10-Channel 24-Bit Resolution Σ-Δ ADCs AD7718 Institute of Information Engineering, Information Engineering University of PLA, Zhengzhou 450002,China Chen Cheng, Wu AnHe Abstract: The AD7718 is a 10-channel 24-bit resolution Σ-ΔAnalog To Digital Converter. This paper presents firstly its pin and consist, and then designs a data acquisition scheme. Key Words: ADC, AD7718, Data Acquisition 1 概述 在低频测量应用中,AD7718是一个单电源供电(+3V或+5V)的完整前端。其内部结构如图1所示。从图中可以看出片内有一个带PGA(Programmable Gain Amplifier,可编程增益放大器)的Σ-Δ型ADC(Analog to Digital Converter,模数转换器)。ADC的分辨率为24 bits ,PGA的范围为20~27,8档可编程。所以,AD7718能直接转换范围在20mV~2.56V之间的输入信号而无须信号调理电路。AD7718片内还有一个多路开关MUX,可以将模拟输入配置成4或5通道差分输入,也可以配置成8或10通道伪差分输入。AD7718需要外接32KHZ晶体,片内PLL通过它产生所需要的工作时钟。 图1 AD7718的内部功能框图

高速多通道同步采样ADC MAX1312及其应用

高速多通道同步采样ADC MAX1312及其应用 【摘要】阐述了MAX1312的特性和工作原理,介绍了MAX1312与通用8位微处理器AT89C52的硬件接口设计以及软件编程方法,最后简述了该模数转换器在多相电机控制中的应用。 【关键词】模数转换器;多通道;同步采样;MAX1312 Abstract:The principle,features and application of multi-channel synchronized sample ADC MAX1312 are introduced,including its hardware interface design and software programming method between MAX1312 and Micro-processor.AT89C52.At last,it describes the application of MAX1312 in controlling the polyphase electric engine. Keywords:A/D converter;multi-channel;synchronized sample;MAX1312 1.引言 在电子测量技术中,必须把模拟信号转换为数字信号,才能够用计算机系统进行处理,模/数转换的速度和精度一直是测量的关键。但是高速和高精确度的转换器仍然难以满足某些特殊场合的要求,例如:在多相电机控制、多相电源监控等场合,要求对多路数据进行精确同步的采集,一般的单通道A/D和多通道轮流采集A/D都不满足这种场合的要求。MAX1312是美国美信公司(MAXIM)新推出的一种高速同步采样模数转换器,它具有12位的精度,8路模拟信号输入,单电源+5V供电,完成8个通道的转换时间仅需要1.96us,对外提供了一个12位20MHZ并行数字接口,可以很方便与各种微处理器相连接,使用十分方便[1]。 2.MAX1312简介 MAX1312是美国美信公司(MAXIM)新推出的多通道同步采样、并行输出模数转换器。采用TQFP48封装,引脚形式如图1所示。 其中: CH0-CH7为八路模拟信号的输入端; D0-D7为八位双向数据总线,用来写入控制字或读出低8位转换结果; D8-D11为高四位数据输出口,当RD=1或CS=1时为高阻状态; CS为片选引脚低电平有效,低电平将激活数字接口,保持高电平时,数字总线为高阻状态;

多通道动态信号采集系统技术参数

多通道动态信号采集系统技术参数 一、设备名称:多通道动态信号采集系统 二、技术参数 *2. 1、通道数:≥32通道;要求系统具备无线采集功能,能远程控制系统的采集开始、结束以及设置参数等; 2. 2、采样频率(所有传感器同步采集):≥100KS/S; *2.3、采集模块:单个采集模块16通道,±75V模拟量输入,16位A/D,通过前端信号调理模块可同时支持应变,ICP类型传感器; 2.4、最高测量精度:0.1%F.S; *2. 5、信号带宽:≥25KHz; 2.6、主机技术要求:供电:10…55VDC,标准内存:256MB,1G内部存储卡,通信接口:TCP/IP,串口,带10个数字I/O和8个脉冲计数输入 *2.7、系统工作温度范围:-20°c~ +65°c * 2.8、系统振动冲击指标:振动20g,冲击60g 2.9、桥盒模块尺寸:不大于32*77*20mm(W*D*H); 2.10、桥盒工作温度范围:-20°c~ +65°c 2.11、通讯接口:以太网; *2. 12、加速度传感器:可充电锂电池,嵌入式数据记录器最大记录不小于800万条数据事件,IP67防护等级,量程8g,三轴向。 (打*项为必须满足项) 三、采集及分析软件。 3.1 带有可扩展的传感器数据库,内置的TEDS 编辑器,可以读写TEDS 数据。软件拥有图形界面,在线计算无需编程,测试数据可以以多种格式保存,例如BIN, RPCIII, MAT, ASCII 或XLS ,并可以再任何时间分析. 3.2 可以让用户采用.NET API (C++, C#, https://www.doczj.com/doc/d916188886.html,) 使LabVIEWTM等软件。 3.3 web 服务器集成到每个模块中,测试数据可视化,通过浏览器进行浏览,无需安装其他软件. 四、售后服务及其他。 4.1 最好在武汉本地有技术支持中心;

利用模拟器如何模拟氧传感器信号

利用模拟器如何模拟氧传感器信号 这几年随着汽车设计和制造的整体发展,闭环控制已经成为一种大势所趋,尤其是电喷系统对闭环控制尤为常见,即通过安装氧传感器和三元催化器,实现电脑对于供油系统的全过程调整。这样可以大大的提高环保水平,但故障也就相对多起来。 氧传感器的损坏究竟会对汽车的运行产生多大的影响,很难有一个很好的解释,因为不同汽车对于氧传感器的依赖程度不同。但由于它的功能及工作原理比较独特,所以先掌握氧传感器的性质,对维修人员诊断电喷发动机的故障是有重要意义的。 氧传感器其实就是一个低电压、低电流的小发电机,当它的内外表面所接触的氧分子浓度不同时,便形成一个电位差,它的外表面伸入排气管中直接与发动机排气相接触,它的内表面与大气接触,大气中氧分子的浓度是不变的。而排气中氧分子的浓度是随混合气浓度的变化而变化的。当混合气的实际空燃比高于理论空燃比14.71,即稀混合气时,废气中剩余的氧分子浓度相对较高,这时氧传感器内外氧分子浓度相差较小,只能输出大约0.1V的电压;而当混合气的实际空燃比小于理论空燃比,即浓混合气时,废气中剩余的氧分子非常少,这时氧传感器内外表面氧分子浓度相差较大,可以输出大约1.0V左右的电压。这样,电脑就可以通过氧传感器输出的信号了解当前混合气浓度相对于理论值的微小偏差,于是根据这个信号相应调整喷油器的喷油脉宽,以弥补这个微小偏差,从而提高了控制的精度。 电喷轿车所采用的氧传感器大致分为单线、三线及四线等几种形式,它们的区别只在于三线或四线的氧传感器中多了一个加热装置,因为氧传感器只有在400℃以上才工作。在工作状态下,氧传感器反馈电压可以使用模拟器的直流电压档测量信号线对负极的电压。信号线绝对不能搭铁,否则将不可恢复性地损坏氧传感器。此时起动发动机并便水温达到 至少80℃,使发动机多次达到2500r/min后使发动机转速保持2500r/min,并观察模拟器显示的电压,电压值应在此0.1~0.9V之间迅速跳动,在1Os之内电压应在0.1~0.3V之间变化至少6~8次,若电压变化比较缓慢,不一定就是氧传感器或反馈控制系统有故障,可能是氧传感器表面被积炭覆盖而灵敏性降低。这时可使发动机高速运转几分钟以清除积炭,然后再观察氧传感器信号电压是否符合规定,如仍不符合规定,则进行下一步检查。 下面介绍一个利用模拟器排除故障的实例。 故障现象一辆由广东三星组装的美国克莱斯勒道奇捷龙汽车(装备3.3L发动机),排放量超标,在怠速工况下 CO达到5.1%以上,HC达到300×10-6左右。通过这组数字可以看出:此车的混合气偏浓,在汽车维修人员对该车发动机的油路和点火电路做了常规维护后,发动机的污染物排放量依然超标。当用克莱斯勒专用故障检测仪DRBⅢ对电控燃油喷射系统进行检测时,发现故障代码为21、51和52号,其含义均为氧传感器信号高于或低于正常值。通过读取数据流,发现氧传感器的数值始终是2.5V不变化。然后改变各种工况,发现氧传感器的电压信号在发动机的各种工况下都相同。因此怀疑氧传感器已失效。在检查氧传感器时,发现在排气管上根本未装氧传感器,而安装氧传感器的位置被一个螺丝堵住。也就是说,该汽车发动机的电子控制系统已成为无氧传感器信号的开环控制系统,这就是发动机污染物排放量超标的原因。而且该车也没有安装三元催化器。 于是,使用模拟器的模拟氧传感器数值的功能。 (1)将模拟器的绿色氧传感器专用线和黑色连线连接在车上氧传感器的输出回路上; (2)将中间功能选择开关置于:KnocK/Oxy档位; (3)将右侧功能选择开关置于:Volts/Oxy位置; (4)使发动机起动运转,然后打开SST Ⅲ,此时SST Ⅲ将产生一个0.15V的恒定的连

全球四大卫星导航系统

全球四大卫星导航系统 美国GPS系统 目前世界使用最多的全球卫星导航定位系统是美国的GPS系统。它是世界上第一个成熟、可供全民使用的全球卫星定位导航系统。该系统由28颗中高轨道卫星组成,其中4颗为备用星,均匀分布在距离地面约20000千米的6个倾斜轨道上。 俄罗斯格洛纳斯系统 格洛纳斯是前苏联国防部于20世纪80年代初开始建设的全球卫星导航系统,从某种意义上来说是冷战的产物。该系统耗资30多亿美元,于1995年投入使用,现在由俄罗斯联邦航天局管理。格洛纳斯是继GPS之后第2个军民两用的全球卫星导航系统。 欧洲伽利略系统 伽利略系统是欧空局与欧盟在1999年合作启动的,该系统民用信号精度最高可达1米。 计划中的伽利略系统由30颗卫星组成。2005年12月28日,首颗实验卫星Glove-A发射成功,第2颗实验卫星Glove-B在2007年4月27日由俄罗斯联盟号运载火箭于哈萨克斯坦的拜科努尔基地发射升空。 中国北斗系统 北斗全球卫星定位导航系统由5颗静止轨道卫星和30颗非静止轨道卫星组成,提供开放服务和授权服务两种模式。根据系统建设总体规划,2020年左右,建成覆盖全球的北斗卫星导航系统。 2011年4月10日,我国成功发射第八颗北斗导航卫星,标志着北斗区域卫星导航系统的基本系统建设完成,我国自主卫星导航系统建设进入新的发展阶段。从当初的“最高机密”,到今日向民用市场推广,北斗计划已经走过了20多年。曾经的主力科学家已经成了白发苍苍的院士,北斗系统的理论创始人也已经故去。4月10日4时47分,我国在西昌卫星发射中心用“长征三号甲”运载火箭,成功将第八颗北斗导航卫星送入太空预定转移轨道。这是一颗倾斜地球同步轨道卫星。这颗卫星将与2010年发射的5颗导航卫星共同组成“3+3”基本系统(即3颗GEO卫星加上3颗IGSO卫星),经一段时间在轨验证和系统联调后,将具备向我国大部分地区提供初始服务条件。今明两年,我国还将陆续发射多颗组网导航卫星,完成北斗区域卫星导航系统建设,满足测绘、渔业、交通运输、气象、电信、水利等行业,以及大众用户的应用需求。 中国卫星导航系统管理办公室负责人冉承其介绍,目前,北斗卫星导航系统正按照“三步走”发展战略稳步推进第一步,2003年建成北斗导航试验系统。系统由三颗地球同步静止轨道卫星和地面系统组成,可为我国及周边地区的中、低动态用户提供定位、短报文通信和授时服务,已应用于水利、渔业、交通、救援等国民经济领域,经济和社会效益显著。第二步,2012年左右,将建成由10余颗卫星组成的北斗区域卫星导航系统,具备覆盖亚太地区的服务能力,采用无源定位体制,具有定位、导航、授时以及短报文通信功能。第三步,2020年左右,建成由30余颗卫星组成,覆盖全球的北斗全球卫星导航系统,系统性能达到同期国际先进水平。 北斗卫星导航系统除了能够提供高精度、高可靠的定位、导航和授时服务,还保留了北斗卫星导航试验系统的短报文通信、差分服务和完好性服务特色,是我国经济社会发展不可或缺的重大空间信息基础设施。

相关主题
文本预览
相关文档 最新文档