当前位置:文档之家› GPS中频信号模拟及验证

GPS中频信号模拟及验证

GPS中频信号模拟及验证
GPS中频信号模拟及验证

现代数字信号处理仿真作业

现代数字信号处理仿真作业 1.仿真题3.17 仿真结果及图形: 图 1 基于FFT的自相关函数计算

图 3 周期图法和BT 法估计信号的功率谱 图 2 基于式3.1.2的自相关函数的计算

图 4 利用LD迭代对16阶AR模型的功率谱估计16阶AR模型的系数为: a1=-0.402637623107952-0.919787323662670i; a2=-0.013530139693503+0.024214641171318i; a3=-0.074241889634714-0.088834852915013i; a4=0.027881022353997-0.040734794506749i; a5=0.042128517350786+0.068932699075038i; a6=-0.0042799971761507 + 0.028686095385146i; a7=-0.048427890183189 - 0.019713457742372i; a8=0.0028768633718672 - 0.047990801912420i a9=0.023971346213842+ 0.046436389191530i; a10=0.026025963987732 + 0.046882756497113i; a11= -0.033929397784767 - 0.0053437929619510i; a12=0.0082735406293574 - 0.016133618316269i; a13=0.031893903622978 - 0.013709547028453i ; a14=0.0099274520678052 + 0.022233240051564i; a15=-0.0064643069578642 + 0.014130696335881i; a16=-0.061704614407581- 0.077423818476583i. 仿真程序(3_17): clear all clc %% 产生噪声序列 N=32; %基于FFT的样本长度

GPS、GSG、北斗及卫星信号模拟器

GPS系统概述 GPS 是英文Global Positioning System(全球定位系统)的简称,而其中文简称为“球位系”。GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。 一、GPS构成 1.空间部分 GPS的空间部分是由24颗工作卫星组成,它位于距地表20—200km的上空,均匀分布在6 个轨道面上(每个轨道面4 颗) ,轨道倾角为55°。此外,还有3 颗有源备份卫星在轨运行。卫星的分布使得在全球任何地方、任何时间都可观测到4 颗以上的卫星,并能在卫星中预存的导航信息。GPS的卫星因为大气摩擦等问题,随着时间的推移,导航精度会逐渐降低。 2. 地面控制系统 地面控制系统由监测站(Monitor Station)、主控制站(Master Monitor Station)、地面天线(Ground Antenna)所组成,主控制站位于美国科罗拉多州春田市(Colorado Spring)。地面控制站负责收集由卫星传回之讯息,并计算卫星星历、相对距离,大气校正等数据。 3.用户设备部分 用户设备部分即GPS 信号接收机。其主要功能是能够捕获到按一定卫星截止角所选择的待测卫星,并跟踪这些卫星的运行。当接收机捕获到跟踪的卫星信号后,就可测量出接收天线至卫星的伪距离和距离的变化率,解调出卫星轨道参数等数据。根据这些数据,接收机中的微处理计算机就可按定位解算方法进行定位计算,计算出用户所在地理位置的经纬度、高度、速度、时间等信息。接收机硬件和机内软件以及GPS 数据的后处理软件包构成完整的GPS 用户设备。GPS 接收机的结构分为天线单元和接收单元两部分。接收机一般采用机内和机外两种直流电源。设置机内电源的目的在于更换外电源时不中断连续观测。在用机外电源时机内电池自动充电。关机后,机内电池为RAM存储器供电,以防止数据丢失。目前各种类型的接受机体积越来越小,重量越来越轻,便于野外观测使用。其次则为使用者接收器,现有单频与双频两种,但由于价格因素,一般使用者所购买的多为单频接收器。 二、GPS原理 GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。可见GPS导航系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收

仿真器接氧传感器及调试方法

天然气仿真器与氧传感器连接及其调试方法 前面文章说过天然气仿真器必须接氧传感器,并测试是不是正常仿真的。很多改装厂这个过程不规范,不接线或者仿真设置不正确,甚至给出“天然气烧气故障灯亮是正常的”这种错误的解释。 接线方法是断开氧传感器的信号线,用仿真器的白色线接传感器,黄色线接行车电脑输入。 接线完毕后一定要在烧油和烧气两种状态下分别测量黄色线和搭铁之间的直流电压为10S在0-1v波动8次左右,以此判断仿真器直通和烧气仿真信号是不是正常的。如果不是这样,可按照下面方法调试DIP开关和电 位器。 一、仿真器电路板上有DIP开关,如图(图是两个开关的):, DIP开关不论有几个,(2个或3个,不会有4个的)必定有一种状态是这样的:烧油时氧传感器信号直接通过仿真器,仿真器不起作用,这个可在烧油状态时测量白色线和黄色线上的电压同时波动得知;烧气时氧传感器信号被截止,由仿真器输出一个信号(黄线)给行车电脑ECU。 相关设置如下并把它写在纸上备用: 2个开关的有如下几种设置: ON ON ON OFF OFF ON OFF OFF 3个开关的有如下几种设置: ON ON ON ON ON Off ON OFF ON ON OFF OFF OFF ON ON OFF ON OFF OFF OFF ON OFF OFF OFF 二、动手测量 第1步:用油启动

第2步:先测量白色线对电瓶负极电压,观察一定时间(如10S)内电压及指针摆动次数和幅度,记在纸上, 在此称“油态电压” 第3步:设置(按照写在纸上的顺序)DIP开关,测量黄色线对电瓶负极电压及摆动情况如和“油态电压”相同请在此DIP状态上打勾,并完成所有设置的测量,这些设置在此简称“直通设置” 第4步:切换到烧气 第5步:测量这几种“直通设置”时黄色线对电瓶负极的电压及摆动情况,必有一种设置电压摆动幅度与“油态电压”相近,这时调整电位器,使其电压波动次数和幅度和“油态电压”相同。 四、完成设置 记下刚才筛选出的DIP开关状态并设置,关闭发动机,拨出钥匙,取下电瓶负极,3分钟后,安装电瓶负极,用钥匙转至电源档,自检,30秒后,关闭,拨出钥匙,30秒后再次插入、自检,启动,先油然后切换到气,分别测量黄色线对电瓶负极电压及摆动情况,(一般10S内电压在0-1v波动7-8次)。 如有必要再调整,这个过程一定要有耐心。

数字信号处理实验七小信号放大器特性分析与仿真

实验七小信号放大器特性分析与仿真1,实验目的 使用matlab分析各种小信号放大器的结构、参数及特性,加深对各种小信号放大器的理解和认识 二、实验原理 小信号放大器是电子线路的重要组成部分之一,由于他工作在晶体管的线性区域之内,因此又称为线性放大器。使用MATLAB可仿真小信号放大器的各种参数,如电压增益,输入阻抗,输出阻抗,频率响应等等。 1、晶体三极管的等效电路 常见的晶体三极管等效电路有:低频h参数,共基极T型高频等效电路,混合π型高频等效电路,他们通常用于分析各种小信号晶体管放大器的特性。 共发射极h参数的等效电路如图(a)所示,它适用于对低频放大器进行分析。另外,还存在着一种简化的h参数等效电路,其中忽略晶体管内部的电压反馈系数。共发射极的h参数与各电压电流的关系为。 共基极T型高频等效电路如图(b)所示,适用于共基极高频放大电路进行分析,工作频率可达100MHZ以上。 混合π型高频等效电路如图(c)所示,适用于分析共发射极的高频发达电路。在较宽的频率范围之内,等效电路的参数和工作频率无关。另外还存在着简化的混合π型高频等效电路,其中和处于开路状态。 2、共发射极放大电路 共发射极放大电路是一种使用的最为广泛的放大电路形式,其特点是电压增益和电流增益都比较高。自定义M函数amplifl..m用来仿真共发射极放大电路,使用它可以计算该放大器的的智力参数和交流参数。该

放大器的电路如下图。 MATLAB的特点之一就是适合进行线性代数运算,因此午在分析直流参数或分析交流参数时,都可以采用基尔霍夫定理,然后采用矩阵求逆的方式求出电压和电流的具体数值,进一步便可得到该放大器的各种参数。在分析共发射极放大的交流参数时,采用的晶体管模型是低频H 参数等效电路。一般来说,每个晶体管都可以用三个节点来表示,他们分别是基极集电极和发射极。在计算交流参数过程中,忽略各电容器的容抗。 3、直接耦合放大器 在两个或三个晶体管之间进行直接耦合的放大器称为直接耦合放大器,他多用作音响系统中的前置放大器,录音机内的磁头放大器。直接耦合放大器的主要特点是工作点稳定,电压增益高,下图是一个典型的直接耦合放大电路,它有三个晶体管构成,第一级为低噪声放大,第二级为高增益放大,第三极为射随器,整个放大器的电压增益由负反馈电路确定。由于采用了串联电压负反馈,同时又使用了射随器,因此该电路具有较高的输入阻抗和较低的输出阻抗。 4、差分放大器

卫星导航仿真系统的研究与实现

ⅢⅢ川¨卅‘?t¨+Ⅲ…**?¨蝌.”“;一一悱*一坤?,”m诤.¨?t第四届全国虚舣现实与可视化学未台议论文集固 星座中卫星的数目和各卫星的ID、类型、工作状态、轨道根数及对应的历元时间。 空间3D显示部分采用SGI公司开发的通用图形库OpenGL实现,OpenGL不涉及具体的窗口函数,具有很好的平台移植性,各种操作的效率很高,显示流畅。 系统的实现结果如图2~5所示。 图2导航仿真服务器图3GPS.COn星座文件的空间显示结果图5.1为导航仿真服务器,图5.2和5.3是分别接收导航仿真服务器生成的卫星星历,然后进行可视化显示的结果。其中图5.1是对GPS卫星进行仿真的结果,图5.2是利用星座设计功能设计的一个新的星座,其中:红色轨道上的卫星为极轨卫星,绿色轨道上的卫星为中等圆形轨道,蓝色轨道上的卫星为地球同步轨道卫星。图5.4为用户定位仿真子系统的运行结果,图中5.4种采用的是地图视图。它是在地图上显示定位的结果;另外还可以显示统计视图,统计视图主要显示对定位的误差进行分析结果。在该部分,可以很方便地对是否考虑各种误差改正进行控制。除此之外,还可以对用于定位的卫星高度截止角进行设置,一般来说,卫星的高度截止交设为5。,对于GPS系统来说,总可以接受到4~9颗卫星的信号。 图4ScndNavCOn星座文件的空间显示结果圈5用户定位仿真予系统的运行结果 6结论 卫星导航系统的仿真是一件非常有意义的工作,它不仅可以为新的卫星导航系统的建立提供辅助设计,同时可以为在卫星导航系统建成以后的研究提供多方面的支持。但同时要看到,卫星导航系统的仿真是一个极其复杂的课题,主要是建模的工作量大、计算复杂,同时实现的工作量也很大,在后续的工作中必须进一步地研究和探讨。 参考文献 向开恒,肖业伦卫星星座的系统仿真研究.北京航空航天大学学报,1999t25(6) 刘俊,张思东张宏科GPS系统建模与仿真技术研究.系统仿真学报,2001t13(3) 袁建平,罗建军,岳晓奎,方群卫星导航原理与应用中国宇航出版社.2003 郗晓宁,王威等近地航天器轨道基础国防科技大学出版社 周忠谟,易杰军编GPS卫星测量原理与应用测绘出版社 葛茂荣,过静君.葛胜杰GLONASS卫星坐标的计算方法测绘通报t999(2) 王海丽,陈磊,任萱.卫星星座全球连续覆盖的仿真分析与优化中国空间科学技术t2001,(I)

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

卫星导航信号模拟器在海军工程大学的使用案例

卫星导航信号模拟器在海军工程大学的使用案例 关键词:卫星信号模拟器,卫星模拟器,卫星导航信号模拟器 卫星导航信号模拟器在海军工程大学成功使用,卫星导航信号模拟器模拟GPS定位导航授时信号,用于组合导航接收的研发、生成、检定。同时也选配测试评估软件系统,对学术实验里的船舶定位及运动轨迹的面模拟提供了极大的技术后盾。 GPS卫星导航信号模拟器是支持GPS卫星仿真信号,同时支持模拟时间信息及定位运动轨迹的各种信号输出,能满足卫星接收机的测试需求,可替代国外高昂GPS模拟器。 模拟器使用的优势 1、多频化,多频是车载和船用卫星接收机未来发展的必然方向。可以实现多系统多频点卫星信号组合仿真的模拟器将成为必然趋 势。 2、高精度、高动态化,随着卫星接收机性能的提升和软件无线电理论的发展和新型模拟器架构的提出,卫星信号模拟器的授时精 度及定位轨迹精度也会随之提高,以实现高性能接收机的算法和功能验证。 3、真实化、实时化,卫星模拟器提供的仿真信号越接近实际卫星的信号就越能验证接收机的真实工作性能,这就需要其融入仿真 的信号中,未来模拟器将更多地要求任意时空的实时仿真,单一的 录播转发式的卫星信号仿真最终将被淘汰,录播将作为辅助功能存在。

4、小型化、专业化、标准化针对不同市场的需求,更为专业的接收机验证模拟器和小型嵌入式模拟器将分别占据高低端市场。另一方面,国内对于接收机已经实施了部分标准,模拟器作为一种标准的信号源也需要一个行业标准进行规范。多家研究院所现在都在拟定模拟器的规范,以期申报为国家标准。 5、与测试系统融为一体的“硬件在环”仿真未来的模拟器将提供多样的标准化接口,提供与被测系统的交互,构成完整的闭环测试回路,在验证接收机性能的同时验证定位数据处理和使用方案的可行性。 6、软件、硬件和AGHS架构模拟器互补并存软件模拟器价格相对低廉,信号建模和调理方法灵活、简便易行;硬件模拟器具有实时性高、可实施“硬件在环”仿真和接收机系统进行整体测试等优 势;AGHS架构模拟器则各取其半。在未来一段时间里,这种“三足鼎立”之势不会改变。 7、成为接收机检定的标准源我国现行接收机检定手段多依赖于标准检定场的各种基线,然而标准检定场对于场地地质、视野及周边环境有较高要求,建设维护费用高昂,且检定场易受基线向量误差、点位漂移误差、天气等诸多不确定因素影响。卫星模拟器可以为接收机提供时空无约束的仿真信号,在未来将逐步取代检定场基线成为接收机检定的标准工具。 卫星模拟器同时也可以用在和卫星相关的实验中,如导航定位设备,电子围栏设备,共享单车,共享汽车等应用环境。在这些实验场

A题_无线运动传感器节点设计

2020年TI杯大学生电子设计竞赛 无线运动传感器节点设计(A题) 1. 任务 基于TI模拟前端芯片ADS1292和温度传感器LMT70设计制作无线运动传感器节点,节点采用电池供电,要求能稳定采集和记录使用者的心电信息、体表温度和运动信息。 2. 要求 (1)基于ADS1292模拟前端芯片设计心电检测电路,完成使用者的心电信号实时测量,要求:(30分) ①实时采集和记录使用者的心电信号,实现动态心电图的测试与显示; ②分析计算使用者的心率,心率测量相对误差不大于5%。 (2)基于LMT70温度传感器测量使用者体表温度,要求:(20分) ①实时采集和记录使用者的体表温度,温度采样率不低于10次/分钟; ②体表温度测量误差绝对值不大于2℃。 (3)基于加速度计等传感器检测使用者运动信息,实现运动步数和运动距离的统计分析,要求:(20分) ①运动距离记录相对误差不大于10%; ②运动步数记录相对误差不大于5%。 (4)无线运动传感器节点能通过无线上传使用者的基本心电信号、体表温度和运动信息,并在服务器(手机)端实时显示动态心电图、体表温度和运动信息,要求传输时延不大于1秒。(25分) (5)其他。(5分) (6)设计报告。(20分)

3. 说明 (1)作品进行心电信号测试时,可以通过直接输入心电信号模拟器进行校准,在确认作品达到题目要求的测量精度后,再对具体的使用者进行心电信号测试。目前市面上有多种心电信号模拟器产品,各赛区可以自行选择心电信号模拟器作为标准信号,对作品进行测试。 (2)作品设计中进行体表温度测量的温度传感器LMT70,需要使用引线连接并裸露在外,便于测试。在进行测试校验和实测时,可以通过使用标准体温计来测量使用者掌心温度,与本作品测量使用者掌心温度来进行比对。 (3)本作品测量的使用者运动信息,可以通过使用者在标定5米长的直线上来回运动进行测试,统计运动步数和运动距离。 (4)本作品的无线运动传感器节点需要实现无线上网、上传节点传感数据到服务器中,然后在服务器中实现数据管理和数据显示。参赛者可以使用手机或笔记本电脑作为服务器端。如果使用笔记本电脑作为服务器端,则必须将电脑作为本作品的组成部分,在作品封存时一并封存。

数字信号处理实验

实验六: 用FFT对信号作频谱分析 一、实验目的 1.了解双音多频信号的产生、检测、包括对双音多频信号进行DFT时的参数选择等。 2.初步了解数字信号处理在是集中的使用方法和重要性。 3.掌握matlab的开发环境。 二、实验原理与方法 1、引言 双音多频(Dual Tone Multi Frequency, DTMF)信号是音频电话中的拨号信号,由美国AT&T贝尔公司实验室研制,并用于电话网络中。这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。这些系统中用户可以用电话发送DTMF信号选择语音菜单进行操作。DTMF信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A变换器;在接收端用A/D变换器将其转换成数字信号,并进行数字信号处理与识别。为了系统的检测速度并降低成本,还开发一种特殊的DFT算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。下面先介绍电话中的DTMF信号的组成。在电话中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz和941Hz;高频带也有四个频率:1209Hz,1336Hz,1477Hz和1633Hz.。每一个数字均由高、低频带中各一个频率构成,例如1用697Hz和1209Hz两个频率,信号用表示。这样8个频率形成16种不同的双频信号。具体号码以及符号对应的频率如表10.6.1所示。表中最后一列在电话中暂时未用。DTMF信号在电话中有两种作用,一个是用拨号信号去控制交换机接通被叫的用户电话机,另一个作用是控制电话机的各种动作,如播

基于MATLAB的GPS信号的仿真

摘要 扩频通信是近几年来迅速发展起来的一种通信技术。在早期研究这种技术的主要目的是为提高军事通信的保密和抗干扰性能,因此这种技术的开发和应用一直是处于保密状态。扩频技术在军事应用上的最成功范例可以以美国和俄国的全球定位系统(GPS和GLONASS)为代表;在民用上GPS和GLONASS也都得到了广泛的应用,这些系统的基础就是扩频技术。 全球定位系统(GPS)用于对全球的民用及军用飞机、舰船、人员、车辆等提供实时导航定位服务。GPS系统采用典型的CDMA体制,这种扩频调制信号具有低截获概率特性。该系统主要利用直接序列扩频调制技术,采用的伪码有C/A码和P(Y)码两种。 本文讲述的是直接序列扩频通信技术在全球定位系统(GPS)中的应用。主要介绍扩频通信中的伪码仿真,简要论述M序列和伪随机噪声码(P码和C/A码)及其产生,并使用MATLAB7.0仿真M序列、P码和C/A码的编码过程和仿真结果,介绍直扩频技术伪码的相关知识,重点介绍P码。 关键字:全球定位系统;直接扩频通信;伪码仿真

Abstract Spread spectrum communication is a communications technology developed rapidly in recent years. In early studies the main purpose of this technology is to improve the military communications confidential and anti-jamming performance, therefore the development and application of this technology is always in secret state. Spread spectrum technology in the most successful military application examples are the United States and Russia could the global positioning system (GPS and GLONASS) for representative; In civil GPS and GLONASS also have been widely used,which foundation of system is the spread spectrum technology. Global positioning system (GPS) is used to provide real-time navigation and positioning services for global civil and military aircraft, ships, personnel, vehicles and so on. GPS system adopts the typical CDMA system, which kind of spread spectrummodulation signals have low intercept probability characteristic. This system mainly used the direct sequence spread spectrum modulation technology, using the PRN code including C/A code, P codes and Y codes. This article tells the direct sequence spread spectrum communication technology applied in global positioning system (GPS) .The article mainly introduces the pn code spread spectrum communication simulation, briefly discussing M sequence and pseudo random noise code (P yards and C/A yards) and its produce and use MATLAB7.0 simulate M series, P yards and C/A yards of encoding process and the simulation results, introducing pn code straight spread-spectrum technology knowledge, especially P yards. Key: GPS; DS-SS;Pn code simulation

数字信号处理实验作业

实验5 抽样定理 一、实验目的: 1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。 2、进一步加深对时域、频域抽样定理的基本原理的理解。 3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和插公式的编程方法。 二、实验原理: 1、时域抽样与信号的重建 (1)对连续信号进行采样 例5-1 已知一个连续时间信号sin sin(),1Hz 3 ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。 程序清单如下: %分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2; f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 程序运行结果如图5-1所示:

原连续信号和抽样信号 图5-1 (2)连续信号和抽样信号的频谱 由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。 例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。 程序清单如下: dt=0.1;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm; t=-2:dt:2;N=length(t); f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2;N=length(n); f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); wm=2*pi*fs;k=0:N-1; w=k*wm/N;F=f*exp(-j*n'*w)*Ts; subplot(4,1,i+1);plot(w/(2*pi),abs(F)); axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end 程序运行结果如图5-2所示。 由图可见,当满足F s≥2f m条件时,抽样信号的频谱没有混叠现象;当不满足F s≥2f m 条件时,抽样信号的频谱发生了混叠,即图5-2的第二行F s<2f m的频谱图,,在f m=5f0的围,频谱出现了镜像对称的部分。

GPS信号模拟器卫星状态参数的算法研究(精)

GPS信号模拟器卫星状态参数的算法研 究 GPS信号模拟器卫星状态参数的算法研究 类别:通信网络 1 轨道参数的计算模拟器的一项关键任务就是要连续生成导航电文,包括星历、历书和UTC数据。其中,通过GPS接收机接收或从GPS的官方网站上下载得到的历书和UTC参数满足模拟器的设计要求,但接收或下载得到的星历数据则需经过外推。本节即利用摄动力方程以及拉格朗日行星运行方程推导计算了星历数据中的6个轨道参数(a,e,i,Ω,ω,M),并对其进行仿真验证。 1.1 轨道参数的计算将V在轨道参数上展开,根据拉格朗日行星运行方程对其求导,最终可得时刻历元t对应的6个轨道参数:式中:X(t0)为初始历元t0对应的X值,其中X∈(a,e,i,Ω,ω,M);X(t)为仿真历元t对应的X值;a为椭圆轨道长半轴;e为椭圆轨道偏心率;i为轨道面倾角;Ω为升交点赤径;ω为近地点角距;M为平近点角;p=a(1-e2) 为带,J2扰动项的轨道平均角速度最终,历元时刻t对应的所有星历数据均可通过上述6个轨道参数计算得到。 1. 2 仿真验证图1为从IGS网站下载得到的2005-4-20,0:0:0.00历元时刻的RINEX格式的星历文件,设定用户接收机位置(经度、纬度、高程)为(113°19′00″E、39°00′08″N、100 m),各轨道面相对赤道平面约为55°倾角。通过推导计算图3中所有参数,可以得到不同轨道面的GPS星座分布图、卫星地迹随时间的变化规律和GDOP值,上述3组仿真结果证明外推得到的卫星轨道参数符合模拟器的性能要求。 1. 3 GPS星座分布图图2为历元时刻2005-4-20,0:00:0.00的轨道参数对应的GPS卫星星座分布图。该图表明,6个轨道面以60°间隔均匀分布,每个轨道平面上以90°间隔均匀分布4颗工作卫星。从而外推得到的卫星星座分布符合真实GPS卫星星座分布。图3为外推得到的1号卫星的仰角(实线)和方位角(虚线)在2 4 h内随时间的变化规律。由图可知,1号卫星的运行周期为11 h58″,地面观察者可以在第二天提前4′在地球上同一地点看到同样一颗卫星。这里仅图示了一颗工作卫星仰角和方位角的变化规律,其他工作卫星的仰角和方位角也符合同样的变化规律。如图所示,外推确定的卫星的仰角和方位角随时间的变化规律与真实GPS卫星变化规律相符。图4为外推得到的星座分布的GDOP值。在该仿真过程中,每隔1 800 s计算一组轨道参数,所得GDOP值在1.5和5之间。因此,外推得到的轨道参数对GPS接收机可用。综上,外推得到的6个轨道参数确定的卫星星座分布及变化规律符合真实GPS卫星运行规律,其计算方法满足GPS信号模拟器的设计及性能要求。 2 结论通过对作用在GPS卫星上的地球中心引力以及主要摄动力进行分析,本文给出了GPS卫星6个轨道参数的外推计算方法。最后通过仿真计算,说明了计算得到的卫星轨道参数满足模拟器的设计及性能要求。

北斗信号模拟器实用方法

北斗信号模拟器实用方法 1.1.1数据库操作方法 本课题对数据库操作主要是使用的ADO Data控件的提供的方法来实现的。 4.2.4.1ADO Data控件的AddNew方法向表中增加一条记录 功能:为可更新的Recordset对象创建新记录。 语法:recordest.Addnew FieldList, Values 参数说明:Fieldlist 可选。新记录中字段的单个或一组字段名称或者序列位置。 Values 可选。新记录中字段的单个或一组值。如果Fields是数组,那么Values 也必须是有相同成员数的数组,否则将发生错误。字段名称的次序必须与每个数组中的字段值得次序想匹配。 4.2.4.2ADO Data控件的RecordSource属性查询记录 功能:RecordSource属性用来返回或者设置语句或返回一个记录集的查询. 语法:obiect.RecordSourse[=value] 参数说明:Object 一个对象表达式,其值为“应用于”列表中的一个对象 Value 一个字符串表达式,他指定了一个记录源 4.2.4.3ADO Data控件的Delete方法删除一条记录 功能:删除当前记录或者记录组 语法:recordset.Delete AffectRecords 参数说明: AffectRecords AffectEnum值,确定Delete方法所影响的记录数目。 4.2.4.4ADO Data控件的Updata方法修改记录。 功能:保存对Recordset对象的当前记录所做的所有更改. 语法:recordset.Update Fields, Value 参数说明:Fields 可选。变体型,代表单个名称;或者变体型数组,代表需要修改的字段(单个或者多个)名称或序号位置。 Values 可选。变体型,代表单个值;或者变体型数组,代表新记录中字段(单个或多个)值。 修改记录应该分为4步:

GPS系统仿真

GPS系统仿真实验报告 姓名:陈珂 学号:3150404002 指导教师:高瑜翔

一、实验目的: 分析扩频码的构成原理,基于MATLAB 产生GPS 信号,并进行调制传输,接收解调,最终建立完整的GPS 系统并对接收的结果进行分析。 二、实验原理: 扩频通信:扩频通信的基本理论依据是信息论中的香农公式 )1(log 2N S W C + = 其中,C 是信道容量(bit/s),砰是信道带宽,S 是信号的平均功率,N 是噪声功率,香农公式表明了在给定信噪比的情况下,只要采用某种编码系统就能以任意小的差错概率,以接近于C 的传输速率来传送信息。扩频序列采用的是伪随机序列,伪随机序列具有尖锐的自相关性,近似为零的互相关性这一特点。基于这一特性,可以通过检测本地伪随机序列与原伪随机序列的互 相关峰值的大小来捕获伪随机序列。伪随机序列包括m 序列、Gold 序列、M 序列和组合序列等。GPS 信号中所使用的是一种组合Gold 序列(C/A 码/P 码)。 三、实验内容: 1、GPS 信号产生:GPS 卫星同时发射 L1、L2 两路扩频信号,载频分别为 1575.42Mz 、1227.6MHz ,L1 信号将导航电文分别用 C/A 码和 P 码进行扩频。GPS 卫星的导航电文(D 码),是一组二进制的数码序列,它与编码脉冲相对应,以数字通讯方式传递给用户。当数码取“0”时,对应的编码脉冲状态取“+1”而码值取“1”,对应的编码脉冲取“-1”,即反像编码。L2波段上只传送P 码,P 码是加密码,普通用户无法接受和使用。C/A 码与P 码采用的也是反像编码方式,因此,当C/A 码或P 码与D 码进行模二和(异或运算)时,表现出来的是码元异或,而波形相乘。 2、C/A 码结构:C/A 码是一种Gold 组合码,由两个10级反馈移位寄存器组合产生,可以表示为)()()(021τi N t G t G t G +⊕=其中0τ为码元对应的时间:1/1023ms ,i N 为相位偏置的码元数。C/A 码的产生如下图所示: 10311)(t t t G ++= 109863221)(t t t t t t t G ++++++=

现代数字信号处理及应用仿真题答案

仿真作业 姓名:李亮 学号:S130101083

4.17程序 clc; clear; for i=1:500 sigma_v1=0.27; b(1)=-0.8458; b(2)=0.9458; a(1)=-(b(1)+b(2)); a(2)=b(1)*b(2); datlen=500; rand('state',sum(100*clock)); s=sqrt(sigma_v1)*randn(datlen,1); x=filter(1,[1,a],s); %% sigma_v2=0.1; u=x+sqrt(sigma_v2)*randn(datlen,1); d=filter(1,[1,-b(1)],s); %% w0=[1;0]; w=w0; M=length(w0); N=length(u); mu=0.005; for n=M:N ui=u(n:-1:n-M+1); y(n)=w'*ui; e(n)=d(n)-y(n); w=w+mu.*conj(e(n)).*ui; w1(n)=w(1); w2(n)=w(2); ee(:,i)=mean(e.^2,2); end end ep=mean(ee'); plot(ep); xlabel('迭代次数');ylabel('MSE');title('学习曲线'); plot(w1); hold; plot(w2); 仿真结果:

步长0.015仿真结果 0.10.20.30.4 0.50.60.7迭代次数 M S E 学习曲线

步长0.025仿真结果

步长0.005仿真结果 4.18 程序 data_len = 512; %样本序列的长度 trials = 100; %随机试验的次数 A=zeros(data_len,2);EA=zeros(data_len,1); B=zeros(data_len,2);EB=zeros(data_len,1); for m = 1: trials a1 = -0.975; a2 = 0.95; sigma_v_2 =0.0731; v = sqrt(sigma_v_2) * randn(data_len, 1, trials);%产生v(n) u0 = [0 0]; num = 1; den = [1 a1 a2]; Zi = filtic(num, den, u0); %滤波器的初始条件 u = filter(num, den, v, Zi); %产生样本序列u(n) %(2)用LMS滤波器来估计w1和w2 mu1 = 0.05; mu2 = 0.005; w1 = zeros(2, data_len);

数字信号处理实验

数字信号处理实验

实验一 自适应滤波器 一、实验目的 1、掌握功率谱估计方法 2、会用matlab 对功率谱进行仿真 二、实验原理 功率谱估计方法有很多种,一般分成两大类,一类是经典谱估计;另一类是现代谱估计。经典谱估计可以分成两种,一种是BT 法,另一种是周期法;BT 法是先估计自相关函数,然后将相关函数进行傅里叶变换得到功率谱函数。相应公式如下所示: ||1 *0 1 ?()()()(11) ??()(12) N m xx n jwn BT xx m r m x n x n m N P r m e --=∞ -=-∞ =+-=-∑ ∑ 周期图法是采用功率谱的另一种定义,但与BT 法是等价的,相应的功率谱估计如下所示: 21 1? ()()01 (13)N jw jwn xx n P e x n e n N N --== ≤≤--∑ 其计算框图如下所示: 观测数据x(n) FFT 取模的平方 1/N ) (jw xx e ∧ 图1.1周期图法计算用功率谱框图

由于观测数据有限,所以周期图法估计分辨率低,估计误差大。针对经典谱估计的缺点,一般有三种改进方法:平均周期图法、窗函数法和修正的周期图平均法。 三、实验要求 信号是正弦波加正态零均值白噪声,信噪比为10dB,信号频率为2kHZ,取样频率为100kHZ。 四、实验程序与实验结果 (1)用周期图法进行谱估计 A、实验程序: %用周期法进行谱估计 clear all; N1=128;%数据长度 N2=256; N3=512; N4=1024; f=2;%正弦波频率,单位为kHZ fs=100;%抽样频率,单位为kHZ n1=0:N1-1; n2=0:N2-1; n3=0:N3-1; n4=0:N4-1; a=sqrt(20);%由信噪比为10dB计算正弦信号的幅度

相关主题
文本预览
相关文档 最新文档