当前位置:文档之家› 高等数学 第四节 对面积的曲面积分

高等数学 第四节 对面积的曲面积分

高等数学公式总结(绝对完整版).

高等数学公式大全 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学定积分应用

第六章 定积分的应用 本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。 一、教学目标与基本要求: 使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题; 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等) 二、本章各节教学内容及学时分配: 第一节 定积分的元素法 1课时 第二节 定积分在几何学上的应用 3课时 第三节 定积分在物理学上的应用 2课时 三、本章教学内容的重点难点: 找出未知量的元素(微元)的方法。用元素法建立这些几何、物理的公式解决实际问题。运用元素法将一个量表达为定积分的分析方法 6.1定积分的微小元素法 一、内容要点 1、复习曲边梯形的面积计算方法,定积分的定义 面积A ?∑=?==→b a n i i i dx x f x f )()(lim 1 ξλ 面积元素dA =dx x f )( 2、计算面积的元素法步骤: (1)画出图形; (2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者扇形; (3)计算出面积元素; (4)在面积元素前面添加积分号,确定上、下限。 二、教学要求与注意点 掌握用元素法解决一个实际问题所需要的条件。用元素法解决一个实际问题的步骤。 三、作业35 6.2定积分在几何中的应用

一、内容要点 1、在直角坐标系下计算平面图形的面积 方法一 面积元素dA =dx x x )]()([12??-,面积 A = x x x b a d )]()([12??-? 第一步:在D 边界方程中解出y 的两个表达式)(1x y ?=,)(2x y ?=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ?)(2x ?=解出, b x a ≤≤,)()(21x y x ??≤≤,面积S =x x x b a d )]()([12??-? 方法二 面积元素dA =dy y y )]()([12??-,面积 A = y y y d c d )]()([12??-? 第一步:在D 边界方程中解出x 的两个表达式)(1y x ?=,)(2y x ?=. 第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ?)(2y ?=解出, d y c ≤≤,)()(21y x y ??≤≤,面积S =y y y d c d )]()([12??-? 例1 求22-=x y ,12+=x y 围成的面积 解?????+=-=1 222x y x y ,1222+=-x x ,1-=x ,3=x 。当31<<-x 时1222+<-x x ,于是 面积?--=+-=--+=3 1 313223 210)331 ()]2()12[(x x x dx x x 例2 计算4,22-==x y x y 围成的面积 解 由25.0y x =,4+=y x 得,4,2=-=y y ,当42<<-y 时 45.02+

对面积的曲面积分教案设计

对面积的曲面积分教案 设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

对面积的曲面积分教案设计 课 题 对面积的曲面积分 课 时 1课时 教 学 目 的 和 要 求 教学目的: 使学生理解对面积的曲面积分的定义,了解积分中“分割”,“近似”,“求和”和“取极限”的思想。基于第一类曲线积分的性质,理解对面积的曲面积分的性质。将对面积的曲面积分的计算概括为“一投二代三换”,使学生掌握对面积的曲面积分的计算方法。 教学要求: 1.了解对面积的曲面积分的概念; 2.理解对面积的曲面积分的性质; 3.掌握对面积的曲面积分的计算方法; 重 点 难 点 对面积的曲面积分的计算 教 学 方 法 讲授(板书) 教 学 内 容 一、概念的引入 前面介绍了第一类曲线积分() , L x y ds ρ ?,物理背景是曲线型构件的质量,在此问题中若把曲线改为曲面,线密度改为面密度,若求曲面的质量,该怎么做? 例 1 若曲面∑是光滑的,它的面密度为连续函数() ,, x y z ρ,求它的质量。 解:“分割”:用网格线分割曲面∑为 12 ,,, n S S S ???, “近似”:(),,i i i i S ρξηζ∈?; “求和”:(), 1 , n i i i i i S ρξηζ = ? ∑;

对面积的曲面积分与对弧长的曲线积分有类似的性质 可分为分片光滑的曲面 () =?? f x y z dS ,,

2 21y z x x dydz ++=0,0,0,x z x ≥≥221y y dxdz ++1x z z =++003dx xy =?? 例3 求2z dS ∑??

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? =1 ln ax b C a ++ 2.()d ax b x μ+?=11 ()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +? =21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5.d () x x ax b +?=1ln ax b C b x +-+ 6.2 d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +? =21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2 d ()x x ax b +? = 211ln ()ax b C b ax b b x +-++ 的积分 10.x C + 11.x ?=2 2(3215ax b C a -+ 12.x x ?=2223 2 (15128105a x abx b C a -+ 13.x =22 (23ax b C a - 14.2x =2223 2(34815a x abx b C a -+

15 . =(0) (0) C b C b ?+>< 16 . 2a b - 17 .x =b +18 .x =2a x -+ (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22 d x x a -? =1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23.2 d x x ax b +? =2 1ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 2 1ln 2x C b ax b ++ 26.22d ()x x ax b +? =21d a x bx b ax b --+?

曲线积分与曲面积分 期末复习题 高等数学下册 上海电机学院

第十章 曲线积分与曲面积分答案 一、选择题 1.曲线积分 ()sin ()cos x L f x e ydx f x ydy ??--? ??与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = B A . 1()2x x e e -- B. 1()2x x e e -- C. 1 ()2 x x e e -+ D .0 2.闭曲线C为1x y +=的正向,则 C ydx xdy x y -+=+? C A.0 B.2 C.4 D.6 3.闭曲线C 为2 2 41x y +=的正向,则 22 4C ydx xdy x y -+=+? D A .2π- B 。 2π C 。0 D. π 4。∑为YOZ 平面上2 2 1y z +≤,则 2 22()x y z ds ∑ ++=?? D A。0 B . π C . 14 π D. 12 π 5。设2 2 2 :C x y a +=,则 2 2()C x y ds +=? C A.22a π B. 2 a π C 。 3 2a π D. 3 4a π 6。 设∑为球面2 2 2 1x y z ++=,则曲面积分 ∑ [ B ] A.4π B .2π C.π D.12 π 7。 设L是从O(0,0)到B(1,1)的直线段,则曲线积分 ? =L yds [ C ] A 。 21 B . 2 1 - C. 22 D。 22- 8. 设I=? L ds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧, 则I=[D ] A 。 655 B.1255 C .6155- D。 12 1 55- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A . ?-l ydy xdx 21; B 。 ?-l xdx ydy 2 1 ;

高等数学(上册)教案22定积分的概念与性质

高等数学(上册)教案22定积分的概念与性 质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例5.1.1 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示).下面来求该曲边 梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间 [,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间 [,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于 y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边图5-1 图5-2

梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个 与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边 梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积 (如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩 形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . (1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x -- , 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点 1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的 面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ, 将其作为曲边梯形面积的近似值,即 11()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ (max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值, 即 01lim ()n i i i A f x λξ→==?∑. 5.1.1 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插 入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的 乘积),,2,1()(n i x f i i =?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i =, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区

高等数学曲面积分与曲线积分重点难点

第十二章曲线积分与曲面积分 一.基本要求 1.正确理解两类曲线积分与两类曲面积分的概念和性质及几何意义和物理意义。 2.熟练掌握两类曲线积分和两类曲面积分的计算方法,了解两类曲线积分和两 类曲面积分之间相互关系。 3.掌握格林公式及应用,熟悉和会应用平面曲线积分与路经无关的条件。掌握 二元函数全微分方程的求解方法。 4.掌握高斯公式及应用,了解斯托克斯公式,知道通量与散度,环流量与旋度。 5.会用曲线积分和曲面积分求一些几何量与物理量(弧长、曲面面积、质量、 重心、转动惯量、功及流量等)。 二.主要内容(见第二页至第十三页) 1.主要内容联系(框图) 2.曲线积分和曲面积分(表格) 3.曲线和曲面积分的解题步骤(框图) 4.格林公式、高斯公式及斯托克斯公式(表格) 5.在平面区域G上曲线积分与路径无关的(四个等价)条件(框图) 6.全微分方程(框图) 7.注解(注一至注十)(表格) 三.考点与难点 考点: 1.两类曲线积分化为定积分的计算方法及两类曲面积分化为二重积分的计算

方法。 2.格林公式和高斯公式成立的条件和结论,正确灵活地应用格林公式和高斯 公式。 3.应用平面曲线积分与路径无关的四个条件。 4.曲线积分和曲面积分的几何意义和物理意义,将几何问题和物理问题化为曲线积分问题和曲面积分问题求解。 难点: 应用各类型的积分之间关系,选择合适的(可计算的,更方便的)积分计算。 四.例题及题解(见第十四页至第二十一页) 例1至例15 五.部分习题题解(见第二十二页至第三十页) 习题(一)至习题(十五) 六.试卷(见第三十一页至第三十八页) 试卷)(A 、试卷)(B 、试卷)(C 七.试卷答案及题解(见第三十九页至第四十六页) 试卷)(A 、试卷)(B 、试卷)(C 答案及题解 二.主要內容 1。主要内容联系(框图)

高等数学定积分复习题

1. 求 dx e x ?-2ln 01。5.解:设t e x =-1,即)1ln(2+=t x ,有dt t t dx 122+= 当0=x 时,0=t ;当2ln =x 时,1=t 。 dt t dt t t dx e x )111(21211021 0222ln 0???+-=+=- 22)1arctan 1(2)arctan (210π- =-=-=x t . 2. 求由两条曲线2x y =与2y x =围成的平面区域的面积。 .解:两条曲线的交点是)0,0(与)1,1(,则此区域的面积 31)3132()(1 0323210=-=-=?x x dx x x S 3. 求反常积分 ?+∞-+222x x dx 。 解:dx x x x x dx x x dx b b b b )2111(lim 3 12lim 222222+--=-+=-+???+∞→+∞→+∞ 4ln 3 1)4ln 21(ln lim 31)21ln(lim 312=++-=+-=+∞→+∞→b b x x b b b 5、 4. 设???≤<≤≤-+=20,02,13)(32x x x x x f ,求?-22)(dx x f 解:原式=??-+0 22 0)()(dx x f dx x f ---------5分 =14 ----------5分 6. 求由曲线32,2+==x y x y 所围成的区域绕x 轴旋转而得的旋转体体积。 解:两曲线交点为(-1,1)(3,9)-------2分 面积?--+=3122)32(dx x x S π ---------5分 =17 256 7. 计算定积分2 2π π -? 8. 设()f x 在区间[,]a b 上连续,且()1b a f x dx =?,求() b a f a b x dx +-?。 答案:解:令u a b x =+-,则当x a =时,u b =;当x b =时,u a =,且d x d u =-, 故 ()b a f a b x dx +-?=()a b f u du -? =()1b a f x dx =?。

高等数学-曲面积分试题

Ⅶ 曲线积分与曲面积分(二) 课堂练习题 一、填空题 1.cosα, cosβ, cosγ是光滑闭曲面Σ的外法向量方向余弦,Σ所围空间闭区域为V ,设u (x, y , z )在V 上具有连续二阶偏导数,则用高斯公式化曲面积分为重积分时有(cos cos cos )u u u ds x y z ???αβγ???∑++??ò= 。 2.分片光滑闭曲面Σ所围成的空间区域Ω的体积为V ,则沿曲面Σ外侧的积分()()()z y dxdy y x dxdz x z dzdy ∑-+-+-??ò= 。 3.设函数),,(z y x p 在空间闭区域V 上有一阶连续偏导数,又Σ是V 的光滑边界曲面的外侧,则由高斯公式有(,,)p x y z dydz ∑ ??ò 。 4.设Σ是一片分布着质量的光滑曲面,其面密度为常数μ,则曲面对y 轴的转动惯量I y = 。 5.围成空间闭区域V 的光滑闭曲面Σ外法向量的方向余弦为cos α、cos β、cos γ,设P (x , y , z )、Q (x , y , z )、R (x , y , z )在V 上有连续二阶偏导数,则[()cos ()cos ()cos ]R Q P R Q P ds y z z x x y ??????αβγ?????∑-+-+-???ò 。 二、选择题 1.设∑为球面2221x y z ++=,1∑为其上半球面,则 式正确。 A .12zds zds ∑∑=????; B .1 2zdxdy zdxdy ∑∑=????; C .1222z dxdy z dxdy ∑∑=????; D .zdxdy ∑ ??=0。 2.若∑为222()z x y =-+在xoy 面上方部分的曲面,则ds ∑ ??等于 。 A .200d rdr πθ? ?; B .200d rdr πθ??; C .20d rdr πθ?; D .2π。 3.若∑为球面2222x y z R ++=的外侧,则22x y zdxdy ∑ ??等于 。 A .2xy D x y ??; B . 22xy D x y ??;

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积 (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. 第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量 注: (1) ∑ =?n i i i x f 1 )(ξ与区间的分割法x i 和取点法 i 有关; 而 ? b a dx x f )(与x i 和 i 无 关. (2) ? b a dx x f )(与a 、b 、f 有关,与x 无关,即: [][]???? ===b a b a b a b a d f du u f dt t f dx x f )()()()( 2.定积分存在定理 定理 若)(x f 在[a , b ]上有界且只有有限个间断点,则)(x f 在[a , b ]上可积. 推论 若)(x f 在[a , b ]上连续,则)(x f 在[a , b ]上可积. 例1. 求 ?1 xdx

D对面积的曲面积分

第四节 对面积的曲面积分 一、填空题 1.分片光滑的有界曲面∑,曲面上任一点(,,)x y z 的面密度为(,,)x y z μ,则曲面的质量 为M = (,,)d x y z S ∑ μ??,对x 轴的转动惯量x I = 2 2()(,,)d y z x y z S ∑ μ+??. 2.设光滑曲面∑的方程为(,)z z x y =,它在xOy 面上的投影区域为xy D ,则 (,,)d f x y z S ∑ =??(,,(,d xy D f x y z x y x y ??(写出计算公式). 3.设曲面∑为曲面z = 1z =截下的曲面,则d S ∑ =??. 4.(附加题)设∑: 2 2 2 2 x y z R ++=(0)R >,则 222 ()d xy D f x y z S ∑ ++=???? (2d f R x y yz D =?? (2d f R y z xz D = ?? (2d f R z x , 其中,,xy yz xz D D D ,分别为∑在,,xoy yoz xoz 面的投影. 二、单项选择题 1.∑为球面2222 x y z R ++=(0)R >,则曲面积分222 ()d x y z S ∑ ++=?? C . A .4πR B .42πR C .44πR D .46πR 提示:2 2 2 2 4 ()d d 4πx y z S R S R ++==????∑ ∑ . 2.设S :()2222 0,0x y z a z a ++=≥>,1 S 是S 在第一卦限中的部分,则有 C . A .1 d 4d S S x S x S =???? B .1 d 4d S S y S x S =?? ?? C .1 d 4d S S z S x S =???? D .1 d 4d S S xyz S xyz S =???? 提示:被积函数(,,)f x y z z =在曲面上为正,积分曲面关于xoy 面及yoz 面对称,故

对面积的曲面积分

第四节对面积的曲面积分 4.1学习目标 了解对面积的曲面积分的概念、性质,掌握对面积的曲面积分的计算方法,会用曲面积分求一些几何量与物理量. 4.2内容提要 1.定义设函数(),,f x y z 在光滑曲面∑上有界,将曲面∑任意分成n 小块i S ?(i S ?也表示第i 小块曲面的面积),在i S ?上任取一点(,,)i i i i M ξηζ,作乘积i i i i S f ?),,(ζηξ(1,2, ,i n =) ,并作和()1,,n i i i i i f s ξηζ=??∑,记各小曲面直径的最大值为λ,如果对曲面的任一分法和点(,,)i i i ξηζ的任意取法,当0λ→时,上述和式的极限都存在且相等,则称此极限值为函数(),,f x y z 在曲面∑上对面积的曲面积分或第一类曲面积分,记 =??∑ dS z y x f ),,(0lim →λ 1 (,,)n i i i i i f S ξηζ=∑?. 【注】定义中的“i S ?”是面积元素,因此,0i S ?≥. 2.性质 ①关于曲面具有可加性,若12∑=∑+∑,且1∑与2∑没有公共的内点,则 =??∑ dS z y x f ),,(????∑∑+2 1 ),,(),,(dS z y x f dS z y x f ; ②当被积函数为1时,积分结果在数值上等于曲面∑的面积S ,即 S dS z y x f =??∑ ),,(. 3.对面积的曲面积分的计算 设曲面∑由(),z z x y =给出,∑在xoy 面上的投影区域为xy D ,函数(),z z x y =在xy D 上具有连续偏导数,被积函数(,,)f x y z 在∑上连续,则 (,,)(,,(,xy D f x y z dS f x y z x y ∑ =???? . 同样地 () ( ):,(,,),,,yz x x y z D f x y z dS f x y z y z ∑=∑ ??=???? ,

对面积的曲面积分

第四节 对面积的曲面积分 4.1 学习目标 了解对面积的曲面积分的概念、 性质,掌握对面积的曲面积分的计算方法, 会用曲面积 分求一些几何量与物理量 . 4.2 内容提要 1.定义 设函数f x, y,z 在光滑曲面 上有界,将曲面 任意分成n 小块 s ( S i 也表示第i 小块曲面的面积),在 S i 上任取一点 M i ( i , i , J ,作乘积f( i , i , i ) S i n (i 1,2,L ,n ),并作和 f i , i , i s i ,记各小曲面直径的最大值为 ,如果对曲 i 1 面的任一分法和点(i , i , i )的任意取法,当 0时,上述和式的极限都存在且相等,则 称此极限值为函数 f x,y,z 在曲面 上对面积的曲面积分或第一类曲面积分,记 n f(x, y,z)dS lim 0 i 1 f ( i , i , i ) S ? 【注】定义中的“ S i ”是面积元素,因此, S i 0 . 2?性质 f(x,y,z)dS f(x,y,z)dS f(x, y,z)dS ; 1 2 ②当被积函数为1时,积分结果在数值上等于曲面 的面积S ,即 f (x, y, z)dS S . 3.对面积的曲面积分的计算 在xoy 面上的投影区域为 D xy ,函数z z x, y 在 ①关于曲面具有可加性,若 1 2,且1与2没有公共的内点,则 设曲面 由z z x, y 给出, D xy 上具有连续偏导数,被积函数 f (x, y,z)在 上连续,则 f (x, y,z)dS f(x, y,z(x,y)h 1 dxdy 同样地 D xy :x x y,z f (x, y, z)dS D yz x y,z , y,z dydz ,

高等数学不定积分总结

第5章 不定积分 一、不定积分的概念和性质 若()()F x f x '=,则()d ()f x x F x C =+?, C 为积分常数不可丢! 性质1()d ()f x x f x ' ??=???或 d ()d ()d f x x f x x =?或()d ()d f x x f x dx ??=??? 性质2()d ()F x x F x C '=+?或d ()()F x F x C =+? 性质3[()()]d f x g x x αβ±?()d ()d f x x g x x α β=±?? 或[()()]d ()d ()d f x g x x f x x g x x += +??? ;()d ()d kf x x k f x x =??. 二、基本积分公式或直接积分法 基本积分公式 d k x =?k x C +d x x μ=?111x C μμ+++(μ为常数且1μ≠-) 1d x x =?ln x C + e d x x =?e x C +d x a x =?ln x a C a + cos d x x =?sin x C +sin d x x =?cos x C -+ 2d cos x x =?2sec d x x =?tan x C +2d sin x x =?2csc d x x =?cot x C -+ sec tan d x x x =?sec x C +csc cot d x x x =?csc x C -+ 2d 1x x =+?arctan x C +(arccot x C -+)=arcsin x C +(arccos x C -+) 直接积分法:对被积函数作代数变形或三角变形,化成能直接套用基本积分公式。 代数变形主要是指因式分解、加减拆并等;三角变形主要是指三角恒等式。 三、换元积分法: 1.第一类换元法(凑微分法) ()()()d (())()d (())d () ()d [()]u x u x g x x f x x x f x x f u u F u C ??????=='====+????. 注 (1)常见凑微分: 2111(), (),2), (ln ||) 2dx d ax c xdx d x c d c dx d x c a x =+=+==+ 21(tan )(cot (arcsin )(cos )1+dx d arc x d arc x d x d arc x x ==-==-

同济版高等数学教案 定积分

第五章定积分 教学目的: 1、理解定积分的概念。 2、掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法。 3、理解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼茨公式。 4、了解广义积分的概念并会计算广义积分。 教学重点: 1、定积分的性质及定积分中值定理 2、定积分的换元积分法与分部积分法。 3、牛顿—莱布尼茨公式。 教学难点: 1、定积分的概念 2、积分中值定理 3、定积分的换元积分法分部积分法。 4、变上限函数的导数。 §5. 1 定积分概念与性质 一、定积分问题举例 1.曲边梯形的面积 曲边梯形:设函数y=f(x)在区间[a,b]上非负、连续.由直线x=a、x=b、y=0及曲线y=f(x)所围成天津工业大学理学院基础数学系高等数学、经济数学教研室 1

天津工业大学理学院基础数学系高等数学、经济数学教研室 2 的图形称为曲边梯形, 其中曲线弧称为曲边. 求曲边梯形的面积的近似值: 将曲边梯形分割成一些小的曲边梯形, 每个小曲边梯形都用一个等宽的小矩形代替, 每个小曲边梯形的面积都近似地等于小矩形的面积, 则所有小矩形面积的和就是曲边梯形面积的近似值. 具体方法是: 在区间[a , b ]中任意插入若干个分点 a =x 0< x 1< x 2< ? ? ?< x n -1< x n = b , 把[a , b ]分成n 个小区间 [x 0, x 1], [x 1, x 2], [x 2, x 3], ? ? ? , [x n -1, x n ], 它们的长度依次为?x 1= x 1-x 0 , ?x 2= x 2-x 1 , ? ? ? , ?x n = x n -x n -1 . 经过每一个分点作平行于y 轴的直线段, 把曲边梯形分成n 个窄曲边梯形. 在每个小区间 [x i -1, x i ]上任取一点ξ i , 以[x i -1, x i ]为底、f (ξ i )为高的窄矩形近似替代第i 个窄曲边梯形(i =1, 2, ? ? ? , n ) , 把这样得到的n 个窄矩阵形面积之和作为所求曲边梯形面积A 的近似值, 即 A ≈f (ξ 1)?x 1+ f (ξ 2)?x 2+? ? ?+ f (ξ n )?x n ∑=?=n i i i x f 1)(ξ. 求曲边梯形的面积的精确值: 显然, 分点越多、每个小曲边梯形越窄, 所求得的曲边梯形面积A 的近似值就越接近曲边梯形面积A 的精确值, 因此, 要求曲边梯形面积A 的精确值, 只需无限地增加分点, 使每个小曲边梯形的宽度趋于零. 记 λ=max{?x 1, ?x 2,? ? ?, ?x n }, 于是, 上述增加分点, 使每个小曲边梯形的宽度趋于零, 相当于令λ→0. 所以曲边梯形的面积为 ∑=→?=n i i i x f A 1 0)(lim ξλ. 2. 变速直线运动的路程

高等数学 曲线积分

曲线积分练习题 1.计算下列对弧长的曲线积分 (1)222()d L x y l +∫ ,其中L 为圆周222a y x =+; (52a π=) (2)d L x l ∫,其中L 为抛物线122?=x y 上介于0=x 与1=x 之间的一段弧; (148 ?=) (3)d L xy l ∫ ,其中L 为圆周222a y x =+; (32a =) (4)L y l ∫ ,其中L 为空间圆周: 2222:x y z L y x ?++=?=? . (= 2.计算22(2)d (2)d L x xy x y xy y ?+?∫,其中L 是从点(2,1)A ?经点(2,2)B 到点 (0,2)C 的折线。 3. 计算2 (2)d L y xy y +∫,其中L 是从点(,0)A a 沿2222 1 (0)x y y a b +=≥到(,0)B a ? 的曲线段。 4. 计算d d d L y x z y x z ++∫,其中L 是球面2222x y z a ++=与平面2 a z =的交线,从z 轴正向看,L 为逆时针方向。 (234 a π=?) 5. 计算11d d L x y y x +∫,其中L 是1y =,4x =及y =向边界。(34 =) 6.确定a 的值使曲线积分4124(4)d (65)d a a L I x xy x x y y y ?=++?∫与积分路径无关。 7.e =)1(?,求可微函数)(y ?,使曲线积分()d [()]d y L e I y y x y x y y ??=+?∫与积分在0>y 的开区域内与积分路径无关。 8. 设(0)0f =,积分(,)(0,0)[(1)sin ()]d ()d 1 x y n n x x f x y x f x y x ++++∫ 与路径无关,求函数()f u 。

同济版高等数学教案第五章定积分

第五章 定积分 教学目的: 1、 理解定积分的概念。 2、 掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法。 3、 理解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼茨公式。 4、 了解广义积分的概念并会计算广义积分。 教学重点: 1、定积分的性质及定积分中值定理 2、定积分的换元积分法与分部积分法。 3、牛顿—莱布尼茨公式。 教学难点: 1、 定积分的概念 2、 积分中值定理 3、 定积分的换元积分法分部积分法。 4、 变上限函数的导数。 §5. 1 定积分概念与性质 一、定积分问题举例 1. 曲边梯形的面积 曲边梯形: 设函数y =f (x )在区间[a , b ]上非负、连续. 由直线x =a 、x =b 、y =0及曲线y =f (x )所围成的图形称为曲边梯形, 其中曲线弧称为曲边. 求曲边梯形的面积的近似值: 将曲边梯形分割成一些小的曲边梯形, 每个小曲边梯形都用一个等宽的小矩形代替, 每个小曲边梯形的面积都近似地等于小矩形的面积, 则所有小矩形面积的和就是曲边梯形面积的近似值. 具体方法是: 在区间[a , b ]中任意插入若干个分点 a =x 0< x 1< x 2< ? ? ?< x n -1< x n = b , 把[a , b ]分成n 个小区间 [x 0, x 1], [x 1, x 2], [x 2, x 3], ? ? ? , [x n -1, x n ], 它们的长度依次为?x 1= x 1-x 0 , ?x 2= x 2-x 1 , ? ? ? , ?x n = x n -x n -1 . 经过每一个分点作平行于y 轴的直线段, 把曲边梯形分成n 个窄曲边梯形. 在每个小区间 [x i -1, x i ]上任取一点ξ i , 以[x i -1, x i ]为底、f (ξ i )为高的窄矩形近似替代第i 个窄曲边梯形(i =1, 2, ? ? ? , n ) , 把这样得到的n 个窄矩阵形面积之和作为所求曲边梯形面积A 的近似值, 即 A ≈f (ξ 1)?x 1+ f (ξ 2)?x 2+? ? ?+ f (ξ n )?x n ∑=?=n i i i x f 1)(ξ. 求曲边梯形的面积的精确值: 显然, 分点越多、每个小曲边梯形越窄, 所求得的曲边梯形面积A 的近似值就越接近曲边梯形面积A 的精确值, 因此, 要求曲边梯形面积A 的精确值, 只需无限地增加分点, 使每个小曲边梯形的宽度趋于零. 记 λ=max{?x 1, ?x 2,? ? ?, ?x n }, 于是, 上述增加分点, 使每个小曲边梯形的宽度趋于零, 相当于令λ→0. 所以曲边梯形的面积为 ∑=→?=n i i i x f A 1 0)(lim ξλ. 2. 变速直线运动的路程 设物体作直线运动, 已知速度v =v (t )是时间间隔[T 1, T 2]上t 的连续函数, 且v (t )≥0, 计算在这段时间内物体所经过的路程S . 求近似路程: 我们把时间间隔[T 1, T 2]分成n 个小的时间间隔?t i , 在每个小的时间间隔?t i 内, 物体运动看成是均速的, 其速度近似为物体在时间间隔?t i 内某点ξ i 的速度v (τ i ), 物体在时间间隔?t i 内 运动的距离近似为?S i = v (τ i ) ?t i . 把物体在每一小的时间间隔?t i 内 运动的距离加起来作为物体在时间间隔[T 1 , T 2]内所经过的路程S 的近似值. 具体做法是: 在时间间隔[T 1 , T 2]内任意插入若干个分点 T 1=t 0< t 1< t 2

相关主题
文本预览
相关文档 最新文档