当前位置:文档之家› 液气-液喷射器尺寸设计方法

液气-液喷射器尺寸设计方法

第39卷第3期2018年6月

液气-液喷射器尺寸设计方法

Vol.39,No.3June,2018

文章编号:0253-4339(2018)03-0119-07doi:10.3969/j.issn.0253-4339.2018.03.119

液气-液喷射器尺寸设计方法

杜彦君 刘峰 刘云发 张博

(大连理工大学能源与动力学院 大连 116024)

摘 要 本文基于流动过程中的基本规律,参照液-液喷射器的尺寸设计方法,引入一组尺寸修正系数,通过实验确定最佳修正系数并提出喷射制冷循环中液气-液喷射器的设计方法三实验以R22为制冷工质,使用两相喷射器与满液式喷射器替代传统压缩制冷循环中的干式蒸发器以实现喷射制冷循环,采用Labview8.5进行实时数据采集三数据分析结果表明:喷射器的喷射系数在修正值δ=0.95时达到最高,此后处于下降趋势三喷射器在运行工况为工作压力0.95MPa二引射压力0.45MPa二混合压力0.5MPa,修正系数δ=0.95时,各测点工况符合设计工况,且实验所得喷射系数均值与经验公式计算值误差小于3%,说明该尺寸设计方法具有可行性三

关键词 喷射器;实验研究;两相流;设计方法中图分类号:TB61+7;TQ051.5

文献标识码:A

SizeDesignMethodofTwo-phaseEjector

DuYanjun LiuFeng LiuYunfa ZhangBo

(SchoolofEnergyandPowerEngineering,DalianUniversityofTechnology,Dalian,116024,China)

Abstract Basedonthebasicrulesoftheflowprocess,asetofdimensionalcorrectioncoefficientsisintroducedaccordingtothedesignmethodoftheliquid-liquidejector.Theoptimumcorrectioncoefficientisdeterminedusinganexperimentalverificationmethod,andthedesignmethodoftheliquid-liquidejectorinthejetrefrigerationcycleisproposed.ExperimentsusingR22asarefrigerant,atwo-phasee-

jector,andafull-liquidejectorreplacingthedryevaporatorinatraditionalcompressionrefrigerationcyclewereconductedtoachieveajetrefrigerationcycle.Labview8.5wasappliedasthereal-timedatacollector.Throughadataanalysis,itwasfoundthattheinjectioncoeffi-cientoftheinjectoristhehighestwhenthecorrectionvalueisδ=0.95,andthendrops.Whentheoperatingconditionsoftheinjectorareaworkingpressureof0.95MPa,ejectingpressureof0.45MPa,mixingpressureof0.5MPa,andcorrectioncoefficientofδ=0.95,theworkingconditionsofeachmeasuringpointareinaccordancewiththedesignconditions,andtheerrorbetweenthemeasuredvalueoftheinjectioncoefficientandtheempiricalformulaislessthan3%,provingthatthedesignmethodforthisdimensionisfeasible.Keywords ejector;experimentalinvestigation;two-phaseflow;designmethod

收稿日期:2017年4月7日

喷射器主要由喷嘴二混合室二喉管二扩散室和吸入室组成,最根本的特性是工作二引射两股流体在质能转化的过程中不消耗机械功三SunDawen[1]提出喷射器的几何形状和尺寸必须随工况而变化,才能实现在不同运行工况下使喷射制冷循环取得最佳COP三

有关喷射器的初期研究多建立在实验的基础上,数值模拟模型以定常面积混合理论和等压混合理论为主三20世纪中叶至21世纪初期,液-液喷射器的研究有了较大进展,气-气喷射器由于在模拟模型中加入凝结与非等熵流动的影响也有了与实验数据契合度较高的理论成果,气-液喷射器的研究由于多相流的发展也取得了较多的理论成果三19世纪中叶,德

国学者W.J.M.Rankine[2]最先提出了喷射器理论设计方法三在此理论基础上,S.B.Riffat等[3]提出了定压混合和定常面积混合两种理论,对部分结构简化后的喷射器进行了一维模型计算并对结果进行了实验验证三G.M.Carlomagno等[4-5]研究了喷射器出口壅塞对喷射器性能的影响,并提出结构优化的方法三YanJiwei等[6]实验研究了喷射器应用于R134a喷射制冷系统,并对COP随工质的变化进行了定性分析三陈亮等[7]研究了两相流喷射器内的射流发展过程,沿引射流体的流动方向分段对射流压力进行分析并得到喷射器的喷射系数和出口背压随冷凝温度与蒸发温度的变化特性三张金锐等[8]实验研究了新型CO2喷射器,结果证明:喷射系数为

911 万方数据

装配尺寸链的解算示例和尺寸链的计算

7.补偿环——尺寸链中预先选定某一组成环,可以通过改变其大小或位置,使封闭环达到规定的要求,该组成环为补偿环。 二、尺寸链的形成 为分析与计算尺寸链的方便,通常按尺寸链的几何特征,功能要求,误差性质及环的相互关系与相互位置等不同观点,对尺寸链加以分类,得出尺寸链的不同形式。 1.长度尺寸链与角度尺寸链 ①长度尺寸链——全部环为长度尺寸的尺寸链 ②角度尺寸链——全部环为角度尺寸的尺寸链 2.装配尺寸链,零件尺寸链与工艺尺寸链 ①装配尺寸链——全部组成环为不同零件设计尺寸所形成的尺寸链 ②零件尺寸链——全部组成环为同一零件设计尺寸所形成的尺寸链 ③工艺尺寸链——全部组成环为同一零件工艺尺寸所形成的尺寸链。工艺尺寸指工艺尺寸,定位尺寸与基准尺寸等。 装配尺寸链与零件尺寸链统称为设计尺寸链 装配尺寸链的解算示例

=(标准件) 封闭环的公称尺寸为零,即,先将各组

于内尺寸的组成环按基孔制,孔中心距按对称分布决定其极限偏差。不过需要留一个组成环,其极限偏差确定后计算得到。该组成环称为协调环。此处A s为垫圈,容易加工,且其他尺寸都便于用通用量具测量,故选A s为协调环。由此确定除协调环外各环的极限偏差 为:最后计算确定协调环 为: (2)不完全互换法。采用不完全互换法时,装配尺寸链采用概率法公式计算。当各组成环尺寸服从正态分布时封闭环公差T o 与各组成环公差T t的关系满足。若各组成环尺寸不服从正态分 布,则取封闭环公差T o与各组成环公差T t的关系满足。K依具体分布而定,一般可以取K=1.2~1.6。仍然以图57-4所以示的装配关系简图是基本尺寸,装配精度要求为例,设各组成环尺寸服从一个标准件A4的尺寸链,取各组成环的平均公差T(mm)为:

太阳能集热器的设计与计算

华扬公司工程计算举例: 客户要求 1)、项目名称:河南郑州太阳能集中热水工程; 2)、用水类型:全天 3)、用水量:3吨/天 4)、用水方式:落水式 5)、辅助能源:电加热 设计气象参数依据 1)、河南郑州在我国为二等太阳能辐照度地区。太阳辐射强度高,但总量大,年辐射总量为 16.41 MJ/m2.a。 2)、郑州地理纬度为34°43′,东经113°21′左右; 3)、郑州地区全年自来水水温在5-12℃之间。(设计取值8℃,春分时节); 确定总用水量 人均用水当量参照给排水设计规范,如下表:

选择初始水温:

参照下表,采用设计冷水水温为8℃。 集热面积计算 将已知条件“用户设计用水量3吨,日平均辐射量16.41MJ/㎡,,设计热水温度为50℃,初始水温8℃。,太阳能保证率取0.5(系统要求全年使用)”等参数代入国家标准 GB 50364-2005《民用建筑太阳能热水系统应用技术规范》中 直接循环系统计算公式,集热面积c A 为: )1()(L cd T i end w w c J f t t C Q A ηη--= c A ——直接系统集热器采光面积,㎡; w Q ——日均用水量Kg ;3000L end t ——储水箱内水的终止温度(用水温度);50℃ w C ——水的定压比热容,4.18 KJ/(㎏2℃); i t —— 自来水的初始温度,8℃; t J ——集热器受热面上春分时节日辐照量,取16410KJ/m 2 f ——太阳能保证率,无量纲,0.5;

cd η——集热器全日集热效率,无量纲, L η—管路及储水箱热损失率(按最寒冷季节取值),无量纲, 取0.3; 则: Ac=Q W C W (t end - t i )f/J T η cd (1-η L )= 3000 ㎏34.18 KJ/㎏2℃3 (50℃-8℃)350%÷{16410 KJ/㎡30.53(1-0.3)}≈45.85㎡ 选择用全玻璃管联箱横插直接循环集热器,直径47*1500/每组50支(集热面积5.41,配水量300-500L平均每只管带6—10L)9组,从而提供3T热水,(即取每只带水箱水6.7L水箱水的容积。) 参数表

尺寸链计算方法

第十章装配精度与加工精度分析任何机械产品及其零部件的设计,都必须满足使用要求所限定的设计指标,如传动关系、几何结构及承载能力等等。此外,还必须进行几何精度设计。几何精度设计就是在充分考虑产品的装配技术要求与零件加工工艺要求的前提下,合理地确定零件的几何量公差。这样,产品才能获得尽可能高的性能价格比,创造出最佳的经济效益。进行装配精度与加工精度分析以及它们之间关系的分析,可以运用尺寸链原理及计算方法。我国业已发布这方面的国家标准GB5847—86《尺寸链计算方法》,供设计时参考使用。 第一节尺寸链的基本概念 一、有关尺寸链的术语及定义 1.尺寸链 在机器装配或零件加工过程中,由相互连接的尺寸形成的封闭尺寸组,称为尺寸链。尺寸链分为装配尺寸链和工艺尺寸链两种形式。 (a)齿轮部件(b)尺寸链图(c)尺寸链图 图10-1 装配尺寸链示例 图10-1a为某齿轮部件图。齿轮3在位置固定的轴1上回转。按装配技术规范,齿轮左右端面与挡环2和4之间应有间隙。现将此间隙集中于齿轮右端面与挡环4左端面之间,用符号A0表示。装配后,由齿轮3的宽度A1、挡环2的宽度A2、轴上轴肩到轴槽右侧面的距离A3、弹簧卡环5的宽度A4及挡环4的宽度A5、间隙A0依次相互连接,构成封闭尺寸组,形成一个尺寸链。这个尺寸链可表示为图10-1b与图10-1c两种形式。上述尺寸链由不同零件的设计尺寸所形成,称为装配尺寸链。 图10-2a为某轴零件图(局部)。该图上标注轴径B1与键槽深度B2。键槽加工顺序如图10-2b所示:车削轴外圆到尺寸C1,铣键槽深度到尺寸C2,磨削轴外圆到尺寸C3(即图10-2a中的尺寸B1),要求磨削后自然形成尺寸C0(即图10-2a 中的键槽深度尺寸B2)。在这个过程中,加工尺寸C1、C2、C3和完工后尺寸C0构成封闭尺寸组,形成一个尺寸链。该尺寸链由同一零件的几个工艺尺寸构成,称为工艺尺寸链。

水喷射器设计计算实例

水喷射器设计计算实例 例:佳木斯市XXX 小学,供热面积为1867平方米,热指标为60W ,供热负荷为112560W 。一次水供水温度为95 0C ,回水温度为60 0C 。用户二次水供水温度为71.6 0C ,回水为55 0C ,用户系统压力损失为△P 为2000Kg/m 2试设计一台用户入口水喷射器。 1、 根据已知条件计算混水系数: 0g g h μT -T =T -T μ:混水系数 T 0:一次水供水温度 Tg 用户二次水供水温度 T h 用户二次水回水温度 μ= 9571.6 71.655 -=- μ=1.4 2、计算水喷射器最佳截面比: F 2/ F 0= 2b a -± F 2: 混合室截面积M 2 F 0: 喷口截面积M 2 a= 0.975 b=-[0.975+1.19×(1+U )2 -0.78 U 2 ] =[0.975+1.19×(1+1.4)2 -0.78×1.42] =-6.3 C=1.19(1+U )2 =1.19(1+1.4)2 =6.85 F 3/ F 0= 5.07 3、计算喷管出口工作流体应有的压降 △P g : 用户系统内部压力损失 Kg/m 2 02 00.88g F F ?P =??P △P 0:工作水流经喷管的压力损失 Kg/m 2 0 5.070.882000 ?P =?

02000 5.070.88 ?P =? △P 0=11522 Kg/m 2 △P 0 =1.15 Kg / C m 2 4、计算工作水流量 0 3.6 4.186Q G =??T G 0:工作水流量 Kg /h Q :供热负荷 W Q=1867×60=101220W △T :工作水温差 0C △T=95-60=35 0 C G 0 = 3.6101220 24874.18635 ?=?K g /h=0.69 Kg /s 5、 计算喷管出口截面积 F 0 1 ?:工作水流速度系数 1 ?=0.95 V 0:工作水流比容 Kg/m 3 g : 重力加加速度 m /s 2 F 0= = 4.8×10-5 m 2 6、计算喷管出出口直径 D 0=1.13 7、 计算混合室截面积 2 5.07F F = 2 5 5.074.810F -=? F 2=4.8×10-5×5.07=2.4×10-5 m 2

热交换器设计计算

热交换器设计计算 一、基本参数 管板与管箱法兰、壳程圆筒纸之间的连接方式为e 型 热交换器公称直径DN600,即D i =600mm 换热管规格φ38?2,L 0=3000mm 换热管根数n=92 管箱法兰采用整体非标法兰 管箱法兰/壳体法兰外直径D f =760mm 螺柱孔中心圆直径D b =715mm 壳体法兰密封面尺寸D 4=653mm 二、受压元件材料及数据 以下数据查自GB 150.2—2011; 管板、法兰材料:16Mn 锻件 NB/T 47008—2010 管板设计温度取 10℃ 查表9,在设计温度100℃下管板材料的许用应力: =t r σ][178Mpa (δ≤100mm ) 查表B.13,在设计温度100℃壳体/管箱法兰/管板材料的弹性模量: Mpa 197000 E E E p f f ===’’’ 壳程圆筒材料:Q345R GB 713 壳程圆筒的设计温度为壳程设计温度 查表2,在设计温度100℃下壳程圆筒材料的许用应力: =t c σ][189Mpa (3mm <δ≤16mm ) 查表B.13,在设计温度10℃下壳程圆筒材料的弹性模量Mpa 197000E s = 查表B.14在金属温度20℃~80℃范围内,壳程圆筒材料平均线膨胀系数: ℃) (α??=mm /mm 10137.15-s 管程圆筒材料:Q345R GB 713 管程圆筒的设计温度为壳程设计温度 按GB/T 151—2014 中7.4.6.1规定,管箱圆筒材料弹性模量,当管箱法兰采用长颈对焊法兰时,取管箱法兰的材料弹性模量,即Mpa 197000E h = 换热管材料:20号碳素钢管 GB 9948 换热管设计温度取100℃ 查表6,在设计温度100℃下换热管材料的许用应力Mpa 147σ][t t =(δ≤16mm ) 查表B.3,设计温度100℃下换热管材料的屈服强度Mpa 220R t eL =(δ≤16mm )

散热器设计的基本计算(最新整理)

散热器设计的基本计算 一、概念 1、热路:由热源出发,向外传播热量的路径。在每个路径上,必定经过一些不同的介质, 热路中任何两点之间的温度差,都等于器件的功率乘以这两点之间的热阻,就像电路中的欧姆定律,与电路等效关系如下。 热路电路 热耗P (W)电流V ab I (A) 温差△T=T1-T2 (℃)电压V ab=V a-V b(V) 热阻R th=△T/P (℃/ W)电阻R=V ab/I (Ω) 热阻串联R th=R th1+R th2+…电阻串联R=R1+R2+… 热阻并联1/R th=1/R th1+1/R th2+…电阻并联1/R=1/R1+1/R2+… 2、热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用—— 在热路中产生温度差,形成对热路中两点间指标性的评价。 符号——Rth 单位——℃/W。 ?稳态热传递的热阻计算: R th= (T1-T2)/P T1——热源温度(无其他热源)(℃) T2——导热系统端点温度(℃) ?热路中材料热阻的计算: R th=L/(K·S) L——材料厚度(m) S——传热接触面积(m2) 3、导热率:是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所 传递的热量。 符号——K or λ单位——W/m-K,

铝合金10702261900平面 铝合金1050209硅胶垫佳日丰泰 5.0铝合金6063201矽胶套帽佳日丰泰 1.0铝合金6061160相变基膜佳日丰泰 1.4铝合金7075 130矽硅膜鑫鑫顺源0.9铁80导热膏KDS-2 0.84不锈钢17 空气 0.04 二、热设计的目标 1、确保任何元器件不超过其最大工作结温(T jmax ) ?推荐:器件选型时应达到如下标准 民用等级:T jmax ≤150℃ 工业等级:T jmax ≤135℃军品等级:T jmax ≤125℃ 航天等级:T jmax ≤105℃ ?以电路设计提供的,来自于器件手册的参数为设计目标2、温升限值 器件、内部环境、外壳: △T ≤60℃ 器件每升高2℃,可靠性下降10%;器件温升为50℃时,寿命只有温升25℃的1/6,电解电容温升超过10℃,寿命下降1/2。三、计算 1、TO220封装+散热器 1)结温计算?热路分析 热传递通道:管芯j →功率外壳c →散热器 s →环境空气a

工艺尺寸链计算的基本公式[13P][521KB]

工艺尺寸链计算的基本公式 来源:作者:发布时间:2007-08-03 工艺尺寸链的计算方法有两种:极值法和概率法。目前生产中多采用极值法计算,下面仅介绍极值法计算的基本公式,概率法将在装配尺寸链中介绍。 图 3-82 为尺寸链中各种尺寸和偏差的关系,表 3-18 列出了尺寸链计算中所用的符号。 1 .封闭环基本尺寸 式中 n ——增环数目; m ——组成环数目。 2 .封闭环的中间偏差

式中Δ0——封闭环中间偏差; ——第 i 组成增环的中间偏差 ; ——第 i 组成减环的中间偏差。 中间偏差是指上偏差与下偏差的平均值: 3 .封闭环公差 4 .封闭环极限偏差 上偏差 下偏差 5 .封闭环极限尺寸 最大极限尺寸 A 0max=A 0+ES 0 ( 3-27 )最小极限尺寸 A 0min=A 0+EI 0 ( 3-28 )6 .组成环平均公差 7 .组成环极限偏差 上偏差

下偏差 8 .组成环极限尺寸 最大极限尺寸 A imax=A i+ES I ( 3-32 ) 最小极限尺寸 A imin=A i+EI I ( 3-33 ) 工序尺寸及公差的确定方法及示例 工序尺寸及其公差的确定与加 工余量大小,工序尺寸标注方法及定位基准的选择和变换有密切的关系。下面阐述几种常见情况的工序尺寸及其公差的确定方法。 (一)从同一基准对同一表面多次加工时工序尺寸及公差的确定 属于这种情况的有内外圆柱面和某些平面加工,计算时只需考虑各工序的余量和该种加工方法所能达到的经济精度,其计算顺序是从最后一道工序开始向前推算,计算步骤为: 1 .确定各工序余量和毛坯总余量。 2 .确定各工序尺寸公差及表面粗糙度。 最终工序尺寸公差等于设计公差,表面粗糙度为设计表面粗糙度。其它工序公差和表面粗糙度按此工序加工方法的经济精度和经济粗糙度确定。 3 .求工序基本尺寸。 从零件图的设计尺寸开始,一直往前推算到毛坯尺寸,某工序基本尺寸等于后道工序基本尺寸加上或减去后道工序余量。 4 .标注工序尺寸公差。 最后一道工序按设计尺寸公差标注,其余工序尺寸按“单向入体”原则标注。 例如,某法兰盘零件上有一个孔,孔径为,表面粗糙度值为R a0.8 μ m

喷射器计算

喷射器计算 喷射器恐怕是再生槽的最关健部件,只要它运行不理想,再生系统就要出问题,从而使整个脱硫系统形成恶性循环。喷射器部件不大,但关健部位甚多。设计计算主要有这么几项:一是喷嘴计算;二是混合管计算;三是吸气室计算;四是尾管直径计算;五是扩散管长度计算。 (a)喷嘴计算 在喷嘴里内容也不少,一些细微尺寸看起来不起眼,但很关健,绝对不能小视。具体如下: 喷嘴个数(n)确定: n= LT / Li 式中:Li——每个喷射器溶液量,m3/h,一般经验数据是40-45 m3 / h; LT——溶液循环量,m3 / h。 喷嘴孔径(dj): dj=(Li /0.785.3600.wj)1/2 式中:——喷嘴处溶液流速,m/s,通常取18-25 m/s。 溶液入口管直径(dL): dL =3dj(m) 喷嘴入口收缩段长度(L5): L5=( dL - dj)/ 2tg (α1/2) 式中: α1——喷嘴入口收缩角,通常取α1=140。 喷嘴喉管长度(L0): 通常喷嘴喉管长度取L0=3mm。 喷嘴总长度: L=L0+ L5 (b)混合管计算 混合管直径(dm): dm =1.13(0.785 dj2 .m)1/2 式中:m—喷射器形状系数,通常取M=8.5。 混合管长度(L3): L3 = 25dm (c)吸气室计算 空气入口管直径(da): da = 18.8[GA / w2 .n]1/2 式中: w2——管内空气流速,m/s,取=3.5m/s; GA——空气流量,m3/h; n——喷嘴个数。 吸气室直径(dM): dM=(3.1 da2)1/2 式中: da——空气入口管直径,mm。 吸气室高度(L1): 通常根据相应关联的尺寸而确定,一般取330mm左右。 吸气室收缩管长度(L2): L=(dM - dm)/ [2 tg (α2/2)] 式中: α2——吸气室收缩角,通常取300;

尺寸链计算方法-公差计算

尺寸链计算 一.基本概念 尺寸链是一组构成封闭尺寸的组合。 尺寸链中的各个尺寸称为环。零件在加工或部件在装配过程中,最后得到的尺寸称为封闭环。组成环又分为增环和减环,当尺寸链中某组成环的尺寸增大时,封闭环的尺寸也随之增大,则该组成环称为增环。反之为减环。 补偿环:尺寸链中预先选定的某一组成环,可以通过改变其大小或位置,使封闭环达到规定要求。 传递系数ξ:表示各组成环对封闭环影响大小的系数。增环ξ为正值,减环ξ为负值。通常直线尺寸链的传递系数取+1或-1. 尺寸链的主要特征: ①.尺寸连接的封闭性;②.每个尺寸的变化(偏差)都会影响某一尺寸的精度。 二.尺寸链的分类 1.按应用范围分 工艺尺寸链:在零件加工过程中,几个相互联系的工艺尺寸形成的封闭链。 装配尺寸链:在设计或装配过程中,由几个相关零件的有关尺寸形成的封闭链。 2. 按构成尺寸链各环的空间位置分 线性尺寸链:各环位于平行线上 平面尺寸链:各环位于一个平面或相互平行的平面,各环不平行排列。 空间尺寸链:各环位于不平行的平面,需投影到三个座标平面上计算。 3.按尺寸链的形式分 a)长度尺寸链和角度尺寸链 b)装配尺寸链装、零件尺寸链和工艺尺寸链 c)基本尺寸链与派生尺寸链 基本尺寸链指全部组成环皆直接影响封闭环的尺寸链 派生尺寸链指一个尺寸链的封闭环为另一个尺寸链组成环的尺寸链。

d)标量尺寸链和矢量尺寸链 三. 基本尺寸的计算 把每个基本尺寸看成构成尺寸链的各环,验算其封闭环是否符合设计要求。是设计中尺寸链计算时首先应该进行的工作。 目前产品生产中经常出现错误的环节,大部分是基本尺寸链错误。特别是测绘设计的产品。由于原机的制造误差,测量系统的误差以及尺寸修约的误差,往往会使测绘设计与原设计产生很大的偏差,所以必须进行基本尺寸链的计算 四.解尺寸链的主要方法 根据零件尺寸的要求和相关标准确定零件尺寸公差,然后按照解尺寸链的最短途径原理的方法对尺寸公差进行验算和修正。 为了提高零件的装配精度,与其有关各零件表面形成的尺寸链环数必须最少。 a)极值法(完全互换法) 各组成环的公差之和不得大于封闭环的公差 即Σδi≤δN 不适合环数很多的尺寸链 b)概率法(不完全互换法) 设A表示组成环的算术平均值,σ表示均方根偏差,则一般各环的公差取±3σ。 σ=∑- i n A Xi/) ( c)选配法 将尺寸链中组成环的公差放大到经济可行的程度,然后选择合适的零件进行装配。 尺寸链计算程序 ①基本尺寸计算依据产品标准、产品装配图、零件图 ②公差设计计算可以先按推荐的公差等级标准选取公差值,然后按互换法进 行计算调整,决定各组成环的公差与极限偏差。 ③公差校核计算校核封闭环公差与极限偏差。 五. 计算举例

冷凝器设计计算资料

冷凝器设计计算

冷凝器换热计算 第一部分:设计计算一、设计计算流程图

二、 设计计算(以HLR45S 为例) 1、已知参数 换热参数: 冷凝负荷:Q k =61000W 冷凝温度:t k =50℃ 环境风温度:t a1=35℃ 冷凝器结构参数: 铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管 铜管水平间距:S 1=25.4mm 铜管竖直方向间距:S 2=22mm 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0.35mm 翅片厚度:δf =0.115mm 翅片间距:S f =1.8mm 冷凝器尺寸参数 排数:N C =3排 每排管数:N B =52排 2、计算过程 1)冷凝器的几何参数计算 翅片管外径:f b d d δ20+== 9.75 mm

铜管内径:t i d d δ-=0=8.82 mm 当量直径:) ()(2))((4411f f b f f b eq S d S S d S U A d δδ-+---= ==3.04 mm 单位长度翅片面积:32 2110/)4 (2-?- =f b f S d S S f π=0.537 m 2/m 单位长度翅片间管外表面积:310/)(-?-=f f f b b s S d f δπ=0.0286 m 2/m 单位长度翅片管总面积:b f t f f f +==0.56666 m 2/m 翅片管肋化系数:i t i t d f f f πβ===20.46 2)空气侧换热系数 迎面风速假定:f w =2.6 m/s 最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=4.5 m/s 冷凝器空气入口温度为:t a1=35℃ 取出冷凝器时的温度为:t a2=43℃ 确定空气物性的温度为:2/)(21a a m t t t +==39℃ 在tm =39℃下,空气热物性: v f =17.5×10-6m 2/s ,λf =0.0264W/mK ,ρf =1.0955kg/m 3,C Pa =1.103kJ/(kg*℃) 空气侧的雷诺数:f eq f v d w /Re max = =783.7 由《制冷原理与设备》中公式(7-36),空气侧换热系数 m eq eq n f f O d d C ??? ? ??= γλαRe '=50.3 W/m 2K 其中: 362)( 103)( 000425.0)( 02315.0518.0eq eq eq d d d A γ γ γ -?-+-==0.1852

喷射器技术与应用

喷射器混合气体绝热指数问题 理想气体绝热指数是定压比热与定体积比热之比,即为K.在很多喷射抽空系统中,往往会去计算多性质混合气体的绝热指数,这就是我们探讨问题。 在一些权威理论中把混合理想气体热容等同理想气体热容,当然还有如 K=(K1*G1+K2*G2)/(G1+G2)等,结果由于误差而导致结果出现很大误差,因为绝热指数在绝热方程里处在指数位置,所以哪怕产生误差为0.01也会使计算结果产生很大偏离,从而导致喷射器计算理论计算的偏离。在很多场合会有“为什么抽不出混合物,或者满足不了真空度等等”,这原因之一很可能和计算有关,特别在装有流量计的喷射器系统中检测会发现要么真空度达不到,要么流量偏离很大,即使计算不出现一点误差,为什么也还如此,我们在实践中困惑很久,后来把热力学理论全部推导才发现这个问题。在改进后喷射器完全达标,无论压力,流量很好和计算相符。 喷射器模拟与验证 蒸汽喷射器计算出来数据背压往往比模拟偏小,按照经验修正能很好符合模拟参数。那么为什么会出现这一情况。原因有以下几点: 1:模拟热力学模型不能选错,不然就会出现一定程度上偏差。 2:模拟的条件需要摄入经验系数。 3:设计出来用模拟验证需要将设计动态损失考虑进去。 4:设计理论是不是完善。 蒸汽喷射器的抽空时间 使用蒸汽喷射器的系统抽空时间粗估[24]可以应用前面提出的涉及用蒸汽喷射器来抽 空系统的陈述,计算方法是 t=(2.3-0.003Ps)V/w 式中:t——将系统从常压抽至稳定操作压力所用的时间,min; Ps——喷射器的设计入口压力,Torr; V——工艺系统的体积,ft3; w——喷射器的抽气量,以70°F干空气计,lb·h-1。

散热器的选型与计算..

散热器的选型与计算 以7805 为例说明问题. 设I=350mA,Vin=12V, 则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θ JA=54℃/W,温升是132℃, 设室温25℃,那么将会达到7805的热保护点150℃,7805 会断开输出. 正确的设计方法是: 首先确定最高的环境温度, 比如60℃, 查出7805 的最高结温TJMAX=125℃ , 那么允许的温升是65℃. 要求的热阻是65℃ /2.45W=26℃/W.再查7805 的热阻,TO-220 封装的热阻θ JA=54℃/W, 均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候, 应该加上4℃/W 的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单, 与电阻的并联一样, 即 54//x=26,x=50 ℃/W.其实这个值非常大, 只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-Ta)/Pd Tjmax : 芯组最大结温150℃ Ta : 环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率- 输出功率 ={24×0.75+(-24) ×(-0.25)}-9.8 ×0.25 ×2

=5.5 ℃ /W 总热阻由两部分构成,其一是管芯到环境的热阻RQj-a, 其中包括结壳热阻RQj-C 和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻. 管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a 应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d: 散热器厚度cm A: 散热器面积cm2 C: 修正因子取1 按现有散热器考虑,d=1.0 A=17.6×7+17.6 ×1×13 算得散热器热阻RQd-a=4.1℃ /W, 散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利

散热器简化设计计算方法

壁挂散热器价格简化设计计算方法 一. 金旗舰散热量Q的计算 1.基本计算公式: Q=S×W×K×4.1868÷3600 (Kw) 式中: ①.Q —散热器散热量(KW)=发动机水套发热量×(1.1~1.3) ②.S —散热器散热面积(㎡)=散热器冷却管的表面积+2×散热带 的表面积。 ③.W —散热器进出水、进出风的算术或对数平均液气温差(℃), 设计标准工况分为:60℃、55℃、45℃、35℃、25℃。它们分别对应散热器允许适用的不同环境大气压和自然温度工况条件。④.K —散热系数(Kcal/m.h.℃)。它对应关联为:散热器冷却管、散热带、钎焊材料选用的热传导性能质量的优劣;冷却管与散热带钎焊接合率的质量水平的优劣;产品内外表面焊接氧化质量水平的优劣;冷却管内水阻值(通水断面积与水流量的对应关联—水与金属的摩擦流体力学),散热带风阻值(散热带波数、波距、百叶窗开窗的翼宽、角度的对应关联—空气与金属的摩擦流体阻力学)质量水平的优劣。总体讲:K值是代表散热器综合质量水平的关键参数,它包容了散热器从经营管理理念、设计、工装设备、物料的选用、采购供应、制造管理控制全过程的综合质量水平。根据多年的经验以及

数据收集,铜软钎焊散热器的K值为:65~95 Kcal/m2.h.℃;改良的簿型双波浪带铜软钎焊散热器的K值为:85~105 Kcal/m2.h.℃;铝硬钎焊带电子风扇系统的散热器的K值为:120~150 Kcal/m2.h.℃。充分认识了解掌握利用K值的内涵,可科学合理的控制降低散热器的设计和制造成本。准确的K值需作散热器风洞试验来获取。 ⑤.4.1868和3600 —均为热能系数单位与热功率单位系数换算值⑥.发动机水套散热量=发动机台架性能检测获取或根据发动机升功 率、气门结构×经验单位系数值来获取。 二、计算程序及方法 1. 散热面积S(㎡) S=冷却管表面积F1+2×散热带表面积F2 F1={ [2×(冷却管宽-冷却管两端园孤半径)]+2π冷却管两端园孤半径}×冷却管有效长度×冷却管根数×10 F2=散热带一个波峰的展开长度×一根散热带的波峰数×散热带的 宽度×散热带的根数×2×10 2. 算术平均液气温差W(℃) W=[(进水温度+出水温度)÷2]-[(进风温度+出风温度)÷2] 常用标准工况散热器W值取60℃,55℃,增强型取45℃,35℃。这要根据散热器在什么工况环境使用条件下来选取。 3. 散热系数K

发动机散热器的设计计算

发动机散热器的设计计算 散热片面积是冷却水箱的基本参数,通常单位功率所需散热面积为0.20~0.28㎡/KW。发动机后置的车辆冷却条件比较差,工程机械行走速度慢没有迎风冷却,因此所配置的水箱散热面积宜选用上限。 水箱所配相关管道不能太小,其中四缸机的管道内径≧37mm,六缸机的管道内径≧42mm。 水箱迎风面积要求尽可能大一点,通常情况下为0.31~0.37㎡/KW,后置车、工程车辆还要大一些,由于道路条件改善,长时间的高速公路上高速行驶,或者容易超载,经常爬坡的车辆也要选得大一点。 对冷却液的要求: 1.冷却作用:有效的带走一定的热量,使发动机得到冷却,防止过热。 2.防冻作用:防止冷却液结冰而导致水箱和柴油机水腔冻裂。 3.防氧化和腐蚀:冷却液可防止金属件的氧化和腐蚀。 为改善发动机的工作条件,进一步提高其冷却性能,发动机后置或者重型车都配置了膨胀水箱。膨胀水箱应高于散热水箱50mm左右,必须具有相当于冷却系统总容积6%的冷却液膨胀空间,储备水量应是冷却系统总容积的11%,有暖风时达到20%,冷却液液面不能淹没加水伸长颈管,加水伸长颈管上部必须设通气孔,通气管不宜小于φ3.2mm,膨胀水箱最低液面以下水深不得低于50mm,以防止空气进入注水管。 由于受到发动机水循环系统进出口口径大小的限制,发动机进水接口外径为34mm(散热器出水接口外径也为34mm),发动机回水接口外径为35mm(散热器回水接口外径为35mm)。 本产品所选用的发动机额定功率为:110kw 在设计或选用冷却部件时应以散入冷却系统的热量Q为原始数据,来计算冷却系统的循环水量和冷却空气量:

用经验式 =???==3600 21.0431*******.03600u e e W h p Ag Q 69.14kJ/s=59450kcal/h 燃料热能传给冷却系的分数,取同类机型的统计量,%,柴油机A=0.23~0.30,取A=0.25 e g -燃料消耗率,kg/kw.h ;柴油机为0.210 e P -发动机有效功率,取最大功率110kw 若水冷式机油散热器,要增加散热量,W Q 增大5%~10%. 在算出发动机所需的散走的热量后,可计算冷却水循环量 187.41000814.69??=?= W W W W W C r t Q V =206.41L/min W t ?-冷却水循环的容许温升(6?-12?),取8? W r -水的密度,(1000kg/3m ) W C -水比热(4.187kJ/kg.C ?) 实际冷却水循环量为:==W a V V 2.1247.69L/min 冷却空气需要量:047.101.12014.69??=?= Pa W W W W C r t Q V =3.27m 3/s a t ?-散热器前后流动空气的温度差,取20C ? a r -空气密度,一般a r 取1.01kg/3m Pa C -空气的定压比热,可取Pa C =1.047kJ/kg.C ? 二.散热器设计 1.散热器的计算所根据的原始参数是散热器散发的热量和散热器的外形尺寸。 散热器散发的热量就等于发动机传给冷却液的热量。 已知散热器散发的热量后,所需散热面积F 可由下式计算:

蒸汽喷射器

蒸汽喷射器工作原理: 蒸汽喷射器是以蒸汽为动力实现工程需要的器件,它不用电力,没有移动与转动机件,系统简单,工作可靠,故使用广泛。 一工作原理: 蒸汽喷射器把高压蒸汽的势能通过喷咀形成高速动能,带动吸引低压蒸汽在喷射器混合段充分混和,降速,升压,供生产之需。 二结构介绍: 喷射器结构主要有两大部分: 1.喷咀:高压蒸汽通过喷咀形成高速射流,喷咀的形状,尺寸根据蒸汽性质(过热汽还是饱和汽)及蒸汽在喷咀中的压降来计算,当喷咀的压降: 过热汽为初压的45.5%以上;饱和汽为初压的4 2.3%以上,喷咀做成拉伐尔喷咀,否则喷咀为锥形,材料採用1Cr18Ni9Ti 2.喷射器混合段:高,低压两股汽在此管内先进入,次混和均匀,后降速增压。所以混合段有前,中,后三段,作用不同。形状有别,通过总流量来设计其尺寸(直径与长度)最终合成所需压力的蒸汽。连结上二者的机件称汽室,使二件保持合理的距离,具有一定空间。蒸汽喷射器的材质常用20#优质碳素钢。 三使用范围: 蒸汽喷射器有以下类型: 1.蒸汽喷射增压器:能量较高的高温高压蒸汽经喷咀高速射流吸引低压蒸汽混合成工艺所需温度与压力的(中压)蒸汽供生产使用。这是解决工艺需要的一种较节能的形式(相对减温减压器而言),也比较方便。有一种叫作二次蒸汽回收器的设备也属此类型。 2.蒸汽喷射热水器:通过蒸汽射流吸引一定量冷水加温到所需温度,并送到需要的场所,可以用于供暖和生活用水。

3.蒸汽喷射真空器:通过蒸汽射流,抽出容器内的空气,使容器具有一定的真空。如汽轮机轴封抽气器,防止汽机向外漏汽,并回收热量与工质。又如使大型循环水泵吸水段抽真空引来低位水流之水。 一工作原理: 蒸汽喷射器把高压蒸汽的势能通过喷咀形成高速动能,带动吸引低压蒸汽在喷射器混合段充分混和,降速,升压,供生产之需。 二结构介绍: 喷射器结构主要有两大部分: 1. 喷射器混合段: 高,低压两股汽在此管内先进入,次混和均匀,后降速增压。所以混合段有前,中,后三段,作用不同。形状有别,通过总流量来设计其尺寸(直径与长度)最终合成所需压力的蒸汽。 2.喷咀: 高压蒸汽通过喷咀形成高速射流, 喷咀的形状,尺寸根据蒸汽性质(过热汽还是饱和汽)及蒸汽在喷咀中的压降来计算,当喷咀的压降 饱和汽为初压的42.3%以上。 喷咀做成拉伐尔喷咀,否则喷咀为锥形,材料采用

喷嘴可调喷射器,喷嘴可调式蒸汽喷射器

西安汇欣喷嘴可调喷射器 (专利号ZL201010186622) 一、现有喷射器调节方式概述 用在固定条件下的喷射器,只有在设计状态下工作才具有最大的效率。当工作、引射、和混合流体的参数偏离设计参数时,在没有人为调节的情况下,喷射器的效率急剧降低。在这种情况下,为了提高喷射器的效率,必须对它进行调节。目前的调节方式主要有两种:一种是调节工作流体管道上的阀门;一种是改变工作喷嘴的临界截面面积,这种调节可以通过伸到喷嘴里的一根锥形棒(针)来实现。采用多个小型喷射器并联代替一个喷射器是后一种调节方式的特例。关小工作流体管道上的阀门会造成节流损失,工作流体的做功能力要降低。采用多个小型喷射器并联代替一个喷射器会使装置复杂化。改变工作喷嘴的临界截面面积,相对有利,在工程实践中应用广泛。 二、问题的提出 在变工况下,影响喷射器效率的因素有很多。当工作喷嘴的临界截面积变化时,喷嘴距混合室入口的最佳距离也发生变化。当工作流体流量因工作喷嘴的临界截面积变化而变化时,引射流体的流量也变化了,引射流体的通流面积也应变化。而这最佳距离和通流面积通常在喷射器制造完毕就固定了,这当然会降低喷射器的效率。能不能在调节工作喷嘴的临界截面积的同时调节喷嘴距混合室入口的最佳距离和引射流体的通流面积,以提高喷射器效 率? 三、可调喷嘴喷射器可以解决这个问题 可调喷嘴喷射器由电动执行结构、喷射器调节阀、喷射器本体三部分组成。西安汇欣通过调节喷射器调节阀的开度,改变工作喷嘴的临界截面面积的同时调节喷嘴距混合室入口 的最佳距离和引射流体的通流面积。 四、可调喷嘴喷射器的优点: 1、提高了喷射器的效率。 2、扩大了喷射器的应用范围,使得因不能满足工艺参数而不能使用喷射器的场合有可能使用喷射器。 3、喷射器的效率的提高,通常降低了动力蒸汽的消耗,节能效果显著。 五、可调喷嘴喷射器应用案例介绍: 2011年7月,第一台可调喷嘴喷射器在2000吨/天海水淡化装置上投入使用。 2012年4月,四台可调喷嘴喷射器在碱厂三效蒸发工艺装置投入使用。 2013年12月,一台全不锈钢立式可调喷嘴喷射器在燃料酒精闪蒸汽回收工艺中投入使用。 2014年4月,第二台全不锈钢立式可调喷嘴喷射器在精馏塔闪蒸汽回收工艺中投入使用。

最新热交换器原理与设计-题库-考点整理-史美中(DOC)

热交换器原理与设计 题型:填空20%名词解释(包含换热器型号表示法)20% 简答10%计算(4题)50% 0 绪论 ?热交换器:将某种流体的热量以一定的传热方式传递给他种流体的设备。(2013-2014学年第二学期考题[名词解释]) ?热交换器的分类:按照热流体与冷流体的流动方向分为:顺流式、逆流式、错流式、混流式 ?按照传热量的方法来分:间壁式、混合式、蓄热式。(2013-2014学年第二学期考题[填空]) 1 热交换器计算的基本原理(计算题) ?热容量(W=Mc):表示流体的温度每改变1℃时所需的热量?温度效率(P):冷流体的实际吸热量与最大可能的吸热量的比率(2013-2014学年第二学期考题[名词解释]) ?传热有效度(ε):实际传热量Q与最大可能传热量Q max之比2 管壳式热交换器 ?管程:流体从管内空间流过的流径。壳程:流体从管外空间流过的流径。 ?<1-2>型换热器:壳程数为1,管程数为2 ?卧式和立式管壳式换热器型号表示法(P43)(2013-2014学年第二学期考题[名词解释]) 记:前端管箱型式:A——平盖管箱B——封头管箱

壳体型式:E——单程壳体F——具有纵向隔板的双程壳体H——双分流 后盖结构型式:P——填料函式浮头 S——钩圈式浮头 U——U形管束 ?管子在管板上的固定:胀管法和焊接法 ?管子在管板上的排列:等边三角形排列(或称正六边形排列)法、同心圆排列法、正方形排列法,其中等边三角形排列方式是最合理的排列方式。(2013-2014学年第二学期考题[填空]) ?管壳式热交换器的基本构造:⑴管板⑵分程隔板⑶纵向隔板、折流板、支持板⑷挡板和旁路挡板⑸防冲板 ?产生流动阻力的原因:①流体具有黏性,流动时存在着摩擦,是产生流动阻力的根源;②固定的管壁或其他形状的固体壁面,促使流动的流体内部发生相对运动,为流动阻力的产生提供了条件。 ?热交换器中的流动阻力:摩擦阻力和局部阻力 ?管壳式热交换器的管程阻力:沿程阻力、回弯阻力、进出口连接管阻力 ?管程、壳程内流体的选择的基本原则:(P74) 管程流过的流体:容积流量小,不清洁、易结垢,压力高,有腐蚀性,高温流体或在低温装置中的低温流体。(2013-2014学年第二学期考题[简答])

蒸发器尺寸设计

蒸发器工艺尺寸计算 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m;L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则 所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。

液气-液喷射器尺寸设计方法

第39卷第3期2018年6月 液气-液喷射器尺寸设计方法 Vol.39,No.3June,2018 文章编号:0253-4339(2018)03-0119-07doi:10.3969/j.issn.0253-4339.2018.03.119 液气-液喷射器尺寸设计方法 杜彦君 刘峰 刘云发 张博 (大连理工大学能源与动力学院 大连 116024) 摘 要 本文基于流动过程中的基本规律,参照液-液喷射器的尺寸设计方法,引入一组尺寸修正系数,通过实验确定最佳修正系数并提出喷射制冷循环中液气-液喷射器的设计方法三实验以R22为制冷工质,使用两相喷射器与满液式喷射器替代传统压缩制冷循环中的干式蒸发器以实现喷射制冷循环,采用Labview8.5进行实时数据采集三数据分析结果表明:喷射器的喷射系数在修正值δ=0.95时达到最高,此后处于下降趋势三喷射器在运行工况为工作压力0.95MPa二引射压力0.45MPa二混合压力0.5MPa,修正系数δ=0.95时,各测点工况符合设计工况,且实验所得喷射系数均值与经验公式计算值误差小于3%,说明该尺寸设计方法具有可行性三 关键词 喷射器;实验研究;两相流;设计方法中图分类号:TB61+7;TQ051.5 文献标识码:A SizeDesignMethodofTwo-phaseEjector DuYanjun LiuFeng LiuYunfa ZhangBo (SchoolofEnergyandPowerEngineering,DalianUniversityofTechnology,Dalian,116024,China) Abstract Basedonthebasicrulesoftheflowprocess,asetofdimensionalcorrectioncoefficientsisintroducedaccordingtothedesignmethodoftheliquid-liquidejector.Theoptimumcorrectioncoefficientisdeterminedusinganexperimentalverificationmethod,andthedesignmethodoftheliquid-liquidejectorinthejetrefrigerationcycleisproposed.ExperimentsusingR22asarefrigerant,atwo-phasee- jector,andafull-liquidejectorreplacingthedryevaporatorinatraditionalcompressionrefrigerationcyclewereconductedtoachieveajetrefrigerationcycle.Labview8.5wasappliedasthereal-timedatacollector.Throughadataanalysis,itwasfoundthattheinjectioncoeffi-cientoftheinjectoristhehighestwhenthecorrectionvalueisδ=0.95,andthendrops.Whentheoperatingconditionsoftheinjectorareaworkingpressureof0.95MPa,ejectingpressureof0.45MPa,mixingpressureof0.5MPa,andcorrectioncoefficientofδ=0.95,theworkingconditionsofeachmeasuringpointareinaccordancewiththedesignconditions,andtheerrorbetweenthemeasuredvalueoftheinjectioncoefficientandtheempiricalformulaislessthan3%,provingthatthedesignmethodforthisdimensionisfeasible.Keywords ejector;experimentalinvestigation;two-phaseflow;designmethod 收稿日期:2017年4月7日 喷射器主要由喷嘴二混合室二喉管二扩散室和吸入室组成,最根本的特性是工作二引射两股流体在质能转化的过程中不消耗机械功三SunDawen[1]提出喷射器的几何形状和尺寸必须随工况而变化,才能实现在不同运行工况下使喷射制冷循环取得最佳COP三 有关喷射器的初期研究多建立在实验的基础上,数值模拟模型以定常面积混合理论和等压混合理论为主三20世纪中叶至21世纪初期,液-液喷射器的研究有了较大进展,气-气喷射器由于在模拟模型中加入凝结与非等熵流动的影响也有了与实验数据契合度较高的理论成果,气-液喷射器的研究由于多相流的发展也取得了较多的理论成果三19世纪中叶,德 国学者W.J.M.Rankine[2]最先提出了喷射器理论设计方法三在此理论基础上,S.B.Riffat等[3]提出了定压混合和定常面积混合两种理论,对部分结构简化后的喷射器进行了一维模型计算并对结果进行了实验验证三G.M.Carlomagno等[4-5]研究了喷射器出口壅塞对喷射器性能的影响,并提出结构优化的方法三YanJiwei等[6]实验研究了喷射器应用于R134a喷射制冷系统,并对COP随工质的变化进行了定性分析三陈亮等[7]研究了两相流喷射器内的射流发展过程,沿引射流体的流动方向分段对射流压力进行分析并得到喷射器的喷射系数和出口背压随冷凝温度与蒸发温度的变化特性三张金锐等[8]实验研究了新型CO2喷射器,结果证明:喷射系数为 911 万方数据

相关主题
文本预览
相关文档 最新文档