当前位置:文档之家› 甲烷水蒸气重整反应的本征动力学实验研究

甲烷水蒸气重整反应的本征动力学实验研究

甲烷水蒸气重整反应的本征动力学实验研究
甲烷水蒸气重整反应的本征动力学实验研究

甲烷水蒸气重整的高活性和稳定性 催化剂

甲烷水蒸气重整的高活性和稳定性的 Rh/MgOAl2O3催化剂 摘要 高活性和抗积碳的Rh催化剂已经被开发用于甲烷水蒸气重整的微孔道反 应。Rh最佳化的负载在稳定的MgOAl2O3表面,以提高甲烷的体积转化率。催化剂的活性在较广范围的水碳比下保持稳定。尤其是,实验结果证明了Rh/MgOAl2O3催化剂在理论水碳比1:1时有很好的催化活性和抗积碳性,反应14h后催化剂没有失活的迹象。这种催化剂对甲烷水蒸气重整反应的催化活性是通过与微通道反应和传统的微管反应相对比的。在微孔反应中观察到的重要现象是因为加快了热量和质量的传递。 1综述 甲烷水蒸汽重整反应在合成气生产、燃料合成和氢气生产中是一种主要的商业化工艺流程[1]。该反应是一种低压下的强吸热反应。传统的甲烷水蒸汽重整反应由于受到严格的质量和热量传递的限制,因此催化剂的有效因子一般低于5%[2]。在过去十年里得到发展的微通道反应技术,为挑战传统的甲烷水蒸汽重整反应过程提供了突破口。微孔道反应拥有一种像三明治一样的多层型结构,由大量的间隙小于1mm的紧密隔开的通道组成,这样减少了热量和质量传递的距离,因此提高了整体的效率。所以,微孔道反应可以进行过程强化和超前的温度控制。 与传统反应的传热系数100~700w/m2k[7~9]相比,微孔道反应的传热系数高达10000~35000w/m2k[5,6]。微孔道反应中,如此高的传热系数和比表面积,使得强吸热的甲烷水蒸汽重整反应可以在近乎等温的条件下操作,同时也为显著提高甲烷水蒸汽重整反应过程的效率提供了可能性。 为了完全的利用微孔道反应质量和热量传递的优点和获得更高的体积生产率,因此需要开发一种高活性、高稳定性的重整反应催化剂。到目前为止,已被商业化的甲烷水蒸汽重整反应的催化剂,都是将Ni(12~20%Ni或者NiO)负载

透氢用钯复合膜(七):甲烷、甲醇水蒸气重整反应

透氢用钯复合膜(七):甲烷、甲醇水蒸气重整反应 2016-08-15 13:10来源:内江洛伯尔材料科技有限公司作者:研发部 膜反应器 膜反应器(membranereactor , MR)是钯复合膜最重要的应用领域,可用于烃类和醇类水蒸汽重整制氢。 Tong等采用管式膜反应器研究了不同温度、压力以及空速条件下甲烷水蒸汽重整过程,反应管内壁镀有6μm厚的钯膜,催化剂置于环隙中。甲烷转化率、氢气收率高达96.9 %和90.4% ,而产氢能力可达180ml/min。Ferreira-Aparicio等通过调节吹扫气流速、原料气组成,使用不同催化剂使甲烷水蒸汽重整制氢的收率高达95 % ,而且积碳量较小。 Kikuchi等考察了催化剂装填模式的影响,认为在反应区与氢渗透区之间应该装填足够量的催化剂,这样可以达到提高过程效率、节约膜面积的目的。Barbieri等借助数学模型研究了管式膜反应器的热效应及其对甲烷转化率的影响。Lasa等使用156μm厚的钯膜进行催化重整过程研究,发现甲烷的最高转化率比平衡转化率高20 %。Lin等的实验结果也显示,甲烷转化率比热力学平衡转化率高15 %。 在Han等的实验中,甲醇与水蒸汽催化转化之后,富氢产物进入由数十根25μm厚钯铜合金膜管组成的纯化器中进行处理, 可制备出纯度高达99.995%的氢气,处理能力达10Nm3/h ,氢气收率为75 %。该装置结构紧凑,易于搬运。Lin等设计了双夹层膜反应器用于甲醇水蒸汽重整,可以同时完成甲醇的水蒸汽重整和水煤气变换反应。催化剂装填在内侧的环隙中,反应产物为氢气、一氧化碳和二氧化碳。氢气通过内层的钯膜移出,而剩余气体进入装有催化剂的外层进行变换反应,反应过程在300—400℃温度范围内进行。可产出99.9 %的氢气,处理能力为5

甲烷水蒸气低温重整

Ni/TiO2催化甲烷水蒸气低温重整 摘要 负载镍的二氧化钛(Ni/TiO2)被用于甲烷水蒸气低温重整反应的研究。然而研究经常被报道,在传统高温条件下进行甲烷重整反应,二氧化钛负载金属的催化剂会失活,如此所示,它应该在一个温和的温度(400℃)下激活使用。Ni/TiO2在500℃,甚至在较低的甲烷和水蒸气输入比(1:1)条件下,能够保持稳定和高效的氢气产量。程序升温的研究表明,镍的存在和更有力的支撑交互作用是低温活化甲烷的关键,同时在水汽转换反应中,镍元素之间更弱的相互作用,使得其对氢气生成的生成做出贡献。这个检测报告进一步证实,当相同的反应进行时,镍负载在惰性氧化物(二氧化硅)表面时,即镍元素间的主要的金属负载影响会较弱。在500℃以及水和甲烷进料比为3:1的条件下,当输入SMR系统的蒸汽数量增加时,在Ni/TiO2催化剂作用下甲烷转化率增强,可以观察出甲烷转化率达到45%。根据水和甲烷进料的比例,在96小时内,负载镍的二氧化钛催化剂展现出稳定的转化率和产品的选择性。 1.简介 氢气是许多工业过程的关键原料同时高效的制氢技术在工业上具有重要作用。应该进一步加强水分解制氢体系的研究,它在技术方面仍然不太成熟,大大的阻碍了实现更大规模的发展。水碳重整,即通过水蒸气或者干气重是目前最有利的氢气生产途径。干气重整具有吸收二氧化碳的优点,但是易于引起碳污染,,除非能找到合适的催化剂。因此,传统的烃类蒸汽转化以甲烷蒸汽重整为主,在短期内,甲烷蒸汽转化仍然是最可行的工业制氢过程。 因为甲烷蒸汽重整反应是吸热反应,为了得到有效的转化率,甲烷蒸汽转化应该在800℃甚至更高温度下进行。为了增加氢气产量,这就经常伴随着下游的水汽转换过程。甲烷水蒸气重整反应需要的高温条件的能源消耗通常是通过

甲烷水蒸气低温重整完整版

甲烷水蒸气低温重整标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

Ni/TiO2催化甲烷水蒸气低温重整 摘要 负载镍的二氧化钛(Ni/TiO2)被用于甲烷水蒸气低温重整反应的研究。然而研究经常被报道,在传统高温条件下进行甲烷重整反应,二氧化钛负载金属的催化剂会失活,如此所示,它应该在一个温和的温度(400℃)下激活使用。Ni/TiO2在500℃,甚至在较低的甲烷和水蒸气输入比(1:1)条件下,能够保持稳定和高效的氢气产量。程序升温的研究表明,镍的存在和更有力的支撑交互作用是低温活化甲烷的关键,同时在水汽转换反应中,镍元素之间更弱的相互作用,使得其对氢气生成的生成做出贡献。这个检测报告进一步证实,当相同的反应进行时,镍负载在惰性氧化物(二氧化硅)表面时,即镍元素间的主要的金属负载影响会较弱。在500℃以及水和甲烷进料比为3:1的条件下,当输入SMR系统的蒸汽数量增加时,在Ni/TiO 2催化剂作用下甲烷转化率增强,可以观察出甲烷转化率达到45%。根据水和甲烷进料的比例,在96小时内,负载镍的二氧化钛催化剂展现出稳定的转化率和产品的选择性。 1.简介 氢气是许多工业过程的关键原料同时高效的制氢技术在工业上具有重要作用。应该进一步加强水分解制氢体系的研究,它在技术方面仍然不太成熟,大大的阻碍了实现更大规模的发展。水碳重整,即通过水蒸气或者干气重是目前最有利的氢气生产途径。干气重整具有吸收二氧化碳的优点,但是

易于引起碳污染,,除非能找到合适的催化剂。因此,传统的烃类蒸汽转化以甲烷蒸汽重整为主,在短期内,甲烷蒸汽转化仍然是最可行的工业制氢过程。 因为甲烷蒸汽重整反应是吸热反应,为了得到有效的转化率,甲烷蒸汽转化应该在800℃甚至更高温度下进行。为了增加氢气产量,这就经常伴随着下游的水汽转换过程。甲烷水蒸气重整反应需要的高温条件的能源消耗通常是通过焚烧天然气或者炼油厂的废料提供。为了获得可持续的制氢方式,利用可再生的太阳能作为加热源是最理想的。利用太阳能制氢的概念在1982年提出,随后对这个有希望的系统的详细研究推动了重整反应的进程。例如,Wrner和Tamme和Muir等证明了太阳能可以推动甲烷重整反应进行,并且在氧化铝表面负载稀有金属的催化剂作用下(钌、铑、钯)进行了测试。该体系显示在700℃下,甲烷的有效转化率大于40%甚至80%。然而,由于泡沫催化剂长期暴露在有太阳能集热器形成的极端温度下,这两项研究都显示反应后催化剂开裂或者降解。 大多数太阳能重整体系研究都集中在温度方面,尤其是在传统体系中的应用,因为高温的存在而忽略了这种方法的诸多优点。为了收集达到这种温度条件所必须的太阳能,需要承担昂贵的减少和维护费用,并且还要占用大量空间。另一种选择是利用简单的,不同于太阳能重整的方式,可以在较低温度下进行反应。除了运行成本低之外,低温系统排除了由昂贵合金制成的高温催化剂的使用。此外,由于WGS反应是放热反应,低温条件有利于WGS 反应的进行。如果WGS的程度在SRM催化剂的存在下可以被提高,就可能减少甚至消除下游WGS反应过程,从而达到最大的氢气产量。从催化剂的角度来看,较低温度条件也可以延长催化剂寿命,高温会引起金属催化剂在负载

Ni Al2O3在甲烷干气重整中的研究进展

Ni/Al2O3在甲烷干气重整中的研究进展 一、催化剂制备:通常情况下主要采用浸渍法和共沉淀法[1],(在相同Ni负载量下共沉淀法的活性更好),也有研究表明采用溶胶-凝胶法[2]制备的Ni/Al2O3有着更好的活性和稳定性。 浸渍法:将Al2O3粉末添加到Ni(NO3)2溶液中,加热搅拌,烘干,煅烧。 共沉淀法:Ni(NO3)2和Al(NO3)3溶液混合后,加入Na2CO3至PH=9,洗涤、干燥和煅烧。 溶胶-凝胶法:Ni(CH3COO)2和SBA溶解在乙醇中,在333 K,24 MPa 的超临界CO2中干燥,煅烧。 二、甲烷干气重整机理研究 CH4在金属表面活化分解,CO2主要在载体或者金属和载体的界面活化还原。普遍认为,过程如下: CH4+(5-x)*→CH x*+(4-x)H* CO2+H*→CO+OH* CH x*+OH*→CH x O*+H* CH x O*→CO*+x/2H2 CO*→CO+* 2H*→H2+2* 其中,控速步骤可能为:CH4的分解;CH x O的分解;CO的形成和脱附;CH4分解形成的C与O反应等步骤。这是因为:(1)不同的载体和助剂的影响;(2)转化反应进行中温度的影响。

采用Ni/Al2O3体系用于机理研究主要有几下几方面: 1、甲烷的活化: 陈等人[10]利用原位红外,发现随着温度的升高,CH4的吸附量增加,表面在Ni/Al2O3中呈现化学吸附形式,分别位于2242和2237 cm-1。 Osaki等人[4]利用脉冲表面反应速率分析(PSRA)认为H2的产生主要来源于CH4+(5-x)*→CH x*+(4-x)H*和CH x*+OH*→CH x O*+H*并且也是控速步骤。Verykios等人[5-6]利用同位素标记认为载体不同,对重整反应的机理有着一定影响,Ni/La2O3中认为,CH4的活化是控速步骤;而在Ni/γ-Al2O3中,CH x和CO2的活化的反应是控速步骤。以稀土氧化物和碱土氧化物做载体时,CO2与载体发生化学吸附,碳酸盐中间体的形成,加速CO2的活化,进而提高CH4的分解速率,故CH4的活化是控速步骤。并且甲烷的转化率在Ni/γ-Al2O3比在 Ni/La2O3中高,认为Al2O3中的活性位点有助于活化CH4。 2、CO2的活化 Verykios等人[5]认为CO2分解为CO主要通过形成碳酸盐中间产物,尤其以Ln2O3为例: CO2+Ln2O3→L n2O2CO3 CH4+(5-x)*→CH x*+(4-x)*+H* Ln2O2CO3+CH x*→2CO*+Ln2O3+x/2H2 Ln2O2CO3+C→2CO+Ln2O3 而CO2与载体表面的OH形成-HCO3的主要形式经原位红外检测主要有[13]:单配位、桥式、多配位和双齿结构碳酸氢盐。对于CO2

相关主题
文本预览
相关文档 最新文档