当前位置:文档之家› 600MW超临界汽轮机高压加热器泄漏原因分析及处理

600MW超临界汽轮机高压加热器泄漏原因分析及处理

600MW超临界汽轮机高压加热器泄漏原因分析及处理
600MW超临界汽轮机高压加热器泄漏原因分析及处理

600MW超临界汽轮机高压加热器泄漏原因分析及处理【摘要】某厂600mw超临界机组在商业运行2年后,3号高压加热器出现了管系严重泄漏。分析了造成3号高压加热器漏泄的各种因素,指出了管系的高温腐蚀和热冲击是造成高压加热器漏泄的主要原因。对此,从运行中的监视维护、高加的启停操作等方面提出了针对性的解决方案和预防措施,并对泄漏管进行了封堵,以及严控水质和采取正确的启停操作,以防较大的热冲击,同时建议将高加管束更换为耐高温管,从而有效地防止了漏管的蔓延,确保了高压加热器的安全稳定及经济运行。

【关键词】超临界汽轮机;高压加热器;管系漏泄;原因分析

1.引言

某电厂一期工程安装2×600mw超临界燃煤汽轮发电机组。汽轮机为上海汽轮机制造有限公司生产的n600一24.2/566/566型超临界、中间再热、反动、凝汽式汽轮机。机组热力系统采用单元制方式,共设有八段非调整抽汽分别供给三台高压加热器、一台除氧器和四台低压加热器。三台高压加热器均为东方锅炉集团有限公司制造的单列卧式表面u型管管板式结构加热器。投入商业运行2年后,3号高压加热器发生了发生管系泄漏。为此,从3号高压加热器的结构特点和泄漏情况及运行条件等几方面对漏泄原因进行了认真

分析,提出了解决方案和防范措施,为同类型机组高压加热器泄漏处理提供了有益借鉴。

2.高加的投入意义

660MW超超临界机组汽轮机真空系统节能运行分析

660MW超超临界机组汽轮机真空系统 节能运行分析 摘要:针对某厂660MW#7机组汽轮机真空系统设计布置及运行情况进行分析,为提高机组凝汽器真空,进一步降低机组煤耗,提出新的建议及改造方案,不断提高机组运行经济性。 关键词:抽真空系统;真空泵;节能改造。 1抽真空系统布置方式节能分析 1.1概述 我厂四期#7机组为超超临界、一次中间再热、四缸四排汽、单轴、凝汽式汽轮机,型号为N660-27/600/600,机组凝汽器为双背压汽轮机,给水泵汽轮机排汽入单独的凝汽器。每台主汽轮机设置3台50%机械水环式真空泵组,2台运行1台备用。在机组启动建立真空期间,3台泵同时投入运行。型号:2BW5353-0EL4平面泵。循环水系统采用带自然通风冷却塔的再循环扩大单元制供水系统。机组配循环水泵两台(每台机组配置一台定速电机和一台双速电机)。冷却塔一座,循环水供水和排水管各一根,回水沟一条。 1.1.1凝汽器介绍 本机组所采用凝汽器是表面式的热交换器,冷却水在管内流动过程中与管外的排汽进行热交换,使排汽凝结成水,同时使凝汽器形成真空。凝汽器采用双背压设计,即两个凝汽器在运行中处于两个不同的压力下工作。当循环水进入第一个凝汽器后吸收热量,水温升高,然后再进入第二个凝汽器(第一个凝汽器出口水温即为第二个凝汽器的入口水温)。由于凝汽器的特性主要取决于冷却水的温度,不同的水温对应不同的背压,于是在两个凝汽器中形成了不同压力,即低压凝汽器和高压凝汽器。双背压凝汽器的优点: ①根据传热学原理,双背压凝汽器的平均背压低于同等条件下单背压凝汽器的背压,因此汽机低压缸的焓降就增大了,从而提高了汽轮机的经济性。 图(1)凝汽器结构 ②双背压凝汽器的另一个优点 就是低背压凝汽器中的低温凝结水 可以进入高背压凝汽器中去进行加 热,既提高了凝结水温度,又减少了 高背压凝汽器被冷却水带走的的冷 源损失。低背压凝汽器中的低温凝结 水通过管道利用高度差进入高背压 凝汽器管束下部的淋水盘,在淋水盘 内,低温凝结水与高温凝结水混合在 一起,再经盘上的小孔流下,凝结水 从淋水盘孔中下落的过程中,凝结水 被高背压低压缸的排汽加热到相应 的饱和温度。在相同条件下,双背压 凝汽器的平均压力低于循环水并联 的单压凝汽器的压力,可提高循环效 率。凝汽器结构见图(1)。凝汽器两个壳体底部为连通的热井,上部布置有低压加热器、小汽机排汽管、减温减压器和低压侧抽气管等。凝汽器抽空气管布置在其管束区中心以抽吸其内的不凝结气体。高、低压凝汽器中的抽空气管采用串联结构,不凝结气体由高压侧流向低压侧,最后由低压凝汽器冷端引向真空泵。这种结构可减轻真空泵的负担,减少其备用台数,使系统简化。 1.1.2主机凝汽器规范 表(1):本机组凝汽器规范

汽轮机旁路系统

汽轮机旁路系统文献综述 沈启杰3100103300 车伟阳3100103007 金涛3100102964 郑忻坝3100103419 摘要: 汽轮机旁路系统在汽轮机整个运行过程当中是比较重要的一个系统,除了高旁、低旁中的减温、减压作用外,还有其他很多重要的功能。本文通过明确汽轮机旁路系统的定义概述,并阐述旁路系统的具体功能。重点介绍高压旁路系统和低压旁路系统的结构、控制等。最后通过两个实例,汽轮机旁路自启动系统APS和FCB工况下的汽机旁路控制系统来进一步研究汽轮机旁路系统。 关键词:旁路系统功能自启动FCB 定义: 中间再热机组设置的与汽轮机并联的蒸汽减压、减温系统。 概述: 汽机旁路系统采用两级气动高、低压串联旁路,利用压缩空气做为执行器的动力源。可以实现空冷汽轮机的冷态启动、正常停机、最小阀位控制、阀位自动、流量控制以及高、低压旁路快开、快关保护功能。允许主蒸汽通过高压旁路,经再热冷段蒸汽管道进入锅炉再热器,再通过低压旁路而流入空冷凝汽器,满足空冷凝汽器冬季启动及低负荷时的防冻要求。通过DEH汽轮机可以实现不带旁路(旁路切除)启动,即高压缸启动方式,又可以实现带旁路(旁路投入)启动,即高、中压缸联合启动方式。 一、旁路系统的作用、功能以及构成 旁路系统的作用有加快启动速度,改善启动条件;保证锅炉最低设备的蒸发量;保护锅炉的再热器;回收工质与消除噪音等。 旁路系统的主要功能又可分为以下四点: 1、调整主蒸汽、再热蒸汽参数,协调蒸汽压力、温度与汽机金属温度的匹配,保证汽轮机各种工况下高中压缸启动方式的要求,缩短机组启动时间。 2、协调机炉间不平衡汽量,旁路调负荷瞬变过程中的过剩蒸汽。由于锅炉的实际降负

加热器端差对经济性影响的分析

加热器端差对经济性影响的分析 在关于汽轮机组的经济性问题上人们往往把目光放在汽轮机的初终参数上,认为它们的变化对机组的经济性影响较大,这无疑是正确的。但分析整台机组的经济性仅限于此也是不全面的,还应关注汽轮机的回热系统,因为汽轮机的回热系统也有相当的节能潜力,现代热力发电厂的汽轮机组都无例外的采用了给水回热加热,回热系统既是汽轮机热力系统的基础,也是全厂热力系统的核心,它对机组和电厂的热经济性起着决定性的作用。 一、给水回热加热系统及其优点 给水回热加热指在蒸汽热力循环中从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热,提高工质在锅炉内吸热过程的平均温度,以提高机组的热经济性。给水回热加热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热耗率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减小了锅炉受热面的传热温差,从而减少了给水加热过程中的不可逆损失,在锅炉中的吸热量也相应减少。综合以上原因说明给水回热加热系统提高了机组循环热效率,因此,汽轮机采用回热加热系统对提高机组运行经济性有决定性的作用,而回热加热系统的运行可靠性和运行性能的优劣,将直接影响整套机组的运行经济性。 采用回热加热循环的优点 (1)提高热效率。由于抽汽的原因,排至凝汽器的蒸汽量减少,冷源损失减少,所以循环热效率提高。 (2)对于锅炉来说,因给水温度提高,锅炉热负荷降低,因此炉内换热面积减少,节约了钢材用量。 (3)由于中间抽汽,使汽轮机末几级的蒸汽流量减少,减少了汽轮机末几级的流通面积,使末级叶片的长度减少,解决了汽轮机末级叶片设计、制造的难题。 (4)由于进入凝汽器的蒸汽量的减少,凝汽器的热负荷减少,换热面积也减

给水温度原因分析

连城电厂#2机组给水温度低的原因分析 及高压加热器改造 乔万谋 甘肃电力公司连城电厂邮编:730332 【摘要】文章介绍了连城电厂#2汽轮机组高压加热器在制造、安装、检修和运行维护中存在的缺陷,分析了这些缺陷对高压加热器运行特性的影响和对给水温度的影响。并结合高加结构特点,在原有设备基础上进行了改造,改造后高压加热器端差减小,给水焓升增大,给水温度提高,效果明显。 【关键词】汽轮机高压加热器给水温度技术改造 1.概述 连城电厂安装两台北京重型电机厂生产的N100-90/535型凝汽式汽轮机,配套两台哈尔滨锅炉厂生产的HG410/100-10型锅炉,高压加热器为哈锅配套的GJ350-5、GJ350-6型高加,自82年投运以来,两台机组给水温度一直偏低,影响着全厂的经济运行。特别是随着运行小时数的增加,给水温度呈连年下降趋势,虽在历次设备大修中发现和处理了一些影响给水温度的重要缺陷,使给水温度有所好转,但都不能保证给水温度处比较稳定的状况。2000年#2机组大修前,我们对#2机#5、6高加进行全面的热力试验,并进行了认真分析,在大修中对高加各部分进行了仔细的检查,发现并处理了几处影响高加运行特性的缺陷,同时对高加结构进行了改进,使#5、6高加端差减小,给水焓升增大,给水温度提高,效果明显。 2.影响高加运行特性的因素及原因分析 额定负荷下设计工况和实测工况#5、6高加各运行参数如表所示。从额定负荷下设计工况 表:额定负荷设计工况和实测工况加热器运行参数 和实测工况的各主要参数可以看出,#5、6高加偏离设计工况的主要问题是端差较大,#5高加上端差10.4℃,下端差16.1℃,#6高加上端差8.5℃,下端差13.8℃,而加热器设计时一般选择其上端差为0℃,下端差为8℃。由于#6高加上端差的影响,造成给水温度降低8℃,下端差大于设计值5.8℃,其疏水进入#5高加,排挤二段抽汽,造成二段抽汽量减少。#5高加上端差使其出口的给水温度降低,势必导致加热不足的部分将在#6高加内部被加热,造成#6高加热负荷增大,#6高加用汽量增大,本可以用低压抽汽加热的部分给水焓升,而使用高压抽汽加热,降低了回热系统的经济性。 造成#5、6高加上、下端差增大的原因,经分析有以下几种因素: (1)、由于汽轮机相对内效率低于设计值,导致汽轮机的汽耗量增大,相应的给水流量也增大,从而引起高压加热器的热负荷增加。汽轮机制造厂保证给水温度达到设计温度的条件之一就是“汽轮机按制造厂设计热力系统运行,通过高压加热器的水量等于汽轮机的主蒸汽流量”。汽

汽轮机控制系统

汽轮机控制系统 包括汽轮机的调节系统、监测保护系统、自动起停和功率给定控制系统。控制系统的内容和复杂程度依机组的用途和容量大小而不同。各种控制功能都是通过信号的测量、综合和放大,最后由执行机构操纵主汽阀和调节阀来完成的。现代汽轮机的测量、综合和放大元件有机械式、液压式、电气式和电子式等多种,执行机构则都采用液压式。 调节系统用来保证机组具有高品质的输出,以满足使用的要求。常用的有转速调节、压力调节和流量调节3种。①转速调节:任何用途的汽轮机对工作转速都有一定的要求,所以都装有调速器。早期使用的是机械式飞锤式离心调速器,它借助于重锤绕轴旋转产生的离心力使弹簧变形而把转速信号转换成位移。这种调速器工作转速范围窄,而且需要通过减速装置传动,但工作可靠。20世纪50年代初出现了由主轴直接传动的机械式高速离心调速器,由重锤产生的离心力使钢带受力变形而形成位移输出。图 1 [液压式调速 器]为两种常用的液压式调速器的

工作原理图[液压式调速器],汽轮机转子直接带动信号泵(图1a[液压式调速 器])或旋转阻尼(图1b[液压式调速

器]),泵或旋转阻尼出口的油压正比于转速的平方,油压作用于转换器的活塞或波纹管而形成位移输出。②压力调节:用于供热式汽轮机。常用的是波纹管调压器(图 2 [波纹管调压 器])。调节压力时作为信号的压力作用于波纹管,使之与弹簧一起受压变形而形成位移输出。③流量调节:用于驱动高炉鼓风机等流体机械的变速汽轮机。流量信号通常用孔板两侧的压力差(1-2)来测得。图3 [压

差调节器]是流量调节常用压差调节器波纹管与弹簧一起受压变形而将压力差信号转换成位移输出。 汽轮机除极小功率者外都采用间接调节,即调节器的输出经由油动机(即滑阀与油缸)放大后去推动调节阀。通常采用的是机械式(采用机械和液压元件)调节系统。而电液式(液压元件与电气、电子器件混用)调节系统则用于要求较高的多变量复合系统和自动化水平高、调节品质严的现代大型汽轮机。70年代以前,不论机械式或电液式调节系统,所用信息全是模拟量;后来不少机组开始使用数字量信息,采用数字式电液调节系统。 汽轮机调节系统是一种反馈控制系统,是按自动控制理论进行系统动态分析和设计的。发电用汽轮机的调节工业和居民用电都要求频率恒定,因此发电用汽轮机的调节任务是使汽轮机在任何运行工况下保持转速基本不变。在图 4 [机械式调速系

660MW超超临界机组汽轮机轮机组轴系安装工艺控制研究

图1汽轮机轴承座布置图 低压缸的支撑系统 低压外缸与低压内缸无刚性连接,只在低压内缸猫爪支撑和中心导向销的位置采用波纹管进行补偿和密封。低压外缸直接支撑在凝汽凝汽器支撑在刚性基础上。低压内缸猫爪穿过低压外缸上面的四个孔支撑在落地式轴承座上。由于低压内缸和低压转子都支撑在轴运行时转子与内缸的径向间隙不会像传统机组那样受到支撑点温度高低膨胀不均的影响。 滑销系统设计点 整个轴系的死点在2号轴承,高压转子向车头方向膨胀 子连带着两根低压转子向发电机方向膨胀,本台机组中低压转子整体

图2轴系找中示意图 联轴器联接 本机组的所有联轴器现场都不需要绞孔,联轴器螺栓的安装在整个轴系的找中心完成后进行,此时联轴器已经被临时螺栓联接 径较正式螺栓小1mm左右),为保证联接前联轴器的同心度 。 图3盘车找中示意图 。 图4晃度测量百分表架设位置及托环使用示意图6)缓慢盘动发电机转子带动励磁机转子转动,测取水平位移表计的晃动值,为保证准确性至少有二遍重复数据出现后,以每次增加100~200Nm的力矩,对角地均匀地紧固联轴器螺栓一遍。紧固时先从需借正晃度的一组螺栓开始,如此反复紧固和测量后直至螺栓紧固力矩达到1250Nm左右,盘动转子多次测量晃度达到稳定状态后,可视晃度情况,以不同的力矩分别紧固螺栓,目的在于校准晃度。校准结束后,要求最小力矩值大于1660Nm,最大力矩不超过1930Nm即可,且最终测得晃度应小于0.05mm。 7)需要严格注意的是:螺栓紧固时,应逐步增大力矩,不可采用松 验收,确保达到设计要求 。 Science&Technology Vision 科技视界

。 其意义最根本的是我从这个实验中体会到科学实验要有严谨的治。 对教师素质的要求更加严格,师德建设也必须与时俱。 型圈设计完成后。 以提供高品质的服务为重点举措。

高加疏水端差大原因分析

#2机#1高加疏水端差大原因分析 一、#2机通流部分改造前后#1高加疏水温度对比 由附表可知,#2机通流部分改造前,负荷580MW时,#1高加疏水温度为253℃,进水温度为241℃,则改造前#1高加疏水端差为12℃;#2机通流部分改造后相同负荷下#1高加疏水温度约258℃,进水温度为236℃,则改造后#1高加疏水端差约22℃,同比#1高加疏水端差上升约10℃。 二、加热器疏水端差大理论原因 1、加热器运行水位低,导致疏水中带汽,疏水温度上升,疏水端差增大。 2、加热器运行中事故疏水动作,导致加热器水位下降,疏水温度及疏水端差上 升。 3、加热器进水温度降低,本级加热器吸热量自行增大(抽汽量增加),疏水温度 上升,疏水端差自行增大。 4、加热器内部汽流隔板损坏,影响蒸汽凝结,疏水段带汽,疏水温度上升,疏 水端差增大。 5、疏水温度测量有误,温度指示高。 三、目前#2机#1高加疏水端差大原因分析 1、#2机通流部分改造后,经与仪控就地核对#1高加水位,正常疏水定值定为700mm,就地实际水位约440mm,在正常水位线运行,说明#1高加正常运行水位控制正常。为再次验证定值是否偏低,本月19日进行了#1高加水位试验,相关数据如下: 试验中发现当水位上升至773mm 时,#1高加水位高“光字牌”报警发出,说明此时液位高开关已动作,实际水位已高,因此目前水位定值700mm比较合理。 2、#2机通流部分改造后,相同负荷下主汽压力下降约1.2MPa,三台高加的抽

汽压力必然下降,抽汽量必然相应增加。由附表可知,改造前、后#1高加抽汽压力下降约0.6MPa(改造前#2机超压运行,#1高加超压约0.4MPa),进水温度下降约5℃,温升下降约5℃,根据加热器自平衡原则,改造后#1高加的抽汽量必然增加,从而引起疏水温度上升、疏水端差增大,这也是#1高加疏水端差增大的主要原因。同理#2 四、结论及有关建议 1、#2机通流部分改造后相同负荷下#2/#1高加温升分别下降2℃/5℃,给水温度下降约5℃,#3高加大修中已更换,温升未变化(因为大修前#3高加已堵管约15%)。目前#2机满负荷时如#1高加抽汽门不节流,给水温度基本能达到额定值(小于设计值约2℃),但夏季因真空的下降、抽汽量的增加,#3高加事故疏水频繁动作,#1高加抽汽电动门将被迫节流,给水温度下降约7~8℃,影响经济性。 2、经试验及就地核实,目前#1高加的实际水位定值700mm正常,疏水端差约20℃,但目前水位能保证加热器的安全运行。此外仪控部已检查#1高加疏水温度测量、显示正常。 1、建议利用检修机会,对#1高加内部汽流隔板及疏水段进行检查,消除可疑 点,同时也可确认加热器的安全状况。 五、附#2机通流部分改造前后高加运行参数

主再热蒸汽旁路系统介绍

主再热蒸汽及旁路系统介绍 本机组的主蒸汽系统采用双管一单管—双管布置。主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,分别接至汽轮机高压缸进口的左右侧主汽门。汽轮机高压缸两侧分别设一个主汽门。主汽门直接与汽轮机调速汽门蒸汽室相连接.主汽门的主要作用是在汽轮机故障或甩负荷时迅速切断进入汽轮机的主蒸汽。汽轮机正常停机时,主汽门也用于切断主蒸汽,防止水或主蒸汽管道中其它杂物进入主汽门区域。一个主汽门对应两个调速汽门。调速汽门用于调节进入汽轮机的蒸汽流量,以适应机组负荷变化的需要。汽轮机进口处的自动主汽门具有可靠的严密性,因此主蒸汽管道上不装设电动隔离门。这样,既减少了主蒸汽管道上的压损,又提高了可靠性,减少了运行维护费用。 在锅炉过热器的出口左右主蒸汽管上各设有一只弹簧安全阀,为过热器提供超压保护。该安全阀的整定值低于屏式过热器入口安全阀,以便超压时过热器出口安全阀的开启先于屏式过热器入口安全阀,保证安全阀动作时有足够的蒸汽通过过热器,防止过热器管束超温。所有安全阀装有消音器。在过热器出口主汽管上还装有两只电磁泄压阀,作为过热器超压保护的附加措施.设置电磁泄压阀的目的是为了避免弹簧安全阀过于频繁动作,所以电磁泄压阀的整定值低于弹簧安全阀的动作压力。运行人员还可以在控制室内对其进行操作。电磁泄压阀前装设一只隔离阀,以供泄压阀隔离检修。 主蒸汽管道上设有畅通的疏水系统,它有两个作用。其一是在停机后一段时间内,及时排除管道内的凝结水。另一个更重要的作用是在机组启动期间使蒸汽迅速流经主蒸汽管道,加快暖管升温,提高启动速度。疏水管的管径应作合适选择,以满足设计的机组启动时间要求。管径如果太小,会减慢主蒸汽管道的加热速度,延长启动时间,而如果太大,则有可能超过汽轮机的背包式疏水扩容器的承受能力。 本机组的冷再热蒸汽系统也采用双管一单管—双管布置。汽轮机高压缸两侧排汽口引出两根支管,汇集成一根单管,到再热器减温器前再分成双管,分别接到锅炉再热器入口集箱的两个接口。主管上装有气动逆止阀(高排逆止门)。其主要作用是防止高压排汽倒入汽机高压缸,引起汽机超速。气动控制能够保证该阀门动作可靠迅速。 冷再热蒸汽管道上装有水压试验堵板,以便在再热器水压试验时隔离汽轮机,防止汽轮机进水。冷再

低压加热器系统

低压加热器系统

京能集团运行人员培训教程BEIH Plant Course 低加系统 LP Heater SYSTEM TD NO.100.X

目录 1.教程介绍 (8) 2.相关专业理论基础知识 (10) 3.系统的任务及作用 (14) 3.1.1.抽汽回热系统作用 14 3.1.2.加热器的作用 15 3.1.3.低加的作用 16 4.系统构成及流程 (17) 4.1低加系统的构成 17 4.2低加系统流程 17 5.设备规范及运行参数 (19) 6.设备结构及工作原理 (21) 6.1低压加热器结构 21 6.2低压加热器工作原理 25 6.3低压加热器的管板-U形管

7.控制及联锁保护 (29) 7.1低加水位报警保护设置 29 7.2五段抽汽逆止门前、五段抽汽电动门前 后疏水门的联锁与保护 (29) 7.3六段抽汽逆止门前、六段抽汽电动门前 后疏水门的联锁与保护 (30) 7.4五段抽汽电动门、逆止门的联锁与保护 30 7.5六段抽汽电动门、逆止门的联锁与保护 31 7.6#5、6低加出入口电动门联锁与保护 31 7.7#5、6低加旁路电动门的联锁与保护 31 7.87A/7B低加出、入口电动门的联锁与保 护 32 7.97A/7B低加旁路电动门的联锁与保护 32 8.基本运行操作 (33) 8.1低压加热器的投运

8.2低压加热器的停运 34 9.巡回检查标准 (35) 10.设备检修安全措施 (39) 11.常见异常故障 (41) 11.1加热器振动 41 11.2加热器水位高 42 11.3加热器端差大 43 12.安全警示(安规及25项反措要求) (44) 13.事故案例 (47) 某厂5段抽汽波纹补偿器爆裂 (47) 14.设备附图 (56) 14.1低加结构示意图 56 14.2低加系统就地画面 56 14.3#7低加就地图片 57

快冷装置在660MW超超临界汽轮机的应用

快冷装置在660MW超超临界汽轮机的应用 发表时间:2018-12-21T09:33:03.480Z 来源:《电力设备》2018年第23期作者:唐春飞胡小波 [导读] 摘要:介绍并分析了某电厂660MW超超临界汽轮机快冷装置投用操作及冷却效果,与自然冷却进行了比较,并提出了快冷系统投入的风险及控制措施,可为同类型机组快冷装置投入提供参考。 (重庆三峰百果园环保发电有限公司重庆 404100) 摘要:介绍并分析了某电厂660MW超超临界汽轮机快冷装置投用操作及冷却效果,与自然冷却进行了比较,并提出了快冷系统投入的风险及控制措施,可为同类型机组快冷装置投入提供参考。 关键词:超超临界;汽轮机;快冷装置;控制措施 1概述 某发电公司2×660MW机组汽轮机为上海汽轮机有限公司生产的超超临界、一次中间再热、单轴、四缸四排汽、凝汽式汽轮机(型号:N660-25/600/600)。汽轮机的高排蒸汽从高压缸排出后,经由带有逆止阀的冷再热管道到达再热器,再进入中压缸,中压缸排汽不经任何阀门直接进入低压缸。高压缸设有通向凝汽器的高排通风系统;如果高排通风系统开启,则高排逆止阀关闭,这就意味着高、中压缸的快冷系统可单独带真空泵运行。 为了能尽早对汽轮机进行检查,必须减少冷却过程的时间以提高汽轮机的可用性,所以很有必要投用快冷系统使冷却过程的时间尽量缩短。整个冷却过程必须考虑到机 组的轴向与径向间隙,还必须要考虑到机组各部件之间的最大允许温差,避免对汽轮机造成任何损伤。 2快冷系统介绍 2.1快冷装置 “汽轮机快速冷却”简称快冷,是指通过强迫方式快速冷却汽轮机内部部件,其作用是尽可能快地使汽轮机冷却以便尽早停用盘车,缩短汽轮机冷却时间。快冷的投用有效地提高了机组的可用性。我厂快冷装置如图一。 图一快冷装置 为了保证冷却的效果,很有必要投用真空泵使外界空气通过高压主汽门后、调节汽门前的快冷接口和中压主汽门后、调节汽门前的快冷接口按顺流方式进入通流部分进行快速冷却、为了避免环境中的颗粒进入汽轮机必须在快冷接口处安装滤网装置。整个快冷系统的设计和过程必须保证可以同时冷却所有的高温部件,例如调节汽门、转子、内缸、外缸等。 图二高压缸快冷空气流向 高压缸的结构设计决定了高压内、外缸夹层之间为高压第五级后的蒸汽(根据各个项目的差异,夹层蒸汽参数可能略有差别),因此在稳态的情况下高压内、外缸的整体的平均温度会比高压转子的平均温度高、因此在冷却过程中,高压转子会比高压内、外缸冷却得快,这就意味着。在快冷过程末期,模拟的转子温度要比外缸(进汽部分)上下半测量的温度低、这种情况对TSE(汽轮机应力分析)在高压缸进汽区域的测点同样适用。由于高压内、外缸之间的辐射,因此高压外缸对冷却速率的影响是很显著的。

水位与端差

水位影响 低水位:疏水器故障,导致加热器长期处于无水位运行状态,大量的汽水混合物沿着加热器进入疏水管道,造成管子强烈振动,同时加热器无水位运行还造成加热器的疏水管道及弯头的严重冲刷,管壁很快就变薄,以致在运行中,发生爆破,造成事故。加热器无水位运行就是指疏水调节器故障,本级加热器疏水逐级自流到下一级加热器,与此同时大量的蒸汽串入下一级加热器,造成机组的热经济性大幅度降低。其原因之一是高能级抽汽贬为低能级使用;其二加热器的传热恶化造成加热器出口水温降低。 1、高加低水位运行,高加疏水不能降低到进入下一级时的压力和温度,对下级的加热器进汽发生排挤现象,使得下级加热器水位波动大,高加疏水调节阀频繁动作,加热器的出口管附近的换热管容易发生断裂。 2、高加长期低水位或无水位运行,破坏了加热器疏水口的虹吸现象,高温高压蒸汽通过疏水口直接进入下一级加热器,由于上一级的蒸汽压力大大高于下一级加热器,高压蒸汽在通过疏水调节阀时,由于压力急剧下降,比容急剧增大,流速急剧增大(最大可增加原流速20倍),发生汽液两相流,这种汽液两相流严重时会破坏高加疏水调节阀的工况,对高加疏水管进行严重冲刷,并引起高加疏水管道振动,诱发管道支吊架断裂及管道爆破。 由于上一级疏水进入下级加热器时流速急剧增大,在下一级的高压加器入口处的换热管,发生严重振动并可引起断裂。 高水位:会减小有效传热面积,导致加热器性能下降(给水出口温度降低)。过高蒸汽带水,水冲击 1)疏水调节阀不正常运行或失常。 2)加热器之间压差不够。 3)加热器超载荷。 4)高压加热器换热管损坏。 5)钢管胀口松弛泄漏。 出水温度下降的原因有: 1)抽汽阀门未开足或补卡住。2)运行中负荷突变引起暂时的给水回热不足。3)给水流量突然增加。4)水室内的分程隔板泄漏。5)高压加热器给水旁路阀门未关严,有一部分给水走了旁路,或保护装置进、出口阀门的旁路阀等未完全关严而内漏。6)疏水调节阀失灵,引起水位过高而浸没管子。7)汽侧壳内的空气不能及时排除而积聚,影响传热。8)经长期运行后堵掉了一些管子,传热面因之减小。 什么是高压加热器的上、下端差?上端差过大、下端差过小有什么危害? (1)上端差是指高压加热器抽汽饱和温度与给水出水温度之差;下端差是指高加疏水与高加进水的温度之差; (2)上端差过大,为疏水调节装置异常,导致高加水位高,或高加泄漏,减少蒸汽和钢管的接触面积,影响热效率,严重时会造成汽机进水; (3)下端差过小,可能为抽汽量小,说明抽汽电动门及抽汽逆止门未全开;下端差大原因或疏水水位低,部分抽汽未凝结即进入下一级,排挤下一级抽汽,影响机组运行经济性,另一方面部分抽汽直接进入下一级,导致疏水管道振动。正

汽机旁路系统控制原理

一、旁路系统信号、联锁、保护及自动调节要求: (1)概述 当机组在启动或运行中,通过调节高压旁路、低压旁路压力调节阀开度和减温水流量,维持高压旁路、低压旁路出口蒸汽压力及温度至设定值。通过调节汽机本体减温减压器减温水流量,调节进入凝汽器旁通蒸汽温度至设定值。 (2)高压旁路的调节 a.高压旁路的压力调节是以主蒸汽压力为被调量,旁路减压阀作为调节手段,用改变减压阀的开度来维持主蒸汽压力。 b.高压旁路的温度调节是以旁路阀后温度为被调量,喷水减温作为调节手段,用改变喷水调节阀的开度、改变减温水量来维持再热器出口温度给定值。 (3)低压旁路的调节 a.低压旁路的压力调节是以再热蒸汽压力作为被调量,旁路减压阀作为调节手段,用改变减压阀的开度来维持按机组负荷变化的再热器出口压力给定值。 b.低压旁路的温度调节是以减压阀后的温度为被调量,喷水减温为调整手段,用改变喷水调节阀的开度、改变减温水量,使进入凝汽器前的温度位置在给定值以下。 (4)高压旁路联锁保护: a.减压阀和喷水减温阀开启联锁,即减压阀一旦打开,喷水减温阀要跟踪或者稍微提前开启;喷水减温阀的开度根据高压旁路阀后温度与给定值的差值进行调节。 b.高压旁路阀后温度超过一定限度时报警,过高时关闭阀门。 c.主蒸汽压力或者升压率超过限定值,旁路阀开启。 d.汽轮机跳闸,减压阀快速开启。 (5)低压旁路联锁保护 a.凝汽器真空低、温度高、超过限定值时,减压阀快关。 b.减压阀与喷水减温阀开启联锁。 c.减压阀与布置在凝汽器喉部的喷水减温阀开启联锁。 d.减压阀后流量超过限值时,减压阀立即关闭。 e.汽轮机调整,减压阀快速开启。 (6)高、低压旁路联锁保护 a.高旁减压阀开启,低旁减压阀即投自动或者有相应开度。 b.低旁减压阀故障,经过设定的延迟时间后仍不能开启,则高旁减压阀立即关闭。 c.其他的联锁保护和报警信号,如系统失电、油压低或变送器故障等,系统立即能自动切成手动,并报警。

高压加热器

高压加热器泄漏原因分析及防止措施 高压加热器系统是火电机组的主要热力系统之一。长期以来,由于设计、制造、安装和运行等方面的原因,加热器泄漏的情况屡有发生,特别是大机组的高压加热器,情况尤为严重。因高压加热器系统泄漏导致故障停运的次数已占整个高压加热器故障停运的次数的6 0 % 以上,成为影响大机组等效可用系数的第二位因素,仅次于锅炉爆管。这不仅影响大机组的稳发,满发,而且因给水温度下降,使整个机组的热效率降低,影响了大机组高效低耗优越性的正常发挥。随着当前电力企业内部挖潜增效工作的深入开展,在运行中及早发现高压加热器系统的泄漏,尽早采取措施,把故障的损失降低到最小程度,以提高整个火电厂循环的经济效益,是当前摆在我们面前的紧迫任务之一。 1 高压加热器泄漏原因分析 1.1 高压加热器启停时过大的热冲击有的机组由于高压加热器不能随机启动,使其在每次启动过程中,都受到较大的热冲击,导致加热器水室隔板泄漏。按规程规定要求高压加热器进汽电动门应间歇开关,而实际操作过程中电动门并不具备这一功能,在高压加热投运和解列时,电动门的开关是在短时间内完成的。由于机组启停频繁,启停时其温度变化率超过规定的允许值,结果使高压加热器内部管子及管板

温度急剧变化,从而产生一定的交变热应力,在这种应力的作用下,管子受到疲劳损伤破坏。 1.2 高压加热器疏水水位不稳定高压加热器运行时,其疏水水位的热工测量信号与实际的水位不符,即实际水位在要求范围内,而测量的水位信号却反映偏高或偏低,造成所谓的“虚假水位”,当反映偏高时,危急疏水电动门自动开启,导致高加低水位或无水位运行;当反映偏低时,危急疏水电动门自动关闭,疏水水位逐步升高,导致高水位保护动作,危急疏水电动门又再次开启,甚至由于测量水位信号误动而导致高压加热器解列。无论是测量水位反映偏高或偏低,均使得危急疏水电动门频繁开关,使管束受到不应有的冲刷,震动,管板过热,从而加速了管子的损坏程度。通过观察,高压加热器管子断裂处均在与管板连接位置。 1.3 高加热器危急疏水调节门不严机组为了提高安全运行可靠性,高压加热器装设了危急疏水系统,但由于国产疏水调节门质量不过关,造成内漏,不能保持一定的疏水水位,致使管子长时间受到汽水冲刷振动以及管板过热。 1.4 高压进汽门不严高压加热器解列时,由于进汽门不严,仍有部分加热蒸汽漏入,造成管子过热,导致强度降低。 1.5 损坏断裂管子对周围的破坏高压加热器内损坏断裂的管子端部处于自由状态,在高速气流的冲击下自由摆动,不断碰磨撞击断裂管周围的管子,扩大了周围管子的破裂泄

660MW超临界汽轮机设计说明

660MW超临界汽轮机设计说明 1 概述 哈汽公司660MW超临界汽轮机为单轴、三缸、四排汽、一次中间再热、凝汽式机组。高中压汽轮机采用合缸结构,低压积木块采用哈汽成熟的600MW超临界机组积木块。应用哈汽公司引进三菱技术制造的1029mm末级叶片。机组的通流及排汽部分采用三维设计优化,具有高的运行效率。机组的组成模块经历了大量的实验研究,并有成熟的运行经验,机组运行高度可靠。 机组设计有两个主汽调节联合阀,分别布置在机组的两侧。阀门通过挠性导汽管与高中压缸连接,这种结构使高温部件与高中压缸隔离,大大的降低了汽缸内的温度梯度,可有效防止启动过程缸体产生裂纹。主汽阀、调节阀为联合阀结构,每个阀门由一个水平布置的主汽阀和两个垂直布置的调节阀组成。这种布置减小了所需的整体空间,将所有的运行部件布置在汽轮机运行层以上,便于维修。调节阀为柱塞阀,出口为扩散式。来自调节阀的蒸汽通过四个导汽管(两个在上半,两个在下半)进入高中压缸中部,然后通入四个喷嘴室。导汽管通过挠性进汽套筒与喷嘴室连接。 进入喷嘴室的蒸汽流过冲动式调节级,做功后温度明显下降,然后流过反动式高压压力级,做功后通过外缸下半上的排汽口排入再热器。 再热后的蒸汽通过布置在汽缸前端两侧的两个再热主汽阀和四个中压调节阀返回中压部分,中压调节阀通过挠性导汽管与中压缸连接,因此降低了各部分的热应力。 蒸汽流过反动式中压压力级,做功后通过高中压外缸上半的出口离开中压缸。出口通过连通管与低压缸连接。 高压缸与中压缸的推力是单独平衡的,因此中压调节阀或再热主汽阀的动作对推力轴承负荷的影响很小。 汽轮机留有停机后强迫冷却系统的接口。位于高中压导汽管的疏水管道上的接头可永久使用,高中压缸上的现场平衡孔可临时使用。 汽轮机的外形图及纵剖面图见图1。

汽轮机旁路系统

第八章旁路系统 大型中间再热机组均为单元制布置,为了便于机组启停、事故处理及特殊要求的运行方式,解决低负荷运行时机炉特性不匹配的矛盾,基本上均设有旁路系统。所谓的旁路系统是指锅炉所产生的蒸汽部分或全部绕过汽轮机或再热器,通过减温减压设备(旁路阀)直接排入凝汽器的系统。 1.旁路系统的作用 1)缩短启动时间,改善启动条件,延长汽轮机寿命 2)溢流作用:即协调机炉间不平衡汽量,溢流负荷瞬变过程中的过剩蒸汽。由于锅炉的实际降负荷速率比汽机小,剩余蒸汽可通过旁路系统排至凝汽器,使机组能适应频繁启停 和快速升降负荷,并将机组压力部件的热应力控制在合适的范围内 3)保护再热器:在汽轮机启动或甩负荷工况下,经旁路系统把新蒸汽减温减压后送入再热器,防止再热器干烧,起到保护再热器的作用 4)回收工质、热量和消除噪声污染:在机组突然甩负荷(全部或部分负荷)时,旁路快开,回收工质至凝汽器,改变此时锅炉运行的稳定性,减少甚至避免安全阀动作 2.机组旁路系统型式 1)两级串联旁路系统 由高压旁路和低压旁路组成,这种系统应用广泛,特点是高压旁路容量为锅炉额定蒸发量的30%~40%,对机组快速启动特别是热态启动更有利。 2)两级并联旁路系统 由高压旁路和整机旁路组成,高压旁路容量设计为10%~17%,其目的是机组启动时保护再热器,整机旁路容量设计为20%~30%,其目的是将各运行工况(启动、电网甩负荷、事故)多余蒸汽排入凝汽器,锅炉超压时可减少安全阀动作或不动作。 3)三级旁路系统 由高压旁路、低压旁路和整机旁路组成,其优点是能适应各种工况的调节,运行灵活性高,突降符合或甩负荷时,能将大量的蒸汽迅速排往凝汽器,以免锅炉超压,安全阀动作。但缺点是设备多、系统复杂、金属耗量大、布置困难等。 4)大旁路系统 锅炉来的新蒸汽绕过汽轮机高、中、低压缸经减温减压后排入凝汽器,其优点是系统简单、投资少、方便布置、便于操作;缺点是当机组启动或甩负荷时,再热器内没有新蒸汽通过,得不到冷却,处于干烧状态。 3.旁路容量选择 旁路系统容量是指额定参数时旁路系统的通流量与锅炉额定蒸发量的比值, 即:K=Do/Dn×100% 式中K-旁路容量 Do-额定参数时旁路系统的流量

高压加热器泄漏原因分析及预防措施

高压加热器泄漏原因分析及预防措施 一、设备概述 我厂国产优化改进型300MW汽轮机的高压加热器,采用三台引进福斯特——惠勒公司技术制造的单列卧式表面加热器。高压加热器带有内置式蒸汽冷却段和疏水冷却段,如图一。蒸汽冷却段利用汽轮机抽气的过热段来提高给水温度,使给水温度接近或略高于该加热器压力下的饱和温度。凝结段是利用蒸汽凝结的潜热加热给谁。疏水冷却段是把离开凝结段的疏水热量传给进入加热器的给水,从而使疏水温度降到饱和温度下。 二、高压加热器泄漏后对机组的影响 高压加热器是利用机组中间级后的抽汽,通过加热器传热管束,使给水与抽汽进行热交换,从而加热给水,提高给水温度,是火力发电厂提高经济性的重要手段。由于水侧压力(20MPa)远远高于汽侧压力(4MPa),当传热管束即U型管发生泄漏时,水侧高压给水进入汽侧,造成高加水位升高,传热恶化,具体对机组的影响如下: 1.高加泄漏后,会造成泄漏管周围管束受高压给水冲击而泄漏管束增多,泄漏更加严重,必须紧急解列高加进行处理,这样堵焊的管子就更少一些。 2.高加泄漏后,由于水侧压力20MPa,远远高于汽侧压力4MPa,这样,当高加水位急剧升高,而水位保护未动作时,水位将淹没抽汽进口管道,蒸汽带水将返回到蒸汽管道,甚至进入中压缸,造成汽轮机水冲击事故。 3.高加解列后,给水温度降低,由280℃降低为170℃,从而主蒸汽压力下降,为使锅炉能够满足机组负荷,则必须相应增加燃煤量,增加风机出力,从而造成炉膛过热,气温升高,更重要的是标准煤耗约增加12g/kwh,机组热耗相应增加 4.6%,厂用电率增加约0.5%。 4.高加停运后,还会使汽轮机末几级蒸汽流量增大,加剧叶片的侵蚀。 5.高压加热器的停运,还会影响机组出力,若要维持机组出力不变,则汽轮机监视段压力升高,停用的抽汽口后的各级叶片,隔板的轴向推力增大,为了机组安全,就必须降低或限制汽轮机的功率,从而影响发电量。 6.高加泄漏,每次处理顺利时需要30小时,系统不严密时,则工作冷却时间加长,直接影响高加投运率的目标。 三高加泄漏的现象 1.高加水位高信号报警,泄漏检测仪亦报警,另外还有高加端差增大,远远高于正常值。 2.由于高加泄漏,水侧大量漏入汽侧,通过疏水逐级自流入除氧气,为使汽包水位正常,则给水泵转速增加,给水流量增大。 3.高加泄漏后,由于传热恶化,则造成给水温度降低。 四高加泄漏原因分析 1.运行中高加端差调整不及时。 300MW机组运行规程规定,高压加热器下端差正常为5.6——8℃。(端差是指高压加热器疏水出口温度与给水进口温度的差值。) 由于运行人员责任心不强,在疏水调节装置故障或其他原因造成高加水位大幅度波动的情况下,没有及时发现,未能及时处理,致使高加端差波动较大。 2.高加受到的化学腐蚀。 300MW机组给水品质规定:给水容氧<7μg/L,PH值为9.0——9.4. 给水容氧超标,将造成高加U型钢管管壁腐蚀而变薄,钢管与管板间的胀口受腐蚀而松弛,经长期运行,寿命逐渐缩短。 3.负荷变化速度快给高压加热器带来的热冲击。 在机组加减负荷时,负荷变化速度过快,相应抽汽压力、抽汽温度迅速变化,在给水温

汽机旁路系统介绍

汽机旁路系统介绍 一,旁路系统的基本组成: 汽机旁路系统是以汽机高、低压旁路控制阀门为中心,为了实现阀门的控制动作而配置的包括阀门本体、液压系统和定位控制系统等组成的一套独立的系统。它主要由阀门本体、液压及液压控制系统和阀门定位控制系统三部分组成。1,阀门本体: 高压旁路系统中共有3个阀门,1个高旁压力控制阀,1个高旁减温水控制阀和1个高旁减温水隔离阀。 低压旁路系统中共有6个阀门,2个低旁压力控制阀,2个低旁减温水控制阀和2个低旁减温水隔离阀。 下图为高低压旁路阀门在系统中的示意图: 2,液压及液压控制系统: 液压系统由独立的液压供油油站、液压执行机构、液压执行元件以及油管路等组成;液压控制系统是用来控制液压油稳定在一定的压力范围,在故障状况下为液压系统提供保护,并给出报警信号的系统。液压和液压控制系统为阀门的控制动作提供稳定的液压动力,并且配合定位控制系统完成阀门的控制动作。 下图为高低压旁路系统液压系统图:

3, 定位控制系统: 根据DCS 给出的阀位指令信号,与位置反馈信号进行对比,通过液压执行元件(比例阀),对阀门实行定位控制。并且将阀门的实际阀位反馈及开关量信号反馈给DCS 。

二,液压及液压控制系统: 1, 油站: 油站主要由以下部件组成: 1)油箱,1a )液位计,1b )球阀,1c )空气过滤器,2.1) 2.2) 齿轮泵,3.1) 3.2) 泵支架,4.1)4.2)弹性联轴器,5.1) 5.2) 电机,6.1) 6.2) 止回阀,7.1) 7.2)高压软管,8,循环阀和压力释放阀,9)压力表,9a )压力表软管,11)电子压力开关,11a )压力表软管,12)皮囊式蓄能器,13)安全及关闭块,14)压力表,16)压力过滤器,19)双温度开关,27)液位开关

上汽660mw超超临界汽轮机DEH温度准则

1DEH温度准则 (1)X准则 一方面,为了提高机组的经济性,应尽可能快的启动;另一方面,蒸汽参数及汽轮机热应力必须保持在规定值内,以延长汽轮机使用寿命。运行状态改变时,进入汽轮机的蒸汽参数及传热量也会相应改变。为了限制汽轮机的热应力,汽轮机应力评估TSE使用可调整的温度准则——X准则判断机组是否能够接受运行方式的改变,并将判断后的结果作为允许条件送到汽轮机启动顺控子组SGC,以决定汽轮机是否能够进行相应的操作。其中,X1准则和X2准则用于判断是否允许打开主汽门对主调门进行暖阀;X4、X5和X6准则用于判断是否允许打开主调门并冲转至360r/mim进行低速暖机;X7A和X7B准则用于判断在360 r/mim时汽轮机暖机程度是否合适、是否允许继续升速至3000r/mim;X8准则用于判断在3000r/mim时汽轮机暖机程度是否合适、是否允许汽轮机并网。 a)X1准则 X1准则是在冷态启动时使主蒸汽温度高于汽轮机阀体温度,避免汽轮机阀体被主蒸汽冷却。即在打开汽轮机主汽门对主调门暖阀时,主蒸汽温度要比主调门阀体温度高一定值。而在极热态启动时,允许主蒸汽温度低于主调门阀体温度。 X1准则为:θMS>θmCV + X1 式中, θMS为锅炉侧过热器出口的主蒸汽温度,由A、B侧主蒸汽管道蒸汽温度4 个测点小选得出;θmCV为汽轮机主调门阀体50%深度(中心点)温度,由主调门A、主调门B阀体温度大选得出;X1为允许的最低温差。

θmCV=0,θMS>100; θmCV=550,θMS>530; θmCV=600,θMS>530; b)X2准则 X2准则是为确保主蒸汽的饱和温度低于汽轮机主调门阀体温度一定值,避免主汽门打开后,主调门温升过快。冷态启动时,如果汽轮机主调门阀体的温度低于主蒸汽的饱和温度,打开主汽门后,主蒸汽与主调门接触,将以凝结放热的方式加热主调门阀体。由于凝结放热的放热系数很大,主调门阀体内表面的温度很快上升到主蒸汽的饱和温度。如果阀体内部温度过低,就会在阀体内部产生很大的热应力。所以要使主蒸汽的饱和温度低于主调门阀体内部温度。 X2 准则为:θSatSt<θmCV + X2 式中,θSatSt为主蒸汽的饱和温度,通过汽轮机前主蒸汽压力计算得到。汽轮机前主蒸汽压力由A、B侧主蒸汽管道蒸汽压力4个测点大选得出;X2为允许的最高温差,是θmCV 对应的允许上限温差Δθu perm mCV的1.3倍,即:X2=1.3×Δθu perm mCV。

汽轮机润滑油系统污染控制及管理实用版

YF-ED-J4819 可按资料类型定义编号 汽轮机润滑油系统污染控制及管理实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

汽轮机润滑油系统污染控制及管 理实用版 提示:该管理制度文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 摘要:汽轮机油系统是汽轮机的重要组成 部分,在运行中出现故障将严重影响机组的安 全,因此保障油系统的安全运行,加强汽轮机 润滑油系统污染控制及管理显得尤为重要。论 述了基建期间的汽轮机润滑油污染防护及生产 期间的汽轮机润滑油监督管理及完善的技术措 施。 关键词:顶轴油抗燃油油系统冷 油器油循环 1. 概述

油系统是汽轮机的重要组成部分,汽轮机油系统主要包括润滑油系统、发电机密封油系统、顶轴油系统和抗燃油(电液调节)系统。主要起润滑、冷却、调速和密封作用,即向机组各轴承提供足够的润滑油和向机械超速脱扣及手动脱扣装置提供控制用压力油,在机组盘车时还向盘车装置和顶轴装置供油。汽轮机润滑油系统的清洁程度是影响机组安全与经济运行的重要因素,引起油质劣化的主要原因是水份和金属微粒对其造成污染,同时,由于空气的混入,加速了油液氧化,产生二次污染。因汽轮机油系统导致机组故障、设备损坏的事故屡有发生,特别是在基建调试阶段,此类事故更易出现。因此,做好基建期间的汽轮机润滑油污染防护及生产期间的汽轮机润滑油监督管

相关主题
文本预览
相关文档 最新文档