当前位置:文档之家› 高压加热器端差对300MW机组经济性影响的分析

高压加热器端差对300MW机组经济性影响的分析

高压加热器端差对300MW机组经济性影响的分析
高压加热器端差对300MW机组经济性影响的分析

高压加热器端差对300MW机组经济性影响的分析

摘要

阐述了300MW机组高压加热器的运行状况和存在的问题,分析高压加热器端差大的原因及端差对机组经济性的影响,提出改善高加运行状况的措施,分析比较高加运行状况改善后的性能指标。

关键词:高压加热器;端差;300MW机组;性能指标

Economic Analysis of High Temperature Difference of HP Heater in 300MW Unit Thermal Cycl

Abstract

This article has expounded the operational condition and existent problems of HP heater of 30oMW turbine unit.It also analysed the cause of high temperature difference and eeonomie effect of temperature differenee on turbine performance.The article has put forward measures to advance HP heater operation.At last,it compare the performance characteristics of HP heater before and after improvement。

Key words:HP heater;Temperature difference;300MW turbine unit;Perform ance characteristics

目录

0 前言 (5)

1 高加运行状况 (5)

2 高加存在的问题及端差大的原因 (6)

2.1 高加泄漏堵管,影响高加的传热效果,导致上下端差加大错误!

未定义书签。

2.2 运行参数偏离设计参数较大.............. 错误!未定义书签。

2.3 加热器水位的影响...................... 错误!未定义书签。

2.4 管束表面污垢.......................... 错误!未定义书签。

2.5 空气积聚使传热效率降低................ 错误!未定义书签。

2.6 阀门不严.............................. 错误!未定义书签。

4 加热器端差对机组经济性的影响............... 错误!未定义书签。

5 高加完善运行状况后的性能数据.............. 错误!未定义书签。9

5.1泄漏高加更换后的性能指标 .............. 错误!未定义书签。

5.2 高压加热器水位调整前后的性能数据..... 错误!未定义书签。1

6 结束语.................................... 错误!未定义书签。1

0 前言

回热加热器是热力系统的重要设备之一,其运行状况不仅影响到火电机组的经济性,还影响到机组的安全运行。如果高压加热器运行中的端差远高于设计值,以及由于内部损坏导致停运,对机组的热经济性影响很大。另外,还可能伴随着产生受热面超温、轴向推力增大,甚至汽轮机水冲击等严重危害机组安全的现象。通过高加泄漏事故的处理和分析,对高加泄漏的现象、原因及预防措施进行了探讨和总结。通过试验和调整,分析原因,制定措施,对加热器进行治理,使其端差接近设计值,对节能改造,改进运行操作和管理,提高装置的经济性,具有十分重要的作用。

1 高加运行状况

高压加热器系统是火电机组的主要热力系统之一。长期以来,由于设计、制造、安装和运行等方面的原因,加热器泄漏的情况屡有发生,特别是大机组的高压加热器,情况尤为严重。因高压加热器系统泄漏导致故障停运的次数已占整个高压加热器故障停运的次数的6 0 % 以上,成为影响大机组等效可用系数的第二位因素,仅次于锅炉爆管。这不仅影响大机组的稳发,满发,而且因给水温度下降,使整个机组的热效率降低,影响了大机组高效低耗优越性的正常发挥。随着当前电力企业内部挖潜增效工作的深入开展,在运行中及早发现高压加热器系统的泄漏,尽早采取措施,把故障的损失降低到最小程度,以提高整个火电厂循环的经济效益,是当前摆在我们面前的紧迫任务之一。衡量高压加热器性能的主要指标有给水温升、给水端差及管、壳程介质压降等,在加热器的正常运行中,高加给水上、下端差大于设计值的现象很普遍,降低了加热器的效率,使机组热耗和发、供电煤耗上升。目前已运行的许多机组,高压加热器的实际性能数据,都与设计值有较大出入。华能德州电厂3号机组是东方汽轮机厂生产的N300—16.7/537/537型亚临界机组,其三台高加为哈尔滨锅炉厂制造,于1993年l2月投产。下表1、表2列出高压加热器的设计数据和运行数据。比较表1和表2可以看出,在相同负荷下,三台高加的给水端差和疏水端差,以及各高加温升和总温升都与设计值偏离较大,导致机组的经济性下降,而且三台高加因为泄漏严重,堵管率分别为9.1%、24.77%、12.23%,均超过或接近设计值,减弱了加热器传热效果,使性能均达不到设计要求,而由于高加泄漏严重导致高加解列,更对机组经济性存在较大影响。

表1 高压加热器性能设计数据

表2 华德电厂3号机组高加性能运行数据

2高加存在的问题及端差大的原因

2.1 高加泄漏堵管,影响高加的传热效果,导致上下端差加大

(1)高加设计、制造存在缺陷。主要表现在:高加内部管系的管子与管板之间采用机械胀管、管口焊接的方式,胀接力与胀接长度不够,制造工艺质量较差。

(2)主要表现在:泄漏管在堵管前与管堵头未进行绞孔拂配,焊接前未进行预热处理,焊接工艺差。堵管焊口部位再泄漏现象频繁发生,保护性堵管带有较大的盲目性,许多管子被误堵,导致堵管数量大增,而由于焊接工艺差,使得保护性堵管焊口再泄漏,又对相临近的正常管子造成损害,以至于恶性循环,造成大量堵管。

(3)高加启停时,给水温度变化率超标。高加是发电厂承压最高的容器,承受着过热蒸汽和给水间的温差和压差,其工作条件很恶劣,其中又以管子与管板连接处的工作条件最为恶劣,在高加投运和停运过程中,若操作不当,管子与管板结合面受到很大的温度冲击,会产生很大的热应力叠加在机械应力上,当这种应力过大或多次交变,就会损坏这个结合面,使原有缺陷扩大,造成管子端口泄漏。

2.2 运行参数偏离设计参数较大

由于机组设计和制造缺陷,以及运行调整和系统泄漏的原因,机组运行的热力性能指标达不到设计值,使得机组在偏离设计值较大的工况下运行。在额定负荷下,进汽量是一定的,放出的热量基本一定,当给水流量增大时,温升下降,从而导致高加上下端差加大。

2.3 加热器水位的影响

高压加热器在“基准”水位运行是保证加热器性能的最基本条件,当水位降低到一定程度,疏水冷却段水封丧失,蒸汽和疏水一起进入疏冷段,疏水得不到有效冷却,经济性降低;更严重的是,由于蒸汽冷却段的出口在疏冷段的上面,水封丧失后,造成蒸汽短路,从蒸汽冷却段出来的高速蒸汽一路冲刷蒸汽冷却段、凝结段,最后在疏水冷却段水封进口形成水中带汽的两相流,冲刷疏水冷却段,引起管子振动而损坏。同时,由于加热器疏水逐级自流到下一级,本级疏水的汽液两相流大量串入下一级加热器,排挤了下一级加热器的抽汽量,使高能级抽汽变为低能级使用,造成机组的经济性大幅度降低。高加低水位或无水位运行,最显著的特征是疏水端差大,根据设计书,如疏水温度高于加热器进水温度11.1—27.8℃(随负荷变化),则该冷却段部分进汽。

高压加热器疏水水位不稳定高压加热器运行时,其疏水水位的热工测量信号与实际的水位不符,即实际水位在要求范围内,而测量的水位信号却反映偏高或偏低,造成所谓的“虚假水位”,当反映偏高时,危急疏水电动门自动开启,导致高加低水位或无水位运行;当反映偏低时,危急疏水电动门自动关闭,疏水水位逐步升高,导致高水位保护动作,危急疏水电动门又再次开启,甚至由于测量水位信号误动而导致高压加热器解列。无论是测量水位反映偏高或偏低,均使得危急疏水电动门频繁开关,使管束受到不应有的冲刷,震动,管板过热,从而加速了管子的损坏程度。通过观察,高压加热器管子断裂处均在与管板连接位置。

2.4管束表面污垢

加热器长期运行后,会在管子内外表面形成以氧化铁为主的污垢,降低了传热效果,增加压力损失,使高加出口温度降低,造成高加给水端差大。

2.5空气积聚使传热效率降低

加热器中不凝结气体的来源是加热器停用、检修时滞留在加热器壳侧和水侧的空气,抽汽或疏水带入或析出的不凝结气体。不凝结气体的存在降低了传热效果,增大了加热器的端差。

2.6阀门不严

高加热器危急疏水调节门不严机组为了提高安全运行可靠性,高压加热器装设了危急疏水系统,但由于国产疏水调节门质量不过关,造成内漏,不能保持一定的疏水水位,致使管子长时间受到汽水冲刷振动以及管板过热。高压进汽门不严高压加热器解列时,由于进汽门不严,仍有部分加热蒸汽漏入,造成管子过热,导致强度降低。

3 加热器端差对机组经济性的影响

回热加热器是热系统的重要设备之一。其运行情况对机组安全性、经济性影响较大,主要表现在加热器的端差(包括运行中的加热不足)、压损、散热损失、切除加热器和给水部分旁路等因素对热经济性的影响。定量分析这些因素对热经济性的影响,是节能改造、

完善热力设备、改进运行操作和管理的一项重要技术工作,对提高装置热经济性具有十分现实的意义。在这些因素中,传热端差的影响尤其大。加热器端差是指加热蒸汽的饱和温度与加热器出口水温之差。利用等效热降理论,分析高压加热器端差大导致给水加热不足,对机组经济性的影响。具体到一台机组和一台高压加热器,端差对机组经济性的影响主要取决于端差的大小、相邻加热器抽汽能位的能级差和机组本身的经济指标高低。华德电厂3号机组,高压加热器上下端差对机组经济性的影响如表 3所示。该机组三台高加的性能均达不到设计要求,而且与设计值偏差较大,高加堵管数量多,均超过或接近允许堵管率,导致上下端差大,疏水温度高。在高加正常投运中,由于高加性能差距影响,较之设计工况,热耗率上升了0.868%,发电煤耗上升3.366g/kW.h ,表3中的数据适用于同类型、同容量、经济指标相近机组的分析计算。

表3 华德3号机高加性能对机组经济性影响

4 高加端差大的解决措施

在机组实际运行中,根据高加端差大的具体表现形式,具体分析原因, 提出详细的处理措施。

( 1 )高加管系或管板泄漏是高压加热器运行中,比较大的缺陷,应该停机处理,制定详细的措施步骤和工艺,对加热器进行查漏、堵管、焊接,对泄漏严重的、堵管率超过设计值的加热器,应更换最新设计的加热器或铜管。

( 2 ) 检查高加水位和疏水调节阀是否正常,调整加热器水位在正常范围,更换泄漏的疏水调整阀。

( 3 )有效地排放不凝结气体。在高加投入前,全部打开高加上的排空气门,等高加运行正常后,再关闭应关闭的空气门,保留排汽到除氧器的空气门。运行中要保证放空气管路系统的畅通,为保证排气节流孔前后压差,不宜将各排汽管并联接到除氧器,应分别将各加热器排汽管接到除氧器。

( 4 ) 严格按温升及温降速率启、停高加,防止热冲击。高压加热器的温升率不宜大于 3℃/min ,温降率不宜大于1.7℃/min。

( 5 ) 避免严重过负荷工况运行。过负荷运行时,高加进汽量加大,蒸汽在过热蒸汽冷却段中速度增大很多,激发局部管束振动,造成局部管束疲劳损坏。

( 6 )严格控制给水ph值和含氧量,减少钢管表面的腐蚀。

5 高加完善运行状况后的性能数据

5.1 泄漏高加更换后的性能指标

华德电厂3号机组高压加热器由于堵管率已经超过允许值,考虑对运行的影响和高加更换费用、检修费用等,决定更换1号、2号、3号高压器。表4列出并比较了高加更换前后的经济指标和更换后的设计指标。

比较更换后额定工况下,高加性能试验结果和设计数据,可以看出:1号、2号高加给水端差都比设计值小,3号高加给水端差接近设计值;1 号、3号高加疏水端差比设计值小,2号高加疏水端差大于设计值;试验的高加给水压降大于设计值;试验的高加给水温升小于设计值。比较高加更换前后的试验结果,可以看出:高加更换以后,给水流量偏大约60t/h条件下,给水温度约上升20℃,高加给水压降下降约0.14MPa ,高加的上下端差下降很大,尤其是1号、2号高加效果更好,1号高加给水端差下降约18℃,1号高加疏水端差下降13℃,2号高加给水端差下降约32℃,2号高加疏水端差下降约22℃。

3号机组1号、2号、3号高压加热器更换后,高加给水端差和疏水端差大幅下降,给水温度大幅上升,一、二、三段抽汽量得到充分利用,给水得到充足加热,减少了锅炉内的吸热量,减少了抽汽,增加了蒸汽在汽机内部通流部分的作功量,对提高机组运行经济性,降低发、供电煤耗,有着双重功效,而且高加更换后,避免了高加从热力系统中解列,保障了机组正常运行,节能效果更加显著。

5.2 高压加热器水位调整前后的性能数据

潍坊发电厂 l 号机组的高压加热器,长期存在端差大的问题,严重地影响机组的经济运行,经过仔细检查研究,发现是高加疏水调节阀和危机疏水阀泄漏导致高加水位偏低,1 号、 2号、 3号高加疏水调节阀都有不同程度被汽水冲刷现象,将三个调门更换,并更换就地水位计,对所有水位仪校验调整,使高加在正常水位下运行。经过以上检查调整,加热器的疏水端差和给水端差接近设计值。

经过以上调整,机组热耗率下降76.069 kJ/kW.h ,占机组热耗率的0.87%,折合煤耗率3g/kw.h具有显著的节能效果。

6 结束语

高压加热器端差大的原因多种多样,对机组经济性和安全性影响又非常显著,应该结合高加运行的具体状况,作出分析,进行检查调整和改造,使高压加热器在接近设计性能参数的状态下运行,对确实已泄漏严重的老式高加,可以考虑更换为最新设计的高压加热器,其节能效果和经济效益还是很客观的。

参考文献:

[1]王学栋,张勇,郑维峰高加端差对机组经济性的影响《山东电力技术》2004年第3期

[2]曹祖庆,江宁,陈行庚大型汽轮机组典型事故及预防[ M] 北京:中国电力出版社, 1 9 9 9

[3]葛晓霞,缪国钧加热器端差对机组经济性的影响《汽轮机技术》,第48卷,第5期2006年10月

[4]曹伟武,付峰《高压加热器疏水端差的研究》

高压加热器常见泄漏原因及优化运行

东北电力技术2006年第7期高压加热器常见泄漏原因及优化运行 CommonLeakageCauseandOptimizingOperationforHPHeaters 朱庆玉 (华能丹东电厂,辽宁丹东118300) 摘要:华能丹东电厂高压加热器管束自1998年投产至今未发生过泄漏,其主要原因是多年来一直坚持高压加热器的优化运行,通过技术改进及严格控制,收到非常好的效果。根据华能丹东电厂西屋350MW汽轮机高压加热器的实际系统,介绍了高压加热器优化运行控制管束泄漏的技术措施。 关键词:高压加热器;优化运行;管束;泄漏 [中图分类号]TK223.5+29[文献标识码]B[文章编号]1004—7913(2006)07一0024—03 华能丹东电厂安装了2台西屋公司制造的TC2F一38.6型双缸、单轴、双排汽、凝汽再热式汽轮机,配有英国Babcock公司1162.8t/h亚临界自然循环汽包炉及西屋公司350MW全氢冷发电机,锅炉与汽轮机热力系统的布置为单元制。6号、7号、8号高压加热器全部为水平卧式布置,安装在17.5m高加平台上,对应抽汽分别是6号高加进汽来自中压缸的三抽,7号高加进汽来自高压缸排汽的二抽,8号高加进汽来自高压缸的一抽。高加正常疏水为逐级自流通过自动调节门至除氧器,6号、7号、8号高压加热器分别各自装设危急疏水自动调节门,危急疏水至凝汽器,6号高加水侧人口安装1个三通电动门,8号高加出口安装1个隔离电动门。 高压加热器是汽轮发电机组非常重要的设备,高加运行的好坏直接影响机组的安全经济运行。高压加热器管束泄漏轻则使高加跳闸,造成机组负荷大幅扰动,汽包水位波动,甚至使汽包水位保护动作机组跳闸;重则会发生汽轮机水击事故,造成设备损坏。高加管束泄漏后一般需要检修2~3天,高加停运对机组经济性产生较大影响(见表1)。 华能丹东电厂高压加热器管束自1998年投产至今未发生过泄漏,2001~2005年高加投入率一直保持在99%以上(见表2),远远超过“一流火电厂”95%的国家标准。 表1高压加热器停运对给水温度和供电煤耗的影响 表2华能丹东电厂投产以来每年高加全年平均投入率 根据相关技术资料介绍,我国300MW等级的机组,无论是引进型还是全套进口型,其高压加热器管束泄漏带有普遍性,特别是对应三抽的6号高加管束泄漏现象更为严重和普遍,有些电厂由于高加管束封堵超过10%,不得不考虑整台高加更换,而更换1台高加需要上百万元人民币,更换周期较长,更换工程也非常复杂,对机组的安全经济性影响较大。 高加管束泄漏原因大体可分为设计、制造、运行操作维护及发生管束泄漏后的检修封堵工艺4个方面,由于目前我国300MW等级的机组所采用的高压加热器均为典型设计,国内外高压加热器的加工制造水平也普遍提高,新安装的高加只要严格按照新机组启规要求进行水压试验及必要的金属检验并合格,高压加热器应该能够满足机组的运行要求。所以由设计、制造原因造成的高加管束泄漏比例很小。因此,是否进行过高压加热器的优化运行则对高压加热器管束泄漏产生直接影响,由此造成的高压加热器管束泄漏所占比例最大。至于发生高加管束泄漏后的检修封堵技术,这里不再详述。 1高加管束泄漏原因 1.1高加进水、进汽对高加管束的热冲击 高加管束受到急剧的加热和冷却时,其管束材料内部将产生很大的温差,进而引起很大的冲击热应力,这种现象称为热冲击。一次大的热冲击,产

6MW 汽轮机技术协议(凝汽液调)

2009版 N6-×××/××× 6MW凝汽式汽轮机 技术协议 (凝汽液调) 买方:×××××××集团股份有限公司 卖方:青岛捷能汽轮机集团股份有限公司 设计方:×××××××××设计研究院日期:××××年××月××日

目录 一.总则 二.概述 三.技术要求 四.汽轮机本体结构设计技术要求五、汽轮机润滑油系统 六热力系统 七、汽轮机调节控制及保护系统 八、保温及罩壳 九仪表电气控制要求 十、热控设备 十一、仪表供货范围 十二、制造、试验和验收 十三、供货范围 十四、技术资料 十五、差异表

一、总则 1、本技术协议适用于××××××有限公司1×6MW(发电机端最大输出功率 为6MW)热电项目的汽轮机及其配套系统,提出了设备和系统的功能设计、 结构、性能、和试验等方面的技术要求。 2、买方在技术协议中提出了最低限度的技术要求,并未规定所有的技术要求 和适用的标准,卖方应提供满足本招标文件和所列标准要求的高质量产品及 其相应服务。对国家有关安全监察、环境保护等强制性标准,必须满足其要 求。 3、本技术协议发出之后,如果买方有需要补充或说明的事项,将以书面形式提 出,与本技术协议具有同等效力。 4、如未对本技术协议提出偏差,将认为卖方提供的设备符合技术协议中的要 求,偏差(无论多少)都必须清楚地表示在附后的差异表中。 5、在签订合同之后,买方有权提出因规范标准和规程发生变化而产生的一些 补充要求,具体项目由合同双方共同商定。 6、卖方须执行本技术协议中所列标准。有矛盾时,按较高标准执行。 7、卖方中标并签定合同后,本技术协议将作为合同的附件,与合同正文具有 同等效力。 二、概述 (一)、工程装设××台额定功率为6MW的凝汽式汽轮发电机组。(二)、设备运行环境及厂址条件: 1、设备安装地点:×××××× 2、室外历年平均气温:×××℃

高压加热器安装技术措施

一、工程概况 (2) 二、设备规范 (2) 三、设备简介 (3) 1、总述 (3) 2、用途 (3) 3、工作原理与大体结构 (3) 四、施工应具备的条件 (4) 五、施工主要机具及材料 (4) 六、施工方法及步骤 (5) 1 总述 (5) 2 施工步骤 (5) 3 施工方法 (5) 3.1基础准备工作 (5) 3.2 设备检查、领用 (6) 3.3 高压加热器整体水压试验 (7) 3.4其它附件安装 (7) 七、施工应达到的质量标准及工艺要求 (7) 八、应提供的质量记录 (8) 九、质量验收级别 (8) 十、编制安装技术措施的依据 (8) 十一、职业安全卫生与环境管理及文明施工要求 (8) 十二、成品及半成品保护要求 (10) 十三、施工组织机构 (10) 十四、施工进度 (10) 十五、安全施工措施编制依据 (11)

一、工程概况 托克托发电厂一期工程安装2台600MW汽轮发电机组,每台机组安装三台由德国BDT公司制造的卧式高压加热器。北京电力建设公司托电项目部负责2#机组高压加热器的安装工作。2#机组高压加热器外形尺寸及布置情况: 本措施是以分项工程为单位编写的。包括高压加热器安装、附件安装。 加热器安装计划施工工期定为:2002年4月15日—4月30日。 附件安装计划施工工期定为:2002年9月15日—9月30日。 二、设备规范

三、设备简介 1、总述 卧式高压加热器是目前国内外大型火电机组广泛采用的结构先进的配套设备,它占用空间小,安全可靠。而且不影响设备在运行状态下的自由膨胀。2、用途 高压加热器的主要功能是利用高中压缸的抽汽将高压给水加热至一定的温度,从而减少高压给水在锅炉内部的吸热量,使之能够更快的汽化,提高机组在高负荷下的热效率和热经济性。 3、工作原理与大体结构 高压给水从加热器下部进入加热器管侧,过热蒸汽从加热器上部进入加热

高加泄漏原因分析

300MW机组高压加热器泄漏原因分析和对策 曹枝阳 (华能平凉发电有限责任公司,甘肃平凉744000) 【摘要】:高压加热器是给水系统的重要设备,其性能和运行的可靠性将直接影响机组的经济性以及安全性,平凉电厂#2机组#3高压加热器在运行中管束频发故障,本文对高压加热器泄漏产生的原因及疏水调节系统和运行水位进行分析,介绍管束泄漏的处理方法,及应采取的预防措施。 【关键词】:高压加热器;泄漏;汽水两相流;原因分析;措施。 0 概况 平凉电厂4×300MW,分别于2000年9月、2001年6月、2003年6月和11月投产,配用的高压加热器(以下简称高加)系哈尔滨锅炉厂引进美国福斯特·惠勒公司技术设计、制造,产品型号为GJ-820-3,#3高加布置于12.6米层。给水系统为大旁路,高加疏水为逐级自流,高加设计有内置式蒸汽冷却段、蒸汽凝结段和疏水冷却段,高压换热管为U形碳钢管卧式布置;机组自投产以来,高加多次发生泄漏,严重影响机组运行经济性,尤其以#2机#3高加比较突出。因此,对高加泄漏的原因进行分析,并提出相应对策和措施是十分必要的。高加热力系统如图1所示。 图1 高加热力系统 1 运行情况 平凉电厂#2机组于2001年6月168h试运投产后,在2002年1月16日,运行中的#3高加水位高报警,机组申请调峰至280MW,将高加汽、水侧隔离后,打开高加人孔,经风压检查发现,管板左上侧有两根管束泄漏,用管塞封焊处理,高加停运38小时。2002年5月24日,运行中水位高报警,将高加隔离后,汽侧打风压试验,用肥皂水检查管板发现,管板左上侧临近同样部位新发现有四根、右上侧临近边缘新发现六根管束泄漏,同样用管塞封焊的办法处理。2002年11月22日,运行中水位高报警,机组申请调峰,高加系统解列,#3高加解体后,汽侧打风压检查发现,管板左上侧邻近同样部位新发现有两根泄漏,在附近扩大封堵共五根、右上侧同样部位新发现三根管束泄漏,在附近扩大封堵共六根、中上部有一根泄漏在附近扩大封堵共四根。2003年3月9日,运行中水位高报警,机组申请调峰,高加隔离停运,检查发现左上侧、右上侧各一根,均因堵塞封焊处存在气泡和裂纹出现泄漏,补焊处理。2003年5月3日,运行中水位高报警,机组申请调峰,高加隔离停运,管板左上侧领近同样部位新发现有两根泄漏,在附近扩大封堵共六根,右上侧一根,中上部一根,用管塞封焊的办法处理。2003年7月,在机组小修期间,委托西安热工院对#3高加进行100%涡流探伤检查,发现管束存在不同程度损伤的共有八十四根,其中管壁损伤壁厚小于60%的有26根,按热工院意见进行预防性封堵处理,但在做气密试验检查时,发现原封堵管塞封焊多处有气孔、裂纹等问题,原因是在封堵溶合区,由于多次泄漏反复补焊后,堆焊溶合区存在的应力未

高压加热器设备技术协议(附件1、2、3、6)

合同编号:PK001-HE-008-00 巴基斯坦卡西姆港燃煤应急电站项目高压加热器设备订货合同 第二卷 技术协议 需方:山东电力建设第三工程公司 设计方:河北省电力勘测设计研究院 供方:东方电气集团东方锅炉股份有限公司 2015年6月

目录 附件1 技术协议 附件2 供货范围 附件3 技术文件交付要求 附件4 供货状态 附件5 交货进度及报表 附件6 设备分包与外购清单 附件7 现场技术服务和培训 附件8 设备监造、检验和工厂试验 附录1 删除 附录2 热控仪表通用要求 附录3 KKS编码要求 附录4 巴基斯坦2X660MW机组热平衡图 附录5 技术文件资料格式规定(文件编码、图纸标题栏、文件格式、随机资料结构) 附录6 设备色标 附录7 删除

附件1 技术协议 1.总则 1.1本技术协议适用于巴基斯坦卡西姆港燃煤应急电站项目高压加热器设备的采购。 它提出了该设备本体及辅助设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2需方根据EPC合同的要求,编写了本技术协议。本技术协议提出的是最基本的有 关技术要求,并未对一切细节作出规定,也未充分引述有关标准和规范的条文。 供方保证提供符合本技术协议、EPC合同及有关最新工业标准以及有关安全、环保等强制性标准的产品。 1.3供方须执行本技术协议所列标准。有矛盾时,按较高标准执行。如技术协议与EPC 合同相矛盾时,以EPC合同为准。 1.4供方按本规范要求提出合同设备的设计、制造、检验/试验、装配、安装、调试、 试运、验收、运行和维护等标准的清单给供方,供方确认。 1.5协议签订后1个月内,供方提供需方中英文对照版技术协议(如英文有岐义时以 有利于需方的表述为准)。 1.6供方提供的设备、材料及零部件不应包含对人体有害的物质(如放射性物质和有 毒物质等)。 1.7供方提供的设计、设备资料、随机资料以及其他与项目部、业主方来往信函、资 料应采用中英文进行表述,如两种语言存在歧义,在满足技术要求的基础上以有利于需方的表述为准。 1.8供货产品应完全满足本技术协议及供货范围的要求。在签订合同后,需方仍保留 对本技术协议依据项目EPC合同提出补充要求和修改的权力,供方应积极予以配合。 1.9本工程采用KKS编码系统,供方提供的技术资料(包括图纸)和设备标识必须有 KKS编码,具体标识要求由需方提供。 1.10供方对供货设备(含辅助系统与设备)负有全责,包括分包(或采购)的产品。 供方对其分包(或采购)的产品制造商的技术要求应事先征得需方的认可,招标技术规范书应报需方审核,审核不免除供方的责任。外购件订货技术合同应报需方确认。 1.11供方签订技术协议后提供中、英文版设计资料(含技术数据表、图纸),并配合需 方将该资料提交给业主方确认。设计图纸经业主方面确认后,如需对本技术协议修改,由双方共同商定,只要为设备系统安全可靠运行所必需,供方应无偿提供。 1.12协议签订后,本协议任何相关内容的变动,必须由变动方提出书面申请,在满足 EPC合同要求的前提下,并经双方协商同意后,方可执行。 1.13协议签订后,供方按要求提供图纸资料供需方审核,审核不免除供方应负的责任。

低压加热器规程

第x篇低压加热器检修工艺规程 第一章低压加热器结构概述 第一节低压加热器工作原理 1.1 概述 本厂330MW机组共四台低压加热器,本低压加热器为卧式,双流程表面式、水室与壳体采用法兰连接。 1.2 工作原理: 低压加热器的作用是利用在汽轮机内做过部分功的蒸气,抽至加热器内加热给水,提高水的温度,减少了汽轮机排往凝汽器中的蒸汽量,降低了能源损失,提高了热力系统的循环效率。加热器的受热面一般是用黄铜管或无缝钢管构成的直管束或U形管束组成的。被加热的水从上部进水管进入分隔开的水室一侧,再流入U形管束中,U形管在加热器的蒸气空间,吸收加热蒸气的热量,由管壁传递给管内流动的水,被加热的水经过加热器出口水室流出。 第二节高压加热器结构组成 2.1结构简介 主要结构是由壳体、水室、传热管、隔板、防冲板和包壳板组成,具体见图(2-I)。其中,NO7、8两台低加为一个壳体,安装于凝汽器接颈内。检修为抽芯式,在两加热器芯子上均装有滚轮。 本低压加热器的加热面设计成两个区段,一是凝结段,二是疏水冷却段。

第二章低压加热器主要技术规范 第一节低压加热器设备参数 1.1 主要参数: 第三章检修周期及检修项目 第一节检修周期 1.1检修周期 1.1.1高压加热器A级检修周期为4年。 1.1.2高压加热器C级检修周期为1年。 第二节检修项目 2.1 检修项目 2.1.1 A级检修标准项目 2.1.1.1 水室密件的维修,更换密封垫片。 2.1.1.2 检漏及堵管。 2.1.1.3 水室检查及清理。 2.1.1.4 安全阀.水位计等附件的解体检查及另部件更换。 2.1.1.5 更换法兰螺栓及密封垫片。 2.1.1.6 水.汽侧水压试验。 2.1.2 C修标准项目 2.1.2.1 清洗水位计,更换盘根或玻璃管。

加热器端差对经济性影响的分析

加热器端差对经济性影响的分析 在关于汽轮机组的经济性问题上人们往往把目光放在汽轮机的初终参数上,认为它们的变化对机组的经济性影响较大,这无疑是正确的。但分析整台机组的经济性仅限于此也是不全面的,还应关注汽轮机的回热系统,因为汽轮机的回热系统也有相当的节能潜力,现代热力发电厂的汽轮机组都无例外的采用了给水回热加热,回热系统既是汽轮机热力系统的基础,也是全厂热力系统的核心,它对机组和电厂的热经济性起着决定性的作用。 一、给水回热加热系统及其优点 给水回热加热指在蒸汽热力循环中从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热,提高工质在锅炉内吸热过程的平均温度,以提高机组的热经济性。给水回热加热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热耗率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减小了锅炉受热面的传热温差,从而减少了给水加热过程中的不可逆损失,在锅炉中的吸热量也相应减少。综合以上原因说明给水回热加热系统提高了机组循环热效率,因此,汽轮机采用回热加热系统对提高机组运行经济性有决定性的作用,而回热加热系统的运行可靠性和运行性能的优劣,将直接影响整套机组的运行经济性。 采用回热加热循环的优点 (1)提高热效率。由于抽汽的原因,排至凝汽器的蒸汽量减少,冷源损失减少,所以循环热效率提高。 (2)对于锅炉来说,因给水温度提高,锅炉热负荷降低,因此炉内换热面积减少,节约了钢材用量。 (3)由于中间抽汽,使汽轮机末几级的蒸汽流量减少,减少了汽轮机末几级的流通面积,使末级叶片的长度减少,解决了汽轮机末级叶片设计、制造的难题。 (4)由于进入凝汽器的蒸汽量的减少,凝汽器的热负荷减少,换热面积也减

高压加热器更换技术质量安全措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 高压加热器更换技术质量安全措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5476-23 高压加热器更换技术质量安全措施 (正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、项目名称:#1机组#6低压加热器更换 二、立项原因: 我厂#1机组#6高压加热器系美国FW公司1986年产品,于1990年正式投入运行,该加热器为立式U 型管表面式换热器,系统编号为N21-B006,换热面积9749平方英尺,换热管规格为0.625×0.083英寸和0.625×0.088英寸碳钢管(SA556C-2),换热管数量1420根。高加外壳材质选用SA516Gr70,高加内部隔热罩采用SA387Gr11。该高压加热器从投入运行至今换热管共发生泄漏3次,泄漏管数量5根。 20xx年3月3日,在设备巡检过程中,发现1号机#6高压加热器壳体泄漏,及时将高加汽侧解列,周围设安全围栏。打开壳体保温后发现进汽口右侧壳体

给水温度原因分析

连城电厂#2机组给水温度低的原因分析 及高压加热器改造 乔万谋 甘肃电力公司连城电厂邮编:730332 【摘要】文章介绍了连城电厂#2汽轮机组高压加热器在制造、安装、检修和运行维护中存在的缺陷,分析了这些缺陷对高压加热器运行特性的影响和对给水温度的影响。并结合高加结构特点,在原有设备基础上进行了改造,改造后高压加热器端差减小,给水焓升增大,给水温度提高,效果明显。 【关键词】汽轮机高压加热器给水温度技术改造 1.概述 连城电厂安装两台北京重型电机厂生产的N100-90/535型凝汽式汽轮机,配套两台哈尔滨锅炉厂生产的HG410/100-10型锅炉,高压加热器为哈锅配套的GJ350-5、GJ350-6型高加,自82年投运以来,两台机组给水温度一直偏低,影响着全厂的经济运行。特别是随着运行小时数的增加,给水温度呈连年下降趋势,虽在历次设备大修中发现和处理了一些影响给水温度的重要缺陷,使给水温度有所好转,但都不能保证给水温度处比较稳定的状况。2000年#2机组大修前,我们对#2机#5、6高加进行全面的热力试验,并进行了认真分析,在大修中对高加各部分进行了仔细的检查,发现并处理了几处影响高加运行特性的缺陷,同时对高加结构进行了改进,使#5、6高加端差减小,给水焓升增大,给水温度提高,效果明显。 2.影响高加运行特性的因素及原因分析 额定负荷下设计工况和实测工况#5、6高加各运行参数如表所示。从额定负荷下设计工况 表:额定负荷设计工况和实测工况加热器运行参数 和实测工况的各主要参数可以看出,#5、6高加偏离设计工况的主要问题是端差较大,#5高加上端差10.4℃,下端差16.1℃,#6高加上端差8.5℃,下端差13.8℃,而加热器设计时一般选择其上端差为0℃,下端差为8℃。由于#6高加上端差的影响,造成给水温度降低8℃,下端差大于设计值5.8℃,其疏水进入#5高加,排挤二段抽汽,造成二段抽汽量减少。#5高加上端差使其出口的给水温度降低,势必导致加热不足的部分将在#6高加内部被加热,造成#6高加热负荷增大,#6高加用汽量增大,本可以用低压抽汽加热的部分给水焓升,而使用高压抽汽加热,降低了回热系统的经济性。 造成#5、6高加上、下端差增大的原因,经分析有以下几种因素: (1)、由于汽轮机相对内效率低于设计值,导致汽轮机的汽耗量增大,相应的给水流量也增大,从而引起高压加热器的热负荷增加。汽轮机制造厂保证给水温度达到设计温度的条件之一就是“汽轮机按制造厂设计热力系统运行,通过高压加热器的水量等于汽轮机的主蒸汽流量”。汽

高压加热器管束爆管原因分析

高压加热器管束爆管原因分析 【摘要】为提高循环效率而设置的给水加热器,作为发电厂的一种主要辅助设备,其故障直接影响机组的出力。一般发电机组在高压加热器(简称高加)停运时出力受限10%左右,导致机组效率降低,发电煤耗增加。本文对高加发生管束爆管原因进行了探讨。 【关键词】高压加热器;管束爆管;故障 根据这些年电厂运行实际案例,造成高加故障停运的最主要因素是高加换热管束的损坏。一旦换热管爆裂,高压给水从破口喷涌而出,在低压室扩容的诱导下,形成巨大的冲击流,对周边换热管造成冲击,这种冲击会造成周围管子的连锁爆管。如不及时处理,会使高加造成严重损坏,甚至使汽轮机发生水冲击,影响机组的安全稳定运行。从管束横截面的分布图分析,见图1-1。 主要损坏区域集中在管束上部外围,和下部外围靠近水位面,以及管束中部区域。经过对管束上部损坏换热管进行的深度测量,主要的爆管点分布在过热蒸汽冷却段蒸汽进口区域,见图1-2。 这一区域的爆管损坏占了总爆管的50%以上。造成蒸汽进口区外排管损坏的最主要的原因是由于蒸汽的高流速造成的。其形成机理是:蒸汽进口区外排管迎风面换热管受到高温过热蒸汽的直接冲击。正常情况下,换热管外表面会有一层凝结膜,保护换热管免受高温蒸汽的直接冲击。但当蒸汽流速过高,破坏了换热管外表面的凝结膜,将会使管材金属与高温蒸汽直接接触,导致换热管的金属热应力急剧上升,并达到金属材料破坏极限强度值,在管内高压作用下爆管。 归纳近年全国各电厂所发生的高加管束爆管现象,主要有以下几种情况: 1.1管口与管板胀接、焊接处泄漏原因 1.1.1热应力过大 高加在启停过程中温升率、温降率超过规定,使高加管子和管板受到较大的热应力,造成管口和管板相联接的胀接、焊接处损坏,引起端口泄漏。调峰时负荷变化速度太快以及主机或高加故障骤然停运高加时,如果汽侧解列过快或汽侧解列后水侧仍继续运行,温降率大于1.7~2.0℃/min,管口与管板的胀接、焊缝处常因冷缩过快而损坏。 1.1.2管板变形 U形管口由管板固定,管板变形使管子的端口发生泄漏。高加管板水侧压力高、温度低,汽侧则压力低、温度高,内置式疏水冷却高加管板水汽两侧的温差更大。如果管板的厚度不够,在热应力的作用下,水侧会发生中心凹陷,汽测会

(整理)6MW 汽轮机技术协议(凝汽电调).

2009版N6-×××/××× 6MW凝汽式汽轮机 技术协议 (电调505) 买方:×××××××集团股份有限公司 卖方:青岛捷能汽轮机集团股份有限公司 设计方:×××××××××设计研究院 日期:××××年××月××日

目录 一.总则 二.概述 三.技术要求 四.汽轮机本体结构设计技术要求五、汽轮机润滑油系统 六热力系统 七、汽轮机调节控制及保护系统 八、保温及罩壳 九仪表电气控制要求 十、热控设备 十一、仪表供货范围 十二、制造、试验和验收 十三、供货范围 十四、技术资料 十五、差异表

一、总则 1、本技术协议适用于××××××有限公司1×6MW(发电机端最大输出功 率为6MW)热电项目的汽轮机及其配套系统,提出了设备和系统的功能设计、 结构、性能、和试验等方面的技术要求。 2、买方在技术协议中提出了最低限度的技术要求,并未规定所有的技术要求 和适用的标准,卖方应提供满足本招标文件和所列标准要求的高质量产品及其 相应服务。对国家有关安全监察、环境保护等强制性标准,必须满足其要求。 3、本技术协议发出之后,如果买方有需要补充或说明的事项,将以书面形 式提出,与本技术协议具有同等效力。 4、如未对本技术协议提出偏差,将认为卖方提供的设备符合技术协议中的要 求,偏差(无论多少)都必须清楚地表示在附后的差异表中。 5、在签订合同之后,买方有权提出因规范标准和规程发生变化而产生的一些 补充要求,具体项目由合同双方共同商定。 6、卖方须执行本技术协议中所列标准。有矛盾时,按较高标准执行。 7、卖方中标并签定合同后,本技术协议将作为合同的附件,与合同正文具有 同等效力。 二、概述 (一)、工程装设××台额定功率为6MW的抽汽凝汽式汽轮发电机组。(二)、设备运行环境及厂址条件: 1、设备安装地点:×××××× 2、室外历年平均气温:×××℃

汽轮机组高压加热器

汽轮机组高压加热器 说 明 书

1、概述 高压加热器(简称高加)系利用汽轮机抽汽加热锅炉给水,使达到要求的温度,以提高电厂热效率。 300MW机组本高加为卧式布置,U形管式,双流程,传热段为过热-凝结-疏冷叁段式,全焊结构,水室自密封人孔,给水大旁路系统。 本系统高加共3台,设备型号示例:JG-1000-Ⅰ的1000表示名义换热面积1000㎡,Ⅰ表示按加热蒸汽压力由高到低顺序排列的第1台;按给水流向由Ⅲ型高加流向Ⅱ型,再流向Ⅰ型,最终流出至锅炉。 2、工作原理 来自给水泵的高压给水首先进入高加水室,因行程隔板的阻挡给水进入占一半管板的进水侧管孔的U形管内,流经U形管而被管外的蒸汽介质所加热,出U 形管至水室的出水侧,经出水接管流出体外,然后流向另一台汽侧压力更高的上一级高加。 来自汽轮机的抽汽进入高加体内的过热蒸汽冷却段的包壳内,它加热给水而本身被冷却后出包壳而进入蒸汽凝结段,由上而下向下流动和被冷凝成疏水而积聚在壳体底部,疏水进入疏水冷却段包壳,被冷却后最后流出体外,经疏水调节阀控制流向下级高加或除氧器。 3、结构 高加本体由水室、管系和壳体等组成,见图1。 3.1 水室 水室系半球形球壳,材质德国牌号P355GH,与管板焊成一体,行程隔板用螺栓连接,检修时可拆卸,从人孔取出。水室顶部有自密封人孔,密封圈垫块材料为高强度柔性石墨-不锈钢丝,拆卸人孔时先把四合环拆除,再把人孔盖取出。

装人孔盖后将螺栓预紧,待给水升压后密封圈受压缩变形从而达到密封,此时预紧螺栓会向上伸长,在运行稳定一个阶段以后可将螺母向下拧到底。 水室顶上的放气口,可在投运进入给水时打开以排去内部空气。水室底部的放水口可在停用时放空内部存水,并可用作管侧(水侧)充氮口。 3.2 管系 管系由管板、U形管、隔板、拉杆等组成,管板材质20MnMo钢锻件,表面堆焊有一层低碳钢以改善焊接性能。U形管材质为美国牌号SA-556C2碳素钢管,隔板以及蒸冷、疏冷段包壳由碳钢板制成,在蒸冷包壳蒸汽入口处和前级疏水入口处均设有不锈钢防冲板。U形管和管板之间的连接采取焊接+胀接,胀接是用高的压力作液压胀管。焊接采取优质焊材和工艺,确保不漏。 3.3 壳体 壳体由短节、筒身、封头和支座等组成,短节、筒身、封头均由16MnR容器钢板制成,仅Ⅰ型高加的短节由15CrMoR容器钢板制成。壳体上设有各种接管,在壳体中部装有抽空气口,还有放气口、放水口等。 壳体底部配备三个支座,在管板下面的是固定支座,在尾部和中部装有滚动支座。在理论上它可以是双支承形式,即在运行时由固定支座和尾部滚动支座承载,中间的支座可以不承载,当必须抽壳检修管系时把壳体沿切割线切割,由中间和尾部滚动支座支承着把壳体移动向后退出。 4 监控部件 高加应设有的监控部件 4.1 磁性液位仪,用于就地观察水位变化。 4.2 壳侧(汽侧)安全阀。 防止汽侧超压,在管子破裂或管端焊缝大量泄漏以及汽压过高时起跳。

高加疏水端差大原因分析

#2机#1高加疏水端差大原因分析 一、#2机通流部分改造前后#1高加疏水温度对比 由附表可知,#2机通流部分改造前,负荷580MW时,#1高加疏水温度为253℃,进水温度为241℃,则改造前#1高加疏水端差为12℃;#2机通流部分改造后相同负荷下#1高加疏水温度约258℃,进水温度为236℃,则改造后#1高加疏水端差约22℃,同比#1高加疏水端差上升约10℃。 二、加热器疏水端差大理论原因 1、加热器运行水位低,导致疏水中带汽,疏水温度上升,疏水端差增大。 2、加热器运行中事故疏水动作,导致加热器水位下降,疏水温度及疏水端差上 升。 3、加热器进水温度降低,本级加热器吸热量自行增大(抽汽量增加),疏水温度 上升,疏水端差自行增大。 4、加热器内部汽流隔板损坏,影响蒸汽凝结,疏水段带汽,疏水温度上升,疏 水端差增大。 5、疏水温度测量有误,温度指示高。 三、目前#2机#1高加疏水端差大原因分析 1、#2机通流部分改造后,经与仪控就地核对#1高加水位,正常疏水定值定为700mm,就地实际水位约440mm,在正常水位线运行,说明#1高加正常运行水位控制正常。为再次验证定值是否偏低,本月19日进行了#1高加水位试验,相关数据如下: 试验中发现当水位上升至773mm 时,#1高加水位高“光字牌”报警发出,说明此时液位高开关已动作,实际水位已高,因此目前水位定值700mm比较合理。 2、#2机通流部分改造后,相同负荷下主汽压力下降约1.2MPa,三台高加的抽

汽压力必然下降,抽汽量必然相应增加。由附表可知,改造前、后#1高加抽汽压力下降约0.6MPa(改造前#2机超压运行,#1高加超压约0.4MPa),进水温度下降约5℃,温升下降约5℃,根据加热器自平衡原则,改造后#1高加的抽汽量必然增加,从而引起疏水温度上升、疏水端差增大,这也是#1高加疏水端差增大的主要原因。同理#2 四、结论及有关建议 1、#2机通流部分改造后相同负荷下#2/#1高加温升分别下降2℃/5℃,给水温度下降约5℃,#3高加大修中已更换,温升未变化(因为大修前#3高加已堵管约15%)。目前#2机满负荷时如#1高加抽汽门不节流,给水温度基本能达到额定值(小于设计值约2℃),但夏季因真空的下降、抽汽量的增加,#3高加事故疏水频繁动作,#1高加抽汽电动门将被迫节流,给水温度下降约7~8℃,影响经济性。 2、经试验及就地核实,目前#1高加的实际水位定值700mm正常,疏水端差约20℃,但目前水位能保证加热器的安全运行。此外仪控部已检查#1高加疏水温度测量、显示正常。 1、建议利用检修机会,对#1高加内部汽流隔板及疏水段进行检查,消除可疑 点,同时也可确认加热器的安全状况。 五、附#2机通流部分改造前后高加运行参数

高加泄露的原因分析及预防措施

高加泄露的原因分析及预防措施 摘要:分析了高压加热器泄露原因,针对不同泄漏原因分别找出了相应的对策,对机组安全经济运行具有十分重要的意义。 关键词:加热器;泄漏;原因;故障;对策 公司300MW机组配置3台高加,均为卧式滚筒结构,串联布置。疏水逐级自流,水位采用自动调节方式。在启停和低负荷时,疏水倒至凝汽器;正常运行时,高加疏水倒至除氧器。额定负荷下,高加出口温度可达278℃。自投产以来,因为高加内部钢管泄露、外部大法兰及疏水管道泄露,经常不得不退出运行检修处理,在很大程度上制约着机组的安全、经济运行。经过长期实践,得出以下原因分析和预防措施。 1高加泄漏原因分析 1.1热应力过大加热器在启停过程中、调峰时负荷变化速度太快、主机或加热器故障而骤然停运加热器时,都会使金属温升率、温降率超过规定,使高加的管子和管板受到较大的热应力,管子和管板相联接的焊缝或胀接处发生损坏,引起端口泄漏。又因管子管壁簿、收缩快、管板厚、收缩慢,常导致管子与管板的焊缝或胀接处损坏。 1.2管板变形管子与管板相连,管板变形会使管子的端口发生泄漏。高加管水侧压力高、温度低,汽侧则压力低、

温度高,如果管板的厚度不够,则管板会有一定的变形。管板中心会向压力低、温度高的汽侧鼓凸。在水侧,管板发生中心凹陷。在主机负荷变化时,高加汽侧压力和温度相应变化。尤其在调峰幅度大、调峰速度过快或负荷突变时,在使用定速给水泵的条件下,水侧压力也会发生较大的变化,甚至可能超过高加给水的额定压力。这些变化会使管板发生变形导致管子端口泄漏。 1.3冲刷侵蚀当蒸汽的流动速度较高且汽流中含有大直 径的水滴时,管子外壁受汽、水两相流冲刷,变薄,发生穿孔或受给水压力而鼓破;其次,当高加内某根管子发生损坏泄漏时,高压给水从泄漏处以极大的速度冲出会将邻近的管子或隔板冲刷破坏;另外,因防冲板材料和固定方式不合理,在运行中破碎或脱落,受到蒸汽或疏水的直接冲击时,失去防冲刷保护作用。 1.4管子振动启动时暖管不充分管道积水或给水温度过低、机组超负荷等情况下,发生水锤现象时,通过加热器管子问蒸汽流量和流速工况超过设计值较多时,具有一定弹性的管束在壳侧流体扰动力的作用下会产生振动。当激振力的频率与管束自然振动频率或其倍数相吻合时,将引起管束共振,使振幅大大的增加,导致管子与管板的连接处受到反复作用力造成管束损坏。同时,支吊架松动,管道布置不合理,会造成管束与高加本体振动不同步引起断

胜利三期高压加热器技术协议

胜利发电厂三期1×600MW级热电工程 高压加热器设备 建造合同 附件:技术协议书 买方合同编号: 卖方合同编号: 买方:胜利发电厂三期扩建工程筹建处 设计单位:山东电力工程咨询院有限公司 卖方:东方电气集团东方锅炉股份有限公司 二〇一二年十一月

目录 第一章总则 (1) 第二章工程概况 (2) 第三章标准和规范 (8) 第四章技术规范 (10) 第五章采购设备需求、供货范围和交货期 (25) 第六章技术资料和交付进度 (29) 第七章设备监造(检验)和性能验收试验 (32) 第八章技术服务和设计联络 (36) 第九章附图 (39) 第十章技术附录 (40) 技术附录A 卖方提供的技术资料和数据 (40) 技术附录B 无 (43) 技术附录C 备品备件、专用工具和仪器仪表 (43) 技术附录D 包装、标志、运输和保管的特殊要求 (44)

第一章总则 1.1本技术协议适用于胜利发电厂三期1×600MW级热电工程一台660MW国产超临界燃煤机组的高压加热器及其附属设备、专用工具、备品备件、图纸资料等的设计标准、技术规格、供货范围、交货进度、安装指导、检验、技术服务等方面的要求。 1.2卖方对提供设备或系统的性能保证值提供有关技术支持材料(包括但不限于国家认可有资质的单位出具的产品型式试验报告或鉴定报告或项目的性能验收试验报告等)。 1.3本技术协议提出买方的最低限度的技术要求(简称技术门槛值),并未规定所有的技术要求和适用的标准。卖方实质性地响应本技术协议的技术规定和要求,提供功能齐全的、成套供货的优质产品及其相应的技术服务。同时满足国家关于产品质量、安全、工业卫生、劳动保护、环保、消防等强制性标准的要求。 若卖方提出的技术标准与本技术协议所列标准不一致时,执行较高标准。 卖方对投标过程中技术澄清所作的承诺与技术协议一样具有同等约束力。 在签订合同之后,买方保留因规范、标准、规程发生变化而提出一些补充要求的权力,在设备投料生产之前,卖方在设计上予以修改,但价格不作调整。 1.4卖方对成套供货范围内的高压加热器(含附属系统及设备、附件等)负有全责,包括分包(或对外采购)的产品。分包(或对外采购)的主要产品制造商具备与分包工作相适应的国家强制性要求的资质(若有),事先征得买方的认可。对于卖方配套的控制装置、仪表设备,能并负责与买方的DCS系统协调配合,直至接口完备。 1.5卖方一般提供三家具有相同资质或业绩的分包商供买方择优选用。进口国际著名品牌采用该公司最新产品,进口阀门采用原配电(气)动执行机构。对于国产阀门,卖方一般亦提供三家符合资质和业绩的要求的优质产品供买方确认,选择适用的原装电(气)动执行机构。 1.6 设备配套电动机满足运行工况的需求,采用高效节能型电机。无防爆要求的配套电动机采用YX3(2级能效标准)高效节能电机,有防爆要求的配套的电动机等所有电气设备具有相应的防爆性能,电机采用YB2型。 1.7技术协议对设备及其人身安全的保护的要求是一般性的,卖方对设备,提供所有必要的安全防护措施并对设备的质量、安全运行和人身安全负全责。 1.8卖方提供的所有的技术资料、表格、图纸和所有的设备全部采用国家法定计量单位。书写语言为中文。 1.9本工程采用KKS标识系统。卖方提供的技术资料和设备标识有KKS三级编码。

低压加热器系统

低压加热器系统

京能集团运行人员培训教程BEIH Plant Course 低加系统 LP Heater SYSTEM TD NO.100.X

目录 1.教程介绍 (8) 2.相关专业理论基础知识 (10) 3.系统的任务及作用 (14) 3.1.1.抽汽回热系统作用 14 3.1.2.加热器的作用 15 3.1.3.低加的作用 16 4.系统构成及流程 (17) 4.1低加系统的构成 17 4.2低加系统流程 17 5.设备规范及运行参数 (19) 6.设备结构及工作原理 (21) 6.1低压加热器结构 21 6.2低压加热器工作原理 25 6.3低压加热器的管板-U形管

7.控制及联锁保护 (29) 7.1低加水位报警保护设置 29 7.2五段抽汽逆止门前、五段抽汽电动门前 后疏水门的联锁与保护 (29) 7.3六段抽汽逆止门前、六段抽汽电动门前 后疏水门的联锁与保护 (30) 7.4五段抽汽电动门、逆止门的联锁与保护 30 7.5六段抽汽电动门、逆止门的联锁与保护 31 7.6#5、6低加出入口电动门联锁与保护 31 7.7#5、6低加旁路电动门的联锁与保护 31 7.87A/7B低加出、入口电动门的联锁与保 护 32 7.97A/7B低加旁路电动门的联锁与保护 32 8.基本运行操作 (33) 8.1低压加热器的投运

8.2低压加热器的停运 34 9.巡回检查标准 (35) 10.设备检修安全措施 (39) 11.常见异常故障 (41) 11.1加热器振动 41 11.2加热器水位高 42 11.3加热器端差大 43 12.安全警示(安规及25项反措要求) (44) 13.事故案例 (47) 某厂5段抽汽波纹补偿器爆裂 (47) 14.设备附图 (56) 14.1低加结构示意图 56 14.2低加系统就地画面 56 14.3#7低加就地图片 57

高压加热器泄漏原因分析及预防措施

高压加热器泄漏原因分析及预防措施 一、设备概述 我厂国产优化改进型300MW汽轮机的高压加热器,采用三台引进福斯特——惠勒公司技术制造的单列卧式表面加热器。高压加热器带有内置式蒸汽冷却段和疏水冷却段,如图一。蒸汽冷却段利用汽轮机抽气的过热段来提高给水温度,使给水温度接近或略高于该加热器压力下的饱和温度。凝结段是利用蒸汽凝结的潜热加热给谁。疏水冷却段是把离开凝结段的疏水热量传给进入加热器的给水,从而使疏水温度降到饱和温度下。 二、高压加热器泄漏后对机组的影响 高压加热器是利用机组中间级后的抽汽,通过加热器传热管束,使给水与抽汽进行热交换,从而加热给水,提高给水温度,是火力发电厂提高经济性的重要手段。由于水侧压力(20MPa)远远高于汽侧压力(4MPa),当传热管束即U型管发生泄漏时,水侧高压给水进入汽侧,造成高加水位升高,传热恶化,具体对机组的影响如下: 1.高加泄漏后,会造成泄漏管周围管束受高压给水冲击而泄漏管束增多,泄漏更加严重,必须紧急解列高加进行处理,这样堵焊的管子就更少一些。 2.高加泄漏后,由于水侧压力20MPa,远远高于汽侧压力4MPa,这样,当高加水位急剧升高,而水位保护未动作时,水位将淹没抽汽进口管道,蒸汽带水将返回到蒸汽管道,甚至进入中压缸,造成汽轮机水冲击事故。 3.高加解列后,给水温度降低,由280℃降低为170℃,从而主蒸汽压力下降,为使锅炉能够满足机组负荷,则必须相应增加燃煤量,增加风机出力,从而造成炉膛过热,气温升高,更重要的是标准煤耗约增加12g/kwh,机组热耗相应增加 4.6%,厂用电率增加约0.5%。 4.高加停运后,还会使汽轮机末几级蒸汽流量增大,加剧叶片的侵蚀。 5.高压加热器的停运,还会影响机组出力,若要维持机组出力不变,则汽轮机监视段压力升高,停用的抽汽口后的各级叶片,隔板的轴向推力增大,为了机组安全,就必须降低或限制汽轮机的功率,从而影响发电量。 6.高加泄漏,每次处理顺利时需要30小时,系统不严密时,则工作冷却时间加长,直接影响高加投运率的目标。 三高加泄漏的现象 1.高加水位高信号报警,泄漏检测仪亦报警,另外还有高加端差增大,远远高于正常值。 2.由于高加泄漏,水侧大量漏入汽侧,通过疏水逐级自流入除氧气,为使汽包水位正常,则给水泵转速增加,给水流量增大。 3.高加泄漏后,由于传热恶化,则造成给水温度降低。 四高加泄漏原因分析 1.运行中高加端差调整不及时。 300MW机组运行规程规定,高压加热器下端差正常为5.6——8℃。(端差是指高压加热器疏水出口温度与给水进口温度的差值。) 由于运行人员责任心不强,在疏水调节装置故障或其他原因造成高加水位大幅度波动的情况下,没有及时发现,未能及时处理,致使高加端差波动较大。 2.高加受到的化学腐蚀。 300MW机组给水品质规定:给水容氧<7μg/L,PH值为9.0——9.4. 给水容氧超标,将造成高加U型钢管管壁腐蚀而变薄,钢管与管板间的胀口受腐蚀而松弛,经长期运行,寿命逐渐缩短。 3.负荷变化速度快给高压加热器带来的热冲击。 在机组加减负荷时,负荷变化速度过快,相应抽汽压力、抽汽温度迅速变化,在给水温

取样技术协议

广东大唐潮州三百门电厂#3、#4机组(2×1000MW)扩建工程 化学取样设备技术协议 买方:广东潮州大唐国际有限责任公司 卖方:吉林光大电力设备有限责任公司 设计方:广东省电力设计研究院

2007年5月25日

目录 附件1 技术规范................................................................... ..01附件2 供货范围................................................................. .. ..21附件3 技术资料和交付进度 (28) 附件4 交货进度 (30) 附件5 监造、检验和性能试验 (36) 附件6 技术服务和设计联络 (35) 附件7 分包与外购 (37) 附件8 设备性能违约金的计算 (38) 附件9 大(部)件情况 (38)

附件1 技术规范 1 总则 1.1 本技术协议用于广东大唐潮州三百门电厂#3、#4(21000MW)机组扩建工程的机炉水汽取样分析装置,它提出了该装置的功能设计、结构、性能、安装和试验等方面的技术要求。该取样分析装置的功能是对发电厂给水、炉水、蒸汽和凝结水循环系统中的水、汽品质进行监测。 1.2 买方在本技术协议中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,卖方提供一套满足本附件和所列标准要求的高质量产品及其相关服务。 1.3 卖方对每台1000MW机组提供一套完整的水汽集中取样分析装置。 1.4 卖方执行本技术协议所列标准。有不一致时,按较高标准执行。 1.5 合同签订后3个月,按附件5中第4.6条款要求,卖方提出合同设备的设计、制造、检验、试验、装配、安装、调试、试运、验收、试验、运行和维护等标准清单给买方,买方确认。 1.6 本工程采用KKS标识系统。卖方所提供的技术资料(包括图纸)和设备标识必须有KKS编码。具体标识要求由设计院提出,在设计联络会时讨论确定。 1.7 卖方提供的图纸以及其它文件、资料的单位使用国际计量单位制,语言、文字采用中文。 2 工程概况 广东大唐潮州三百门电厂厂址位于广东省潮州饶平县东南部的柘林镇。电厂最终规模按2×600MW+2×1000MW+4×1000MW,本次为一期扩建工程的3、4号机,即2×1000MW国产超超临界燃煤机组。第一台机组计划2009年初投产,第二台机组计划2009年底投产。 3 设计和运行条件 3.1 环境条件 厂址引用饶平县气象站1956~2002年的资料,其历年气象特征值如下: 多年年平均雨量:1506.5mm 历年年最大雨量:2173.8mm 历年年最小雨量:942.0mm 历年日最大雨量:343.1mm 历年一小时最大雨量:100.1mm

相关主题
文本预览
相关文档 最新文档