当前位置:文档之家› 第五章第Ⅲ单元万有引力定律

第五章第Ⅲ单元万有引力定律

第五章第Ⅲ单元万有引力定律
第五章第Ⅲ单元万有引力定律

第五章第Ⅲ单元万有引力定律

学校:___________姓名:___________班级:___________考号:___________

一、解答题

1.我国在1971年发射的科学实验卫星在以地心为焦点的椭圆轨道上运动。已知卫星近地点高度为1226h km =,远地点高度为21826h km =,卫星经过近地点时速率为

118.13km s υ-=,试求卫星通过远地点时的速度和卫星运行周期。计算中取地球半径

36.3710R km =?,空气阻力不计。

2.卫星P 绕某行星Q 沿偏心率为e 的椭圆运动,周期为0T ,当P 在近Q 点时,在极短的时间内有一质量是Q 质量a 倍的小天体和Q 发生非弹性碰撞,碰撞过程中质量的损失可忽略。Q 仍近似处理为不动,求P 沿轨道运动的周期。

3.设行星轨道为椭圆,且开普勒第二定律成立,假设万有引力F GmMr α=(α待定)。 (1)设太阳在椭圆一焦点之上,求α; (2)设太阳在椭圆的中心,求α。

4.如图所示,沿地球表面与竖直方向成α角的方向,发射一质量为m 的导弹.其初速度

0υ=

M

为地球质量,R 为地球半径,忽略空气阻力和地球自转的影响。求导弹上升的最大高度。

5.如图甲所示,一物体从地球表面发射,初速度大小为01k υυ=(式中1υ为第一宇宙

速度),初速度方向与竖直方向成θ角。其中 1.414k <。地球视为质量均匀分布的球体,忽略空气阻力和地球自转的影响.请解答以下问题: (1) 1.414k <意味着什么?

(2)物体运动过程中有哪些物理量守恒? (3)求物体能到达的最大高度,并讨论0θ=和2

πθ=

两种特殊情况。

6.质量12M =吨的宇宙飞船,在离月球高度100h km =处沿圆周轨道绕月球运行。为了能过渡到着陆的轨道上,于某个时刻关闭发动机。从火箭喷口射出的气流速度为

410/u m s =.月球半径1700R km =月,

月球表面上自由落体的加速度2

1.7/g m s =月.

(1)当在轨道上A 点关闭制动发动机时,飞船要降落在月球上B 点处,需要消耗多少燃料?如图(a )所示。

(2)为了使飞船在A 点具有指向月球中心方向的动量,并且过渡到在C 点与月球相切的轨道上,如图(b )所示,需要消耗多少燃料?

7.已知物体从地球上的脱离速度(第二宇宙速度)υ=G 、M 、R 分别是引力恒量、地球质量和半径。已知

112286.6710/, 2.997910/G N m kg c m s -=?=?,解答下列问题。

(1)脱离速度大于真空中光速的天体叫黑洞,设某黑洞的质量等于太阳的质量

301.9810M kg =?,求它的可能最大半径。

(2)目前天文观测范围内,物质的平均密度为27310/kg m -,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度,因此任何物体都不能脱离宇宙,问:宇宙半径至少多大?

8.天文学家认为:脉冲星是旋转的中子星。中子星的电磁辐射是连续的,沿其磁轴方向最强,其磁轴与中子星的自转轴方向有一夹角(如图所示)。已知某中子星的半径10R km =,质量301.5(1 2.010kg M M M ==?,为太阳的质量)

。在地球上的接受器接收到一连串周期性的、由该中子星发出的电磁辐射形成的脉冲.试由上述看法估算地球上接收到的两个脉冲之间的时间间隔的下限。

9.1844年,杰出的数学家和天文学家贝塞发现天狼星的运动偏离直线路径的最大角度

α为2.3'',周期T 为50年,且呈正弦曲线(与地球上观察者的运动无关),如图甲所

示,贝塞推测天狼星运动路线弯曲是由于存在着一个较小的伴星(经过18年以后已为直接观察所证实).如果天狼星自身的质量M 为2.3M 太,求伴星的质量与太阳质量M 之比.

已知从天狼星看地球轨道半径0R 的张角为0.376β''=";可以把天狼星和它的伴星的轨道看作圆形,且轨道平面垂直于太阳系到天狼星的方向.

10.从地球表面向火星发射火星探测器。设地球和火星都在同一平面上绕太阳做圆周运动,火星轨道半径m R 为地球轨道半径0R 的1.500倍。简单而又比较节省能量的发射过程可分为两步进行。第一步,在地球表面用火箭对探测器进行加速,使之获得足够的动能,从而脱离地球引力作用成为一个沿地球轨道运行的人造卫星。第二步,在适当时刻点燃与探测器连在一起的火箭发动机,在短时间内对探测器沿原方向加速,使其速度数值增加到适当值,从而使得探测器沿着一个地球轨道及火星轨道分别在长轴两端相切的半个椭圆轨道正好射到火星上,如图甲所示。

(1)为使探测器成为沿地球轨道运行的人造卫星,必须加速探测器,应使之在地面附近获得多大的速度(相对于地球)?

(2)当探测器脱离地球并沿地球公转轨道稳定运行后,在某年3月1日零时测得探测器与火星之间的角距离为60?,如图乙所示。问:应在何年何月何日点燃探测器上的火箭发动机方能使探测器恰好落在火星表面?(时间计算仅需精确到日)已知地球半径为

66.410e R m =?,重力加速度可取29.8/g m s =。

参考答案

1.6.58/km s ,36.3710s ? 【解析】 【详解】

如图所示,因为卫星所受地球引力的作用线通过地球中心,所以卫星对地球中心的角动量守恒。

已知在卫星轨道的近地点径矢的大小为

11r h R =+

36.6410km =?.

在远地点径矢的大小为

2238.2010m h k r R =+=.

设卫星在远地点的速度为2υ,因远、近地点的速度与该处径矢垂直,由动量守恒定律可得

1122r r m m υυ=.

由此得 1

212

6.58/r r km s υυ=

=. 求卫星的运行周期T 。 由开普勒第二定律可知

T =

椭圆面积

面积速度

由几何关系知,椭圆面积为ab π,其中a 、b 分别为椭圆的半长、短轴,它们可由远、近地点的径矢求出:

12

,2

r r a b +=

==又卫星的矢径的面积速度为

111

2

r υ,代入计算周期公式,得

11112212

ab

T r r ππυυ=

=

=36.3710s =?,

即卫星运行周期约为1小时46分。 2

.0T =

【解析】 【详解】

由开普勒第三定律有

2222

03

344,(1)T T A GM A G M ππα=='+,

所以0

T =. 又因为

201(1),222GMm GMm G Mm

m A A C A αυ+-

=-+-

'- 2

0(1)12

G Mm m A C αυ+=-

+-,

且C eA =, 所以(1)(1e)

12A A e

αα+-'=

--,

所以0T =

.

3.(1)2α=- (2)1α= 【解析】

【详解】

如图所示,可以证明,椭圆22221x y A B +=在A 处的曲率半径为2

A B A

ρ=,在B 处的曲率半

径为2

B A B

ρ=。(证明略)

(1)若太阳在椭圆一焦点之上。 在近日点,设行星的速度为1υ,则

22112(A C)A A

GmM m m B

α

υυρ-==.

在远日点,设行星的速度为2υ,则

22222(A C)A A

GmM m m B

α

υυρ+==.

由角动量守恒得12(A C)m (A C)m υυ-=+。 又222B A C =-,

由上述各式可得22(A C)(A C)αα++-=+. 因为A C A C -≠+,所以2α=-。 (2) 若太阳在椭圆的中心位置。

设行星在图中的A 点和B 点的速度分别为1υ和2υ,则

22

122

2

,A

B

GmMA m

GmMB m

B

A

α

α

υυ==.

同时有12m A m B υυ=,

整理得11A B αα--=。 因为A B ≠,所以1α=。 4.cos h R α= 【解析】 【详解】

设导弹上升的最大高度为h ,根据机械能守恒定律,有

22

01122

Mm Mm G

G m R R h υυ-+=-++. 导弹的运动遵循开普勒第二定律,并且导弹运动到最高点时,其速度方向垂直于导弹与地心的连线,于是有

0sin (R h)sin 90R υαυ=+?.

联立解得cos h R α=.

5.(1)由题意知 1.414k <。这意味着物体发射的初速度小于第二宇宙速度,物体不能脱离地球引力的束缚,只能绕地球运动。

(2)引力场是有心力场,物体在地球引力作用下的运动是平面运动。如果不考虑空气阻力,物体在运动过程中机械能及角动量均守恒。

(3) 011H R ??=-???

.当0

θ=和2πθ=两种特殊情况见解析。 【解析】 【详解】

(1)设物体的质量为m ,地球的质量为M ,地球半径为R 。物体从地球表面发射,成为绕地球运行的人造地球卫星,所需的最小发射速度1υ即为第一宇宙速度。 由万有引力定律及牛顿运动定律,有

2

12Mm G m R R

υ=, ① 解得

17.9/km s υ=

=.

物体脱离地球引力的束缚,成为环绕太阳运动的一颗人造行星,物体的最小发射速度2υ即为第二宇宙速度。 由机械能守恒定律,有

2

2102

Mm G

m R υ-+≥,

解得2111.414υυ≥

=≈. 由题意知 1.414k <。这意味着物体发射的初速度小于第二宇宙速度,物体不能脱离地球引力的束缚,只能绕地球运动。

(2)引力场是有心力场,物体在地球引力作用下的运动是平面运动。如果不考虑空气阻力,物体在运动过程中机械能及角动量均守恒。

(3)设物体运动离地面的最大高度为H ,在该处速度为υ。 由机械能守恒定律,有

22011

22

Mm Mm G

m G m R R H υυ-+=-++ ③ 由角动量守恒定律,有

0sin (R H)m R m υθυ=+. ④

联立①③④方程,得

222222

20110(2)(R H)2(R H)sin 0R R υυυυθ-+++-=.

解关于(R H)+的一元二次方程,得

011H R ?

?=-???

. ⑤ ⑤即为物体达到最大高度表达式。 讨论:

I.当发射角度0θ=,⑤式简化为

221122012H R υυυυ??±= ?

-??

解得H R =-(舍去),2

2

2k H R k =-. 关于结果2

2

2k H R k

=-作两点讨论: i.如果 1.414k

,则根据2GM R g =(g

为地球表面的重力加速度)及1υ=

解得2

02H g

υ≈

.

这是我们所熟知的物体竖直上抛运动的结果。 ii.如果1k =,则H R =. Ⅱ.当发射角度2

πθ=

时,⑤式简化为

平抛011H R ?

?=-???. 解得22

2(k 1)

20,H R k

H -==-. 此解的物理意义分析如下: i.当1k ≤时,0H

=,表明物体无法抛离地面或物体绕地球表面做匀速圆周运动。

ii.当1 1.414k <<时,物体绕地球眼椭圆轨道运动,0H

=,对应物体在近地点;

22

2(k 1)2k

H R --=,对应物体在远地点。 因此,22

2(k 1)

2k

H R --=,即为物体在角度2πθ=时所能达到的最大高度。 当角度2

πθ=

时,物体运动所能达到的最大高度还有另一种解法:

如图乙所示,设物体在远地点的曲率半径为ρ。该处速度为υ。有万有引力定律及牛顿运动定律,有

2

2

(R H)Mm G m υρ

=+. 物体眼椭圆轨道运动,半长轴及半短轴的长度记为a b 、,则由数学知识有

2(R H)

,,2

b R a b a ρ++===联立以上各式及方程④解得

22

2(k 1)2k

H R --=. 本题(3)问,亦可以在极坐标系中建立方程求解。 将物体的发射速度0υ沿径向和角向分解,写成

000r r e e ??υυυ=+, ⑦

000r r e e ??υυυ=+ ⑧

物体达到最大高度H 时,径向速度0r υ=,角向速度为?υ,由机械能守恒定律及角动量守恒定律有

22

20011()G 22

r Mm Mm m m R G

R ??υυυ++=-+-, ⑨ 0(R H)m R m ??υυ=+. ⑩

联立⑦⑨⑩式解得

0011r H R ??

?=-???

. Ⅰ.当发射角度0θ=时,0000,r ?υυυ==.所得结果同上。 Ⅱ.当发射角度2

πθ=

时,0000,r ?υυυ==.所得结果同上。

6.(1)29kg (1)116kg 【解析】 【详解】

(1)在飞船从A 点过渡到B 点的情况下,由能量守恒定律给出

221122B A R h GMM GMM m R m υυ+-=-月月月月

. 根据开普勒第二定律速度矢量在相等时间内扫过相等的面积。如果时间间隔t ?短,这个面积近似等于以t υ?为底和以R 为高的三角形面积:

11

()22

A B h R t R t υυ?=?+月月. 从这些关系式得到,在关闭发动机后,飞船在A 点速度为

A υ=

在关闭发动机前飞船沿圆周轨道运行,它的速度为

0υ=

发动机应使飞船速度减少

02=12A R R h υυυ?

-?-???

+月月 024/4h

m s R υ≈

=月

.

因为发动机工作时间很短,可以运用动量守恒定律,得

000(M m)()m(u )M υυυυ=-=-?++,

式中m 为所喷出的燃料质量。 对此式进行变形,得

29M M m kg u u

υυ

υ=

≈=??+?.

(2)在这种情况下解答与1。的情况类似,区别仅在于矢量υ?的方向垂直于矢量0υ的方向,所以,

υ?=最终得到

97/,116M m s m kg u

υ

υ=??===.

7.(1)max 2

2 2.93GM

R km c

== (2) 104.2310R '=?光年 【解析】 【详解】

(1)把地球上第二宇宙速度的公式应用到黑洞上,则式中M 、R 为黑洞的质量和半径。 当逃逸速度等于光速时黑洞半径最大,即

3

max 2

2 2.9310 2.93GM R m km c

=

=?=. (2)同理,应用到宇宙这个假想的“均匀球体”上,有

322

4

223G R GM R c c πρ'==, 则2

38c R G πρ

'=

. 代入数据得104.2310R '=?光年。 8.44.410s -? 【解析】 【详解】

根据题意,可知接收到的两个脉冲之间的时间间隔即为中子星的自转周期,中子星做高速自

转时,位于赤道处质量为m ?的中子星质元所需的向心力不能超过对应的万有引力,否则将会因不能保持匀速圆周运动而使中子星破裂,设中子星的质量为M ,因此有

22

M m

m R G

R

ω??≤,式中2T πω=. ω为中子星的自转角速度,T 为中子星的自转周期,由上述两式,得

2T ≥代入数据得44.410T s -≥?. 故时间间隔的下限为44.410s -?. 9.

0.998m

M =太

【解析】 【详解】

画出地球、天狼星及其伴星的运动轨道示意图,如图乙所示.

设天狼星质量为M ,伴星质量为m ,a 为天狼星与伴星之间的距离,12、a a 分别为天狼星、伴星到它们质心C 的距离.天狼星绕C 做圆周运动,向心力由它与伴星间的万有引力提供.设角速度为ω,则

2

12

122()GMm M a a a T π??

= ???+, 所以有22

2

1124()a a a T Gm

π=

+. 又由示意图知

101

tan tan()

a R a ααβ+=+. 由于αβ、都很小,所以

tan ,tan()αααβαβ≈+≈+.

即有10002.3 6.120.376

a R R R αβ''=

==''.

根据质心定理有21ma Ma =,即21M

a a m

=

. 所以有3223

2

3

6.124(m M)R T Gm

π+=. 又地球绕太阳公转,半径为0R ,周期01T =年,有

2

0202GM m m R R T π??= ???太地地,得23

2

004R T GM π=太

.

进而230232

116.12(m

M)T m T M =+太

即有3

2

23(m 2.3)250m M M +=太太

解得

0.998m

M =太

. 10.同年的4月7日 【解析】 【详解】

(1)设地球的质量为e M ,探测器及其附加装置的总质量为m ,则探测器在地球表面的动能K E 和引力势能P E 分别为

21

2

K E m υ=

, e P e

M m

E G

R =-. 当探测器脱离地球引力作用成为沿地球轨道运动的人造行星时,可以认为探测器的引力势能

0P

E '=;相对于地球的速度为零,因而0K E '=,由机械能守恒有 2

102e e

M m m G R υ-=,

得υ=

=代入数值得41.1210/m s υ=?.

(2)为使探测器落到火星上,必须选择适当时机点燃探测器上的火箭发动机,使得探测器沿椭圆轨道到达与火星轨道的相切点时,火星也恰好运行到这一点。为此,必须首先确定点燃火箭发动机时探测器与火星的相对位置,已知探测器在地球公转轨道上运行周期d T 与地球公转周期相同,即

365d e T T d ==.

根据开普勒第三定律,火星的公转周期为

671m T d ==.

而探测器的椭圆轨道上的半长轴为

00

01.5 1.252

R R R +=.

所以探测器在椭圆轨道上的运行周期d T '为

510d T d '==.

因此探测器从点燃火箭发动机至到达火星,需时间/255d T s d '=. 探测器在点燃火箭发动机前绕太阳转动的角速度为

33600.986/365d d d

ωω?

==

=?. 火星绕太阳转动的角速度为

3600.537/671m d d

ω?

=

=?. 由于探测器运行至火星需时255d ,火星在此期间运行的角距离为

/20.537/255137m d T d d ω'=??=?.

即探测器在椭圆轨道近日点发射时,火星应在其远日点的切点之前137?。亦即点燃火箭发动机时,探测器与火星的角距离应为18013743?-?=?,如图丙所示。

已知某年3月1日零时探测器与火星的角距离为60?(火星在前,探测器在后)。为使其角距离成为43?,必须等待两者在各自轨道中运行至某个合适的时机。 设两者到达合适位置,探测器又经历的天数为t ,则

3046d m t t ωω?-?=-,

即604337.8638d m t d d t t

ωω?-?

=

=≈-.

故点燃火箭发动机的时刻应为当年的3月1日之后38天,即同年的4月7日。

高一第六章万有引力定律课后习题

高一第六章万有引力定律课后习题 §6.1 1.关于日心讲被人们所同意的缘故是 〔 〕 A .以地球为中心来研究天体的运动有专门多无法解决的咨询题 B .以太阳为中心,许多咨询题都能够解决,行星的运动的描述也变得简单了 C .地球是围绕太阳转的 D .太阳总是从东面升起从西面落下 2. 哪位科学家第一次对天体做圆周运动产生了怀疑?〔 〕 A.布鲁诺 B.伽利略 C.开普勒 D.第谷 3. 两颗人造卫星A 、B 绕地球做圆周运动,周期之比为T A : T B = 1: 8,那么轨道半径之比是多少? 4. 设月球绕地球运动的周期为27天,那么地球的同步卫星到地球中心的距离r 与月球中心到地球中心 的距离R 之比r/R 为 ( ) A. 1/3 B. 1/9 C. 1/27 D. 1/18 §6.2 1.关于公式R 3 / T 2=k,以下讲法中正确的选项是〔 〕 A.公式只适用于围绕太阳运行的行星 B.不同星球的行星或卫星,k 值均相等 C.围绕同一星球运行的行星或卫星,k 值不相等 D.以上讲法均错 2. 关于万有引力和万有引力定律的明白得错误的选项是......〔 〕 A.不能看作质点的两物体间不存在相互作用的引力 B.只有能看作质点的两物体间的引力才能用221r m Gm F = 运算 C.由2 21r m Gm F = 知,两物体间距离r 减小时,它们之间的引力增大 D.万有引力常量的大小第一是由牛顿测出来的,且等于6.67×10-11N ·m 2/kg 2 3. 设地球是半径为R 的平均球体,质量为M,设质量为m 的物体放在地球中心,那么物体受到地球的 万有引力为〔 〕 A.零 B.GMm/R 2 C.无穷大 D.无法确定 4. 如下图,两球的半径分不是r 1和r 2,均小于r ,而球质量分布平均。大 小分不为m 1、m 2,那么两球间的万有引力大小为〔 〕 A.221r m m G B.2121r m m G C. 22121)(r r m m G + D. 5. 某物体在地面上受到地球对它的万有引力为F ,为使此物体受到的引力减小到4F ,应把此物体置 于距地面的高度为〔R 指地球半径〕 ( ) A. 1R B. 2R C. 4R D. 8R 6. 两个物体之间的万有引力大小为F 1,假设两物之间的距离减小x ,两物体仍可视为质点,现在两个物体之间的万有引力为F 2,依照上述条件能够运算〔 〕 A.两物体的质量 B.万有引力常量 C.两物体之间的距离 D.条件不足,无法运算上述中的任一个物理量 7. 关于万有引力定律的表述式221r m m G F =,下面讲法中正确的选项是〔 〕 A.公式中G 为引力常量,它是由实验测得的,而不是人为规定的 B.当r 趋近于零时,万有引力趋于无穷大

第六章万有引力定律单元测试含答案

第六章单元测试 (时间:90分钟 满分:100分) 一、选择题(本题共10小题,每小题5分,共50分.有的小题只有一个选项正确,有的小题有多个选项正确,把正确选项前的字母填在题后的括号内) 1.万有引力定律首次揭示了自然界中物体间一种相互作用的基本规律,以下说法正确的是( ) A .物体的重力不是地球对物体的万有引力引起的 B .人造地球卫星离地球越远,受到地球的万有引力越大 C .人造地球卫星绕地球运动的向心力由地球对它的万有引力提供 D .宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用 解析:选C.由重力的定义由于地球的吸引(万有引力)而使物体受到的力,可知选项A 错 误;根据F 万=GMm r2可知卫星离地球越远,受到的万有引力越小,则选项B 错误;卫星绕地球做圆周运动.其所需的向心力由万有引力提供,选项C 正确;宇宙飞船内的宇航员处于失重状态是由于万有引力用来提供他自身做圆周运动所需要的向心力,选项D 错误. 2.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置以及两颗人造卫星到地球中心的距离可能是( ) A .一人在南极,一人在北极,两卫星到地球中心的距离一定相等 B .一人在南极,一人在北极,两卫星到地球中心的距离可以相等也可不等 C .两人都在赤道上,两卫星到地球中心的距离一定相等 D .两人都在赤道上,两卫星到地球中心的距离可能相等也可能不等 解析:选C.两卫星是同步卫星. 3.如图所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M 、半径为R .下列说法正确的是( ) A .地球对一颗卫星的引力大小为错误! B .一颗卫星对地球的引力大小为GMm r2 C .两颗卫星之间的引力大小为Gm23r2 D .三颗卫星对地球引力的合力大小为3GMm r2

第三节万有引力定律

第六章 曲线运动 第3节 万有引力定律 【学习目标】 编写:温敬霞 审核: 1.了解万有引力定律发现的思路和过程 2.理解万有引力定律,知道它的适用范围 3.会用万有引力定律解决简单的引力计算问题,知道公式中r 的物理意义 4. 引力常量G 的物理意义及万有引力定律发现的意义 【课堂探究】 一. 万有引力定律提出的背景 通过上节的学习,我们知道:行星绕太阳匀速圆周运动所需的向心力由太阳与行星间的引力 来提供的,从而使得行星不能飞离太阳; 那么现在我们来进一步思考: ⑴. 地面上的物体,如苹果,被抛出后总要落回地面,是什么力使得苹果不离开地球呢? ————是否也是由于地球对苹果的引力造成的? ————地球对苹果的引力和太阳对行星的引力是否根本就是同一种力呢? ⑵. 进一步设想: 如果物体延伸到月球那么远,物体是否也会向月球那样围绕地球运动? 太阳吸引行星的力; 地球吸引月球的力; 是否是同一性质的力?遵循相同的规律? 地球吸引苹果的力; 这个想法的正确性要由事实来检验 二. 万有引力的检验 思考:“月 地检验”基本思路是怎样的? 假设维持月球绕地球运动的力与使苹果下落的力是同一种力,同样遵循F =G 2r Mm 因为 r 月 = r 地 所以 F 月= F 地 根据牛顿第二定律 所以a 月= g 地

已知:月球与地球之间的距离r=3.8×108m ,月 T=27.3天,重力加速度28.9s m g 求: 三. 万有引力定律 1.定律内容: 2. 公式 3. 万有引力定律的适用条件 【典型例题】 例题1. 既然任何物体间都存在着引力,为什么当两个人接近时他们不会吸在一起?我们通常分析物体的受力时是否考虑物体间的万有引力? 例题2. 大麦哲伦云和小麦哲伦云是银河系外离地球最近的星系。大麦哲伦云的质量是太阳质量的1010倍,即2.0×1040㎏,小麦哲伦云的质量是太阳质量的109倍,两者相距5×104 光年,求它们之间的引力。 g a 月

第五章万有引力定律会考练习

第五章 万有引力定律 一.选择题 1.假设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运行轨道半径R 的三次方之比为常数,那么该常数的大小( ) A.只与行星的质量有关 B.只与恒星的质量有关 C.与行星及恒星的质量都有关 D.与恒星的质量及行星的速率有关 2.把太阳系各行星的运动都近似看做匀速圆周运动,则对离太阳越远的行星说法错误.. 的是( ) A .周期越小 B .线速度越小 C .角速度越小 D .加速度越小 3.若地球表面处的重力加速度为g ,而物体在距地球表面3R (R 为地球半径)处,由于地球作用而产生的加速度为g',则g'/g 为 ( ) A .1 B . 1/9 C .1/4 D . 1/16 4.人造卫星绕地球做匀速圆周运动,其绕行速率( ) A .一定等于7.9km/s B .等于或小于7.9km/s C .一定大于7.9km/s D .介于7.9km/s ~11.2km/s 之间 5.一个半径是地球的3倍,质量是地球的36倍的行星,它表面的重力加速度是地球表面的重力加速度的( ) A .6倍 B .18倍 C .4倍 D.135倍 6.已知地球绕太阳公转周期 及公转轨道半径分别为T 和R ,月球绕地球公转周期及公转轨道半径分别为t 和r ,则太阳质量与地球质量之比为( ) A .R 3t 2/r 3T 2 B .R 3T 2/r 3t 2 C .R 2t 3/r 2T 3 D . R 2T 3/r 2t 3 7.地球表面重力加速度为g ,地球半径为R ,引力常量为G ,下列关于地球密度的估算式正确的是( ) A .RG g πρ43= B .G R g 243πρ= C .RG g =ρ D .2 GR g =ρ 8.两个行星质量分别为M 1.M 2,绕太阳运行轨道的半径之比为R 1.R 2,那么它们绕太阳公转的周期之比T 1:T 2为( )

人教版必修二第六章第三节万有引力定律同步训练(包含答案)

6.3 万有引力定律同步训练 一.选择题 1.要使两物体间的万有引力减小到原来的1/4,不能采用的方法是( ) A. 使两物体的质量各减小一半,距离保持不变 B. 使两物体间的距离增至原来的 2 倍,质量不变 C. 使其中一个物体的质量减为原来的一半,距离不变 D. 使两物体的质量及它们之间的距离都减为原来的1/4 2.下列说法中正确的是( ) A. 牛顿发现了万有引力定律,开普勒发现了行星的运动规律 B. 人们依据天王星偏离万有引力计算的轨道,发现了冥王星 C. 海王星的发现和哈雷彗星的“按时回归”确定了万有引力定律的地位 D. 牛顿根据万有引力定律进行相关的计算发现了海王星和冥王星 3.人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小, 在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动。当它在较大的轨道半 径 r 1 上时运行线速度为 v 1,周期为 T 1,后来在较小的轨道半径 r 2 上时运行线速度为 v 2, 周期为 T 2,则它们的关系是 A .v 1﹤v 2,T 1﹤T 2 C .v 1﹤v 2,T 1﹥T 2 B .v 1﹥v 2,T 1﹥T 2 D .v 1﹥v 2,T 1﹤T 2 4.下列关于地球同步卫星的说法正确的是 ( ) A .它的周期与地球自转同步,但高度和速度可以选择,高度增大,速度减小 B .它的周期、高度、速度都是一定的 C .我们国家发射的同步通讯卫星定点在北京上空 D .我国发射的同步通讯卫星也定点在赤道上空 5.人造卫星在太空绕地球运行中,若天线偶然折断,天线将 A .继续和卫星一起沿轨道运行 B .做平抛运动,落向地球 C .由于惯性,沿轨道切线方向做匀速直线运动,远离地球 ( )

苏版万有引力定律与航天单元测试

苏版万有引力定律与航天单元测试 【一】选择题〔本大题共8小题,每题5分,共40分。在每题给出的四个选项中. 1 6题只有一项符合题目要求;7 8题有多项符合题目要求。全部选对的得5分,选对但不全的得3分,有选错的得0分。〕 1.由于受太阳系中辐射出的高能射线和卫星轨道所处的空间存在极其稀薄的大气影响,对我国神州飞船与天宫目标飞行器在离地面343km 的近圆形轨道上的载人空间交会对接.下面说法正确的选项是〔 〕 A 、如不加干预,在运行一段时间后,天宫一号的动能可能会减小 B 、如不加干预,天宫一号的轨道高度将缓慢降低 D 、航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用 2.如下图,〝嫦娥三号〞的环月轨道可近似看成是圆轨道,观察〝嫦娥三号〞在环月轨道上的运动,发现每经过时间t 通过的弧长为l ,该弧长对应的圆心角为θ弧度.万有引力常量为G ,那么月球的质量是〔 〕 A 、l2G θ3t B 、θ3Gl2t C 、l3G θt2 D 、t2 G θl3 3.据报道,有 学家支持让在2019年被除名的冥王星重新拥有〝行星〞称号。下表是关于冥王星的一些物理量〔万有引力常量G 〕,可以判断以下说法正确的选项是〔 〕 A 、冥王星绕日公转的线速度比地球绕日公转的线速度大 B 、冥王星绕日公转的加速度比地球绕日公转的加速度大 C 、根据所给信息,可以估算太阳的体积的大小 D 、根据所给信息,可以估算冥王星表面重力加速度的大小 4.甲、乙、丙为三颗围绕地球做圆周运动的人造地球卫星,轨道半径之比为1:4:9,那么: A 、甲、乙、丙三颗卫星围绕地球的线速度之比为1:2:3 B 、甲、乙、丙三颗卫星围绕地球的角速度之比为1:81 : 27 1 C 、甲、乙、丙三颗卫星围绕地球的周期之比为1:21 :31 D 、甲、乙、丙三颗卫星围绕地球的向心加速度之比为1:41 :91

人教版必修二 第六章第3节万有引力定律同步练习

6.3万有引力定律同步练习 1.设想把质量为m 的物体(可视为质点)放到地球的中心,地球质量为M ,半径为R.则物体与地球间的万有引力是( ) A .零 B .无穷大 C.GMm R 2 D .无法确定 2.物理学发展历程中,在前人研究基础上经过多年的尝试性计算,首先发表行星运动的三个定律的科学家是 A. 白尼 B. 第谷 C. 开普勒 D. 伽利略 3.以下说法符合物理史实的是 A. 开普勒提出行星运动的三大定律,牛顿测出了万有引力常量G 的数值 B. 牛顿第三定律为我们揭示了自然界中存在的惯性及惯性定律 C. 亚里士多德认为只有力作用在物体上,物体才会运动 D. 伽利略通过理想斜面实验得出,物体在不受摩擦力的情况下,会作减速运动,直至停止运动 4.一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( ) A .恒星的质量为v 3 T 2πG B .行星的质量为4π2v 3 GT 2 C .行星运动的轨道半径为vT 2π D .行星运动的加速度为2πv T 5.月球与地球质量之比约为1∶80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕地月连线上某点O 做匀速圆周运动.据此观点,可知月球与地球绕O 点运动线速度大小之比约为( ) A .1∶6400 B .1∶80 C .80∶1 D .6400∶1 6.假设有一“太空电梯”悬在赤道上空某处,相对地球静止,如图所示,那么关于“太空电梯”,下列说法正确的是( )

A .“太空电梯”各点均处于完全失重状态 B .“太空电梯”各点运行周期随高度增大而增大 C .“太空电梯”上各点线速度与该点离地球球心距离的开方成反比 D .“太空电梯”上各点线速度与该点离地球球心距离成正比 7.设地球表面重力加速度为g 0,物体在距离地心4R(R 是地球的半径)处,由于地球的作用而产生的加速度为g ,则 g g 为( ) A .1 B. 19 C. 14 D. 116 8.对于万有引力定律的表达式F = 12 2 Gm m r ,下列说法中正确的是( ) A .公式中的G 为比例常数,无单位 B .m 1与m 2之间的相互作用力,总是大小相等,方向相反,是一对作用力和反作用力 C .当r 趋近于0时,F 趋向无穷大 D .当r 趋近于0时,公式不成立 9.关于万有引力,下列说法中正确的是( ) A .万有引力只有在研究天体与天体之间的作用时才有价值 B .由于一个苹果的质量很小,所以地球对它的万有引力几乎可以忽略 C .地球对人造卫星的万有引力远大于卫星对地球的万有引力 D .地球表面的大气层是因为万有引力的约束而存在于地球表面附近 10.科技日报北京2017年9月6日电,英国《自然天文学》杂志发表的一篇论文称,某科学家在银河系中心附近的一团分子气体云中发现了一个黑洞。科学研究表明,当天体的逃逸速度(即第二宇宙速度,为第一宇宙速度的倍)超过光速时,该天体就是黑洞。已知某天体与地球的质量之比为k ,地球的半径为R ,地球卫星的环绕速度(即第一宇宙速度)为v 1,光速为c ,则要使该天体成为黑洞,其半径应小于( ) A. B. C. D.

第五章万有引力

第五章万有引力 第一节行星的运动 专题1:开普勒三定律 专题2:万有引力定律公式的推导 第二节万有引力定律及应用 专题1:重力的产生 专题2:近地卫星和同步卫星 第三节天体运动 专题1:宇宙速度 专题2:变轨 专题3:双星和三星问题 专题4:拉格朗日点 一:高考统一考试大纲(2019) 万有引力定律:万有引力定律及其应用Ⅱ 环绕速度Ⅱ 第二宇宙速度和第三宇宙速度Ⅰ 航天技术的发展和宇宙航行Ⅰ

二:思维导图 第一节行星的运动 专题一:开普勒三定律 一、基本内容 1.开普勒第一定律:所有行星绕太阳运行的轨道都是_______,太阳处在所有椭圆的_______上. 2.开普勒第二定律:对于每一个行星,太阳和行星的连线在相等的时间内扫过的_______相等. 3.开普勒第三定律:所有行星的半长轴的_____次方跟公转周期的______的比值都相等。 注意:对同一星系中的所有行星,k值____等;对不同星系间的两颗行星,k值____等.也就是说,只有对于同一个中心天体,其k值才是相同的。 课堂习题 【题1】证明:由开普勒第二定律可知v1R1=v2R2,

【题2】把火星和地球绕太阳运行的轨道视为圆周。由火星和地球绕太阳的周期之比可求得( ) A.火星和地球的质量之比B.火星和太阳的质量之比 C. 火星和地球到太阳的距离之比 D.火星和地球绕太阳运行速度大小之比 【题3】如图所示,一颗卫星绕地球做椭圆运动,运动周期为T,图中虚线为卫星的运行轨迹,A、B、C、D是轨迹上的四个位置,其中A距离地球最近,C距离地球最远。B和D点是弧线ABC和ADC 的中点,下列说法正确的是() A.卫星在C点的速度最大 B.卫星在C点的加速度最大 C.卫星从A 经D到C点的运动时间为T/2 D.卫星从B经A到D点的运动时间为T/2 【题4】已知木星的公转半径大约是地球公转半径的5倍,求木星的周期大约是多少? 专题二:万有引力定律公式的推导 开普勒发现,所有行星绕太阳运动的轨道的半长轴的三次方跟它的公转周期的二次方的比值都 相等,这个比值叫做开普勒常数,此常数与中心天体的质量成正比,即。理论证明,开普勒定律不仅适用于行星绕太阳的运动,也适用于卫星绕行星的运动。如图所示,研究问题时可将地球 认为是质量分布均匀的正球体,已知地球质量为M,半径为R: (1)若卫星一围绕地球做匀速圆周运动,距离地心为r,周期为T,请推导万有引力定律,并写出 万有引力常量G的表达式。 (2)若卫星二绕地球运动的轨迹为椭圆,已知其距地表最近点距离为r1,距地 表最远点距离为r2,求卫星二绕地球运行的周期T0. (3)若在距离地球表面高度为L的位置静止释放一个小物体m,忽略大气层阻 力,且L比R大很多,推测此物体落到地球的时间。

第六章 第三节 万有引力定律

第六章万有引力与航天 第3节万有引力定律 本节是在学习了太阳与行星间的引力之后,探究地球与月球、地球与地面上的物体之间的作用力是否与太阳与行星间的作用力是同一性质的力,从而得出了万有引力定律.根据万有引力定律而得到的一系列科学发现,不仅验证了万有引力定律的正确性,而且表明了自然界和自然规律是可以被认识的.万有引力定律是所有有质量的物体之间普遍遵循的规律,引力常量的测定不仅验证了万有引力定律的正确性,而且使得万有引力定律能进行定量计算,显示出真正的实用价值. 教学过程中的关键是对万有引力定律公式的理解,知道公式的适用条件.教师可灵活采用教学方法以便加深对知识的理解,比如讲授法、讨论法. 教学重点 万有引力定律的理解及应用. 教学难点 万有引力定律的推导过程. 课时安排 1课时 三维目标 知识与技能 1.了解万有引力定律得出的思路和过程. 2.理解万有引力定律的含义并掌握用万有引力定律计算引力的方法. 3.记住引力常量G并理解其内涵. 过程与方法 1.了解并体会科学研究方法对人们认识自然的重要作用. 2.认识卡文迪许实验的重要性,了解将直接测量转化为间接测量这一科学研究中普遍采用的重要方法. 情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性. 教学过程 导入新课 故事导入 1666年夏末一个温暖的傍晚,在英格兰林肯郡乌尔斯索普,一个腋下夹着一本书的年轻人走进他母亲家的花园里,坐在一颗树下,开始埋头读他的书.当他翻动书页时,他头顶的树枝中有样东西晃动起来,一只历史上最著名的苹果落了下来,打在23岁的伊萨克·牛顿的头上.恰巧在那天,牛顿正苦苦思索着一个问题:是什么力量使月球保持在环绕地球运行的轨道上,以及使行星保持在其环绕太阳运行的轨道上?为什么这只打中他脑袋的苹果会坠落到地上?(如下图所示)正是从思考这一问题开始,他找到了这些问题的答案——万有引力定律.

万有引力定律 单元复习题

万有引力定律 单元复习题 1.关于地球同步通讯卫星,下列说法中正确的是 ( ) A 它一定在赤道上空运行 B 各国发射的这种卫星轨道半径都一样 C 它运行的线速度一定小于第一宇宙速度 D 它运行的线速度介于第一和第二宇宙速度之间 2.两颗靠得较近的天体叫双星,它们以两者重心连线上的某点为圆心做匀速圆周运动,因而不至于因引力作用而吸引在一起,以下关于双星的说法中正确的是 ( ) A 它们做圆周运动的角速度与其质量成反比 B 它们做圆周运动的线速度与其质量成反比 C 它们所受向心力与其质量成反比 D 它们做圆周运动的半径与其质量成反比 3.由于地球的自转,地球表面上各点均做匀速圆周运动,所以( ) A 地球表面各处具有相同大小的线速度 B 地球表面各处具有相同大小的角速度 C 地球表面各处具有相同大小的向心加速度 D 地球表面各处的向心加速度方向都指向地球球心 4.某同学这样来计算第一宇宙速度: v = T R π2=3600 24104.614.323 ????km/s=0.465km/s 这一结果与正确的值相差很大,这是由于他在近似处理中错误地假设( ) A 卫星的轨道是圆 B 卫星的周期等于地球自转的周期 C 卫星的轨道半径等于地球的半径 D 卫星的向心力等于它在地面上时所受的地球引力 5.关于人造地球卫星的向心力,下列各种说法中正确的是( ) A 根据向心力公式F = m r v 2 ,可见轨道半径增大到2倍时,向心力减小到原来的 2 1 B 根据向心力公式F = mr ω2,可见轨道半径增大到2倍时,向心力也增大到原来的2倍 C 根据向心力公式F = mv ω,可见向心力的大小与轨道半径无关 D 根据卫星的向心力是地球对卫星的引力F = G 2r Mm ,可见轨道半径增大到2倍时,向心力减小到原来的4 1 6.关于沿圆轨道运行的人造地球卫星,以下说法中正确的是( ) A 卫星轨道的半径越大,飞行的速率就越大 B 在轨道上运行的卫星受到的向心力一定等于地球对卫星的引力

天体运动单元测试(万有引力定律)

1.发现万有引力定律和测出引力常量的科学家分别是() A.开普勒、卡文迪许B.牛顿、伽利略 C.牛顿、卡文迪许D.开普勒、伽利略 2.若已知太阳的一个行星绕太阳运转的轨道半径为r,周期为'T,引力常量为G,则可求得()A.该行星的质量B.太阳的质量 C.该行星的平均密度D.太阳的平均密度 3.我国是世界上能够发射地球同步卫星的少数国家之一,关于同步卫星正确的说法是()A.可以定点在南京上空 B.运动周期与地球自转周期相同的卫星肯定是同步卫星 C.同步卫星内的仪器处于超重状态 D.同步卫星轨道平面与赤道平面重合 4.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己而言静止不动,则这两位观察者的位置以及两颗人造地球卫星到地球中心的距离可能是() A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等 B.一人在南极,一个在北极,两卫星到地球中心的距离可以不等,但应成整数倍 C.两人都在赤道上,两卫星到地球中心的距离一定相等 D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍 5.地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上物体“飘”起来,则地球的转速应为原来的( ) A.g a B C D 6.火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆。已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星相比() A.火卫一距火星表面较近B.火卫二的角速度较大 C.火卫一的运动速度较大D.火卫二的向心加速度较大 7.两个行星A和B各有一颗卫星a和b。卫星的圆轨道接近各自行星的表面。如果两行星质量之比M A : M B = p,两行星半径之比R A : R B = q,则两卫星周期之比T a : T b为() A .B .C .D 8.已知地球和火星的质量之比:8:1 M M= 地火,半径比:2:1 R R= 地火 ,表面动摩擦因数均为0.5,用一根绳在地 球上拖动一个箱子,箱子能获得10m/s2的最大加速度,将此箱和绳送上火星表面,仍用该绳子拖动木箱(使用同样大的力),则木箱产生的最大加速度为() A.10m/s2B.12.5m/s2C.7.5m/s2D.15m/s2 9.2003年2月1日美国“哥伦比亚”号航天飞机在返回途中解体,造成人类航天史上又一悲剧。若“哥伦比亚”号航天飞机是在赤道上空飞行,轨道半径为r,飞行方向与地球的自转方向相同。设地球的自转角速度为ω0,地球半径为R,地球表面重力加速度为g。在某时刻航天飞机通过赤道上某建筑物的上方,则到它下次通过该建筑物上方所需时间为() A . 2/) πωB . 1 2) π ω C .2D . 2/) πω 10.地球绕太阳公转的轨道半径r = 1.49×1011m,公转周期T = 3.16×107s,万有引力恒量G = 6.67×10-11N·m2/kg2。 则太阳质量的表达式M = __________,其值约为_________kg。(取一位有效数字) 11.空间探测器进入某行星引力范围以后,在靠近该行星表面的上空做圆周运动。测得运动周期为T,则这个

2021高考总复习物理(创新版)Word文档第5章第21讲 万有引力定律及其应用

第五章天体运动 [研读考纲明方向] [重读教材定方法] 1.P31哪位科学家把天空中的现象与地面上的现象统一起来,成功解释了天体运行的规律? 提示:牛顿。 2.P32开普勒行星运动定律的表述。 提示:(1)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 (3)所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 3.P33对行星运动轨道简化为圆周后的开普勒三个定律的表述。 提示:(1)行星绕太阳运动的轨道十分接近圆,太阳处在圆心。 (2)对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)大小不变,即

行星做匀速圆周运动。 (3)所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等,即r3 T2 =k。 4.P36[问题与练习]T2。 提示:近地点的速度较大。 5.P37“太阳对行星的引力”一段,太阳对行星的引力公式依据什么推导出来的? 提示:依据开普勒行星运动定律和圆周运动向心力公式推导出来。 6.P39[问题与练习]T2。 提示:通过开普勒第三定律得到的。 7.P40万有引力定律的适用范围是什么? 提示:自然界中的任何两个物体。 8.P41万有引力理论的成就有哪些? 提示:计算天体的质量、发现未知天体。 9.P42笔尖下发现的是哪一颗行星? 提示:海王星。 10.P43[问题与练习]T3。 提示:由GMm r2=mω2r,ω=2π T ,得M=4π2r3 GT2 ,代入数据得:M≈5.93×1024 kg。 11.P44“宇宙速度”一段,发射地球卫星的最小速度是多少? 提示:7.9 km/s。 12.P46[科学漫步]黑洞的特点是什么? 提示:黑洞是引力非常大的天体,光以3×108 m/s的速度都不能从其表面逃逸。 第21讲万有引力定律及其应用

人教版高中物理(必修2)课时作业:第六章 第3节 万有引力定律(附答案)

第三节万有引力定律 1.假定维持月球绕地球运动的力与使得苹果下落的力真的是同一种力,同样遵从 “____________”的规律,由于月球轨道半径约为地球半径(苹果到地心的距离)的60倍,所以月球轨道上一个物体受到的引力是地球上的________倍.根据牛顿第二定律,物体在月球轨道上运动时的加速度(月球______________加速度)是它在地面附近下落时的加 速度(____________加速度)的________.根据牛顿时代测出的月球公转周期和轨道半径, 检验的结果是____________________. 2.自然界中任何两个物体都____________,引力的方向在它们的连线上,引力的大小与 ________________________成正比、与__________________________成反比,用公式表示即________________.其中G叫____________,数值为________________,它是英国 物理学家______________在实验室利用扭秤实验测得的. 3.万有引力定律适用于________的相互作用.近似地,用于两个物体间的距离远远大于 物体本身的大小时;特殊地,用于两个均匀球体,r是________间的距离. 4.关于万有引力和万有引力定律的理解正确的是() A.不能看做质点的两物体间不存在相互作用的引力 B.只有能看做质点的两物体间的引力才能用F=Gm1m2 r2计算 C.由F=Gm1m2 r2知,两物体间距离r减小时,它们之间的引力增大 D.万有引力常量的大小首先是由牛顿测出来的,且等于6.67×10-11N·m2/kg2 5.对于公式F=G m1m2 r2理解正确的是() A.m1与m2之间的相互作用力,总是大小相等、方向相反,是一对平衡力 B.m1与m2之间的相互作用力,总是大小相等、方向相反,是一对作用力与反作用力C.当r趋近于零时,F趋向无穷大 D.当r趋近于零时,公式不适用

万有引力定律单元检测

西昌一中2021届单元检测试题(万有引力定律) 学校:___________姓名:___________班级:___________考号:___________ 一、单选题(本大题共10小题,共40.0分) 1.在物理学的发展过程中,许多物理学家都做出了重大贡献,他们也创造出了许多物 理学研究方法,下列关于物理学史和物理学方法的叙述中正确的是 A. 牛顿发现了万有引力定律,他被称为“称量地球质量”第一人 B. 牛顿进行了“月地检验”,得出天上和地下的物体间的引力作用都遵从万有引力 定律 C. 卡文迪许在利用扭秤实验装置测量引力常量时,应用了微元法 D. 在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法是转换法【答案】B 【解析】【分析】 牛顿发现引力定律,而卡文迪许通过实验测量并计算得出了万有引力常量,使用了放大法;用质点来代替物体的方法是等效替代法,从而即可一一求解. 本题考查了物理学史以及一些物理定律的意义,对于物理定律我们不仅要会应用还要了解其推导过程,有助于提高我们研究问题的能力和兴趣,注意引力定律与引力常量发现者的不同,及理解微元法、等效法、转换法的含义. 【解答】 A、牛顿发现了万有引力定律,而卡文迪许通过实验测量并计算得出了万有引力常量,因此卡文迪许被称为“称量地球的质量”的人。故A错误; B、牛顿进行了“月地检验”,得出天上和地下的物体间的引力作用都遵从万有引力定律,故B正确; C、卡文迪许在利用扭秤实验装置测量引力常量时,应用了放大法,故C错误。 D、不需要考虑物体本身的大小和形状时,用质点来代替物体的方法是等效替代法,故D错误。 故选:B。 2.地球半径为R,地面附近的重力加速度为g,物体在离地面高度为h处的重力加速 度的表达式是 A. B. C. D. 【答案】D 【解析】【分析】 由地面的万有引力等于重力,再列高空的万有引力等于重力,联合可得高空重力加速度表达式。 无论地面还是高空,万有引力都可以直接表达为: 【解答】 地面万有引力等于重力: 高空处: 解得:

第五章 万有引力与航天(A)(解析版)

优创卷·一轮复习单元测评卷 第五章 万有引力与航天 A 卷 名校原创基础卷 一、选择题(本题共8小题,每小题4分.在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.) 1.(2020·江苏省宜兴期末)观看科幻电影《流浪地球》后,某同学设想地球仅在木星引力作用下沿椭圆轨道通过木星的情景,如图所示,轨道上P 点距木星最近(距木星表面的高度可忽略)。则( ) A.地球靠近木星的过程中运行速度减小 B.地球远离木星的过程中加速度增大 C.地球远离木星的过程中角速度增大 D.地球在P 点的运行速度大于木星第一宇宙速度 【答案】D 【解析】 A.地球靠近木星时所受的万有引力与速度成锐角,做加速曲线运动,则运行速度变大,A 错误; B.地球远离木星的过程,其距离r 变大,则可知万有引力增大,由牛顿第二定律: 2 GMm ma r = 则加速度逐渐减小,B 错误; C.地球远离木星的过程线速度逐渐减小,而轨道半径逐渐增大,根据圆周运动的角速度关系v r ω=,可知运行的角速度逐渐减小,C 错误; D.木星的第一宇宙速度指贴着木星表面做匀速圆周的线速度,设木星的半径为R ,满足1GM v R 过P 点后做离心运动,则万有引力小于需要的向心力,可得 22P v Mm G m R R <

可推得: 1P GM v v R > = 即地球在P 点的运行速度大于木星第一宇宙速度,D 正确; 故选D 。 2.(2020·江西省南康月考)如图所示为一卫星绕地球运行的轨道示意图,O 点为地球球心,已知地球表面重力加速度为g ,地球半径为R ,OA=R ,OB=4R ,下列说法正确的是( ) A.卫星在A 点的速率v gR > B.卫星在A 点的加速度>a g C.卫星在B 点的速率gR v = D.卫星在B 点的加速度2 16B GM a R < 【答案】A 【解析】A.在A 处,若为圆轨道,万有引力提供向心力 22Mm v G m R R = 解得 GM v R = 结合 2Mm G mg R = 解得 v gR =在椭圆轨道上,卫星在A gR A 正确; B.万有引力提供加速度

万有引力定律单元测试题及解析

万有引力定律单元测试题 及解析 Prepared on 21 November 2021

万有引力定律单元测试题 一、选择题(每小题7分,共70分) 1.(2010·上海高考)月球绕地球做匀速圆周运动的向心加速度大小为a.设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则( ) A.g1=a B.g2=a C.g1+g2=a D.g2-g1=a 2. 图4-3-5 (2012·广东高考)如图4-3-5所示,飞船从轨道1变轨至轨道2.若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的( ) A.动能大 B.向心加速度大 C.运行周期长 D.角速度小 3.(2010·北京高考)一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量为G,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为( ) A.B. C.D. 4.(2012·山东高考)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R1、R2,线速度大小分别为v1、v2.则等于( ) A.B. C.D. 5.(2012·北京高考)关于环绕地球运动的卫星,下列说法正确的是( ) A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期 B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率 C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同 D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合 6.(2011·重庆高考)某行星和地球绕太阳公转的轨道均可视为圆.每过N 年,该行星会运行到日地连线的延长线上,如图4-3-6所示,该行星与地球的公转半径之比为( )

万有引力定律

高一物理万有引力定律说课稿 https://www.doczj.com/doc/cb3060093.html, 2007-11-6 17:09:39 浏览人次:1980 A.教材分析 一、在教材中的地位 本节内容在《2004年高考考试大纲理科综合》中属Ⅰ级要求,本节和前一节波的衍射共同讲解波的特有现象,为后面电磁波及光波的教学打下基础。 二、教材设计流程 波的干涉是波的一种特殊的叠加现象,所以对波的叠加现象的理解是认识波的干涉现象的基础。教材首先讲了波的叠加现象,即两列波相遇而发生叠加时,对某一质点而言,它每一时刻振动的总位移,都等于该时刻两列波在该质点引起的位移的矢量和。 在学生理解波的叠加的基础上,再进一步说明在特殊情况下,即当两列波的频率相同时,叠加的结果就会出现稳定的特殊图样,即某些点两列波引起的振动始终加强,某些点两列波引起的振动始终减弱,并且加强点与减弱点相互间隔,这就是干涉现象。 由于对干涉现象的理解,需要一定的空间想象能力,可借助图片、计算机模拟,尽可能使学生形象、直观地理解干涉现象。 三、教学目标 1、知识目标 (1)知道波的叠加原理。 (2)知道什么是波的干涉现象和干涉图样。 (3)理解干涉现象的形成原理。 (4)知道干涉现象是波所特有的现象。 2、能力目标 (1)培养观察、分析、归纳和空间想象能力。 (2)学习将三维空间运动转化为二维平面运动进行分析的思维方法 (3)学习在动态变化中抓住瞬间状态进行分析的思维方法 3、德育目标 培养学生辩证唯物主义的思想和实事求是的精神。 四、教学重点 干涉条件和干涉图样 五、教学难点 干涉现象形成的原理

B.教法分析 一、理论依据 为充分体现学生的学习主体地位,准备采用前苏联教育家马赫穆托夫、列尔涅尔、斯卡特金等人所倡导的问题教学法。其基本程序是:提出问题——引导学生观察实验——启发学生分析和解决问题。解决问题一般要经过四个阶段:即教师提出问题→学生独立思考、观察、讨论分析→教师根据学生交流的情况进行点拨引导→总结得出结论、进行论证。 二、主要目的 充分体现学生的主体地位和作用,让学生在问题中激发兴趣,在问题的争论中辨清问题,在问题的解决中提升能力。 三、主要设想 1、为了形象直观,打算在课堂中采用播放录相、实验演示、电脑动画模拟辅助手段,帮助学生建立形象直观的认识,降低难度。 2、在引导学生分析清楚不连续的脉冲波的叠加情形之后,顺势通过提问让学生思考连续波的叠加情况。引入波的干涉现象。 3、通过对波的干涉现象的观察与分析,分析波的干涉形成的原理,得出波的干涉条件。 四、突破重难点的方法 1、为了能让学生更好的理解波的干涉形成原理,可以采取变“静”为“动”,“动”中取“静”的分析方法。 波的干涉现象是一种动态中的稳态,要分析这种现象,应该采用对某一瞬间状态进行分析的思维方法,并且将立体转化为平面进行形象的分析,充分利用计算机动画化动为静、化快为慢的特点,能有效地化解难点. 具体操作流程如下:首先做演示实验,让学生观察叙述实验现象,然后将水波的干涉图样用三维动画模拟在计算机上,让学生先看三维图的俯视图,再看三维图侧视剖视图,在边缘上放上质点,与上面讲到的波的叠加实验联系起来,让学生从感观上和知识上清楚的意识到,波的干涉实际上是一种特殊的叠加现象。在这个过程中,还可以使学生将三维空间运动转化为二维平面运动进行分析的思维方法得到提高. 2、在讨论波的干涉图样和干涉条件时,可以提出以下的问题4和5,请学生看课本上的干涉图样,引导学生思考与讨论,然后大面积提问,最后,由教师在黑坂上画图分析总结。在师生的互动中,将重点难点一一化解 C.学法分析 一、问题展示 1.什么是波的衍射?产生明显衍射现象的条件是什么?

第六章万有引力定律习题

第六章万有引力定律习题 6.1.1设某行星绕中心天体以公转周期T沿圆轨道运行.试用开普勒第三定律证明:一个物体由此轨道自静止而自由 下落至中心天体所需的时间为. 解: 6.2.1 土星质量为,太阳质量为,二者的平均距离是.(1)太阳对土星的引力有多大?(2)设土星沿圆轨道运行,求它的轨道速度. 解: ( 1) ( 2) 6.2.2 某流星距地面一个地球半径,求其加速度. 解:

6.2.3 (1)一个球形物体以角速度旋转.如果仅有引力阻碍球的离心分解,此物体的最小密度是多少?由此估算巨蟹座中转速为每秒30转的脉冲星的最小密度.这脉冲星是我国在1054年就观察到的超新星爆的结果. (2)如果脉冲星的质量与太阳的质量相当(~ 或~ ,为地球质量),此脉冲星的最大可能半径是多少?(3)若脉冲星的密度与核物质的相当,它的半径是多少?核密度约为 . 解: ( 1)以最外层任一质元计算: (2) ( 3)可求。 6.2.4 距银河系中心约25000光年的太阳约以170 000 000年的周期在一圆周上运动.地球距太阳8光分.设太阳受到的引力近似为银河系质量集中在其中心对太阳的引力.试求以太阳质量为单位银河系质量.

解: 6.2.5 某彗星围绕太阳运动,远日点的速度为10km/s,近日点的速度为80km/s若地球在半径为 的圆周轨道绕日运动,速度为30km/s.求此彗星的远日点距离. 解: 又 6.2.6 一匀质细杆长L质量为M.求距其一端为d处单位质量质点受到的引力(亦称引力场强度). 解:

单位质量受力: 6.2.7 半径为R的细半圆环线密度为.求位于圆心处单位质量质点受到的引力. 解: 引力场强度: 6.3.1 考虑一转动的球形行星,赤道上各点的速度为V,赤道上的加速度是极点上的一半.求此行星极点处的粒子的逃逸速度.

万有引力定律讲解(附答案)

6.3 万有引力定律 班级: 组别: 姓名: 【课前预习】 1.万有引力定律: (1)内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比。 (2)表达式: F =G m 1m 2r 2 。 2.引力常量 (1)引力常量通常取G = 6.67×10-11 N·m 2/kg 2,它是由英国物理学家卡文迪许在实验室里测得的。 (2)意义:引力常量在数值上等于两个质量都是1kg 的质点,相距1m 时的相互吸引力。 【新课教学】 一、牛顿的“月——地”检验 1.检验的目的:地球对月亮的力,地球对地面上物体的力,太阳对行星的力,是否是同一种力。 2.基本思路 (理论计算):如果是同一种力,则地面上物体的重力G ∝21R ,月球受到地球的力2 1r f ∝。 又因为地面上物体的重力mg G =产生的加速度为g ,地球对月球的力提供月球作圆周运动的向心力,产生的向心加速度,有向ma F =。 所以可得到:22 R r F G a g ==向 又知月心到地心的距离是地球半径的60倍,即r=60R ,则有:322107.23600 -?==?=g g r R a 向m/s 2。 3.检验的过程(观测计算): 牛顿时代已测得月球到地球的距离r 月地 = 3.8×108 m ,月球的公转周期T = 27.3天,地球表面的重力加速度g = 9.8 m /s 2,则月球绕地球运动的向心加速度: =向a (2 πT )2r 月地 (字母表达式) =向a (2π27.3×24×3600)2 ×3.8×108 (数字表达式) =向a 2.7×10-3m/s 2 (结果)。 4.检验的结果:理论计算与观测计算相吻合。表明:地球上物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律。 二、万有引力定律

相关主题
文本预览
相关文档 最新文档