当前位置:文档之家› 【CN305343540S】智能供暖系统【专利】

【CN305343540S】智能供暖系统【专利】

【CN305343540S】智能供暖系统【专利】
【CN305343540S】智能供暖系统【专利】

采暖供热系统的应用

采暖供热系统的应用 采暖供热系统的应用 摘要:随着环保要求的提高和电力峰谷差的拉大,燃煤锅炉采暖受到严格限制,而其他采暖形式,如燃气采暖、电动采暖和蓄热的应用,开始受到关注。本文对热电联产、燃气锅炉、电炉、电动热泵以及蓄热的应用前景做初步的分析与探讨。关键词:采暖蓄热应用 中图分类号:F407.61文献标识码:A 文章编号: 一、引言近年来,我国大气污染日益严重,人们要求保护环境、净化天空的呼声日益增高,而北方冬季城市空气污染的重要来源是采暖燃煤锅炉所排放的粉尘和有害气体。与此同时,许多地区电力出现了相对过剩、电力峰谷差不断拉大的现象。例如,东北电网系统的最大峰谷差已是最大负荷的37%,而华北电网已达峰负荷的40%[1]。为解决电力系统的这种供需矛盾,电力系统用户侧和发电侧均采取了一定措施。在发电方面,一大批初投资巨大的抽水蓄能电站、运行费昂贵的燃油燃气尖峰电站相继建成并投入调峰运行,甚至一些高参数的大型火电厂也以被迫降低发电效率为代价而参与电力调峰。同时,电力系统也加强了用户侧管理。例如,采取分时电价,鼓励用户在电力低谷时多用电,在电力高峰时少用电。因此,在环保要求高的城市采暖供热中,燃煤锅炉房或燃煤炉灶将严格限制使用,取而代之的几种可能的采暖形式主要有集中供热的电锅炉、大型电动热泵和燃气锅炉房以及分散在用户房间内的家用燃气炉、电暖器。同时,为减小电力网发电的峰谷差,也可考虑在供热系统中设置蓄热装置,使得在满足采暖要求的同时,对电力负荷起到削峰填谷的作用。为此,本文将对上述采暖系统形式的应用作初步的分析与探讨。 二、各采暖系统应用分析1.传统采暖供热系统 传统的采暖供热系统主要有锅炉采暖系统和热电联产集中供热系统。

供热智能网络监控系统

供热智能网络监控系统 一、系统概述 CHR-Themal5000是针对区域集中供热所开发的网络智能控制系统。系统以先进的自动化、计算机通讯和网络支持为基础,采用新一代产品、方案及服务,可以显著地提高系统的供热效率、保证系统运行的的稳定性和安全性,系统通过现场总线和网络集成而构成自动控制系统网络,按照公开、规范的道讯协议在智能设备之间、智能设备与远程计算机之间实现数据传输和信息交换,从而实现控制与管理一体化的综含自动控制系统。系统最大的特点是以热源(锅炉)、管网和用户作为整体,采用开故式结构,实现了供热系统的量化控制。达到‘按需取热,按需供热”的目的。 二、系统分类 按照热源及供热模式可分为以下系统控制类型 ·燃气锅炉直/间供控制系统CHR-Thermal5000-C0/C10 ·燃气锅炉直/间供控制系统CHR-Thermal5000-G0/G10 ·燃油锅炉直/间供控制系统CHR-Thermal5000-O0/O10 ·电锅炉直/间供控制系统CHR-Thermal5000-E0/E10 三、系统结构 CHR-Thermal5000分为上位监控系统、通讯系统和现场控制系统。各部分协调工作,监控中心和现场控制系统通过通讯系统形成热网监控系统,监控中心接受并显示各种现场数据信息,也可干涉现场控制系统。现场控制系统既可独立工作,也可接受监控中心指号进行

工作,同时具有信息采集、发送、接受命号、实施自动控制的功能。 四、控制原理 1、管网(用户)控制 根据室外温度变化,通过调节电动阀,使供出热量曲线与设计热量曲线相吻含。对不同的供热系统,可进行修正补偿,如建筑性质,换热器换热效率等,进而达到保证用户温度舒适,同时最大化节能的目的。 2、热源(锅炉)控制 按照选定的控制参数(总出水/回水温度、锅炉出水/回水温度),保证锅炉在最佳工况运行的基础上,通过动志燃烧控制系统,调节燃料耗量,使控制参数与设定的参数相吻合。智能模拟系统根据自适应控制模型(Self - trace control mode)和实际

供暖系统自动化控制方案

XXXXXX有限公司供热管网自动控制系统方案 同方股份有限公司 2010年6月

目录 1 大滞后控制对象自动化系统要点分析................................. 2分时、分温、分区供暖自动控制模式................................. 3供暖节能自动控制系统的构成....................................... 供热自动控制系统总体架构............................................ 节能自控系统的组成.................................................. 监控中心的主要功能.................................................. 设备配置....................................................... 监控管理软件................................................... 监控管理主机................................................... 系统组态功能................................................... 人机界面的特点................................................. 各换热站的设备功能.................................................. 数据采集....................................................... DDC智能控制器.................................................. 触摸式操作显示屏............................................... GPRS无线数据传输器............................................. 供暖节能自动控制系统的设备配置...................................... 4节能自动控制系统拟选设备简介..................................... DDC智能控制器....................................................... 一体化彩色液晶触摸屏(工控机)...................................... GPRS无线数据传输器.................................................. 5热网监控系统解决的问题和产生的效益...............................

智能供热系统

智能供热系统 一、重要意义 为提高冬季大气质量,降低不必要的煤炭粉尘及尾气排放物;根据住宅温度调节煤炭供应量,实现室内温度相对恒定的智能供热系统。开发智能控制系统对于节能减排,具有一定的推进意义。 二、研究基础 目前北方冬季供暖无法去煤化,在保证供暖的前提下降低煤炭消耗量;并降低空气排放物;鉴于大部分煤炭供热系统无智能控制,导致煤炭资源可能过度消耗;通过住宅用户位置温度采集反馈及锅炉自动上料,建立智能供热系统,满足供热要求。建立供热模型信息集总平台:包括建立当地热量及温度测量采集系统;建筑物平均热阻;供热总量(煤炭等级、锅炉供热品质和煤炭单位时间输入量),住户温度反馈安装数量(楼层高度),远程采集及发送装置(例如搭载wifi或者类似对讲机短距波段信号),显示温度曲线; 增加人体工程学(不同年龄、地理位置)控制,根据时间段人员的穿着及晚上保暖被子的热阻效应,调整夜间供热量; 控制系统根据提住户收集温度及建筑物热阻、外界温度、水循环管路散热损失,结合锅炉品质及煤炭品质,计算最优煤炭供应量,实现资源的合理利用; 三、总体目标与重点任务 实现煤炭供暖按需供应,保证室温相对恒定;实现煤炭消耗的集约化、精细化管理。重点任务是针对居民区供热系统的软件开发及特定锅炉实现煤炭供应自动化的供应的整合。 四、预期成果形式 开发煤炭智能供热控制集成软件,并在北方冬季供暖区进行进行推广使用。成果为开发的集成软件,输入并调试相应的参数即可在北方进行推广使用;

五、组织保障 利用卫星收集到的地方平均气候数据库,整理对传热影响的数据变化曲线。采用较为先进的回归算法及PID调节机制实现供暖煤炭资源的合理利用。为资源的合理利用作出贡献。

浅谈采暖系统的分类及各种形式的选用

采暖系统就是设在建筑物内部向建筑物输入一定的热量以保持建筑物内部要求的温度,满足生活和各种工作环境对温度的要求的系统。笔者认为在采暖设计中首先需对各种采暖系统的特点比较熟悉,然后在实际工程中才能设计出合理的系统,达到建筑物对室内温度的要求。采暖系统总的来说可分为热水散热器采暖系统,蒸汽散热器采暖系统,辐射采暖系统,热风采暖系统。在这几个大的分类系统中,每个系统又可分为几种形式,每种形式又有各自不同的适应场所。现就对这几种系统形式谈一下自己的认识。 热水散热器采暖系统按系统的循环动力分类,可分为重力(自然)循环系统和机械循环系统。按供水温度分类,可分为高温水采暖系统和低温水采暖系统。高温水采暖系统供水温度高于100℃,低温水采暖系统供水温度低于100℃。按供回水的方式分类,可分为上供下回式,上供上回式,下供下回式,下供上回式,上供中回式等。按散热器的连接方式,可分为垂直式与水平式系统。按连接散热器的管道数量分类可分为单管系统与双管系统。按并联环路水的流程分类,可分为同程式系统与异程式系统。蒸汽采暖系统按照供汽压力可分为高压蒸汽采暖系统、低压蒸汽采暖系统和真空蒸汽采暖系统。根据立管的数量可分为单管蒸汽采暖系统和双管蒸汽采暖系统。根据蒸汽干管的位置可分为上供式、中供式和下供式。根据凝结水回收动力可分为重力回水和机械回水。辐射采暖系统按热媒种类可分为低温热水辐射采暖,中温热水辐射采暖,高温热水辐射采暖,电热式和燃气式。热风采暖可分为集中送风,管道送风,悬挂式和落地式暖风机等形式。 热水散热器采暖系统一般用于民用建筑中。下面就其各种形式特点及适用场所加以一一说明。重力循环系统不需要外来动力,它是靠供回水的密度差产生的压力差作为循环动力,因而作用压头小,所需管径大,但运行时无噪声,管理简单。只适用于没有集中供热热源、对供热质量有特殊要求的小型建筑物中。机械循环的循环动力来自水泵,它适用于大中型集中供热的建筑。高温水采暖系统的散热器表面温度高,易烫伤皮肤,烤焦有机灰尘,卫生条件及舒适度较差,热水容易发生气化,但可节省散热器用量,供回水温差较大,可减少管道系统管径,降低输送热媒所消耗的电能,主要用于对卫生要求不高的工业建筑及其辅助建筑中。低温热水系统优缺点正好与高温水系统相反,主要用于民用建筑。上供下回式系统的供回水干管分别设置于系统最上面和最下面,布置管道方便,排气顺畅,是用的最多的系统形式。上供上回式系统的供回水干管均位于系统最上面,采暖干管不与地面设备及其它管道发生占地矛盾,主要用于设备和工艺管道较多、沿地面布置干管发生困难的工厂车间。下供下回式系统供回水干管均位于系统最下面。这种系统可减轻系统的竖向失调,有利于水力平衡,低层需要设管沟或有地下室以便于布置两根干管,顶棚下无干管比较美观,可以分层施工,分期投入使用。住宅建筑分户采暖系统的干管布置及顶棚下不宜或不能布置干管的建筑一般采用这种形式。下供上回式系统的供水干管在系统最下面,回水干管在系统的最上面,与上供下回式相比,底层散热器平均温度升高,从而减少底层散热器面积。当热媒为高温水时,底层散热器供水温度高,然而水静压力也大,有利于防止水的汽化。上供中回式系统的供水干管布置在系统最上面,回水干管布置在底层散热器的上面,一般用在底层地面上不易布置管道的建筑,此种系统不用再设置地沟。垂直式系统是指不同楼层的各散热器用垂直立管连接的系统;水平式系统是指同一楼层的散热器用水平管线连接的系统。水平式系统一般用于公用建筑的大空间中不易布置采暖立管的场所。在住宅分户采暖系统中各个用户的户内系统一般采用水平式系统。单管系统又分为顺流式和单管跨越式。单管跨越式可调节单

城市供热智能管理信息系统

城市供热智能管理信息系统 一、概述 城市供热智能管理信息系统(下称:系统)是利用现代信息技术对热力用户的用热信息进行远程采集、远程控制实现城市供热的智能化管理。系统实现用热信息的自动采集、计量收费管理、远程温控、本地温控、供热效果分析、供热管网运行监测、智能用热设备的信息交互等功能的城市供热管理平台。 二、技术架构 系统是基于Web技术B/S模式的信息系统。系统开发采用微软https://www.doczj.com/doc/c75108436.html,框架下的三层架构模式,由表示层、业务逻辑层和数据访问层组成,各层组件之间松散耦合,开发语言C#,服务器操作系统采用Windows2008,系统发布采用IIS7.0服务器,数据库采用MS SQL SERVER 2008。 PC 应用服务器 IIS7.0 数据服务器 SQL SERVER PC 供热企业 打印机 用户 图2-1

三、功能架构 城市供热智能管理信息系统 热 力用户管 理模块收 退 费 管 理 模 块 数 据 分 析 模 块 远 程 控 制 模 块 系 统 设 置 模 块 操 作 员 管 理 模 块 图3-1 (一)热力用户管理模块 本模块提供针对热力用户(供热小区、供热站、换热站、采暖用户)基本信息进行增加、维护、删除、查询的功能。 1.客户端录入方式维护用户信息维护 2.数据批量导入方式维护数据,通过Excel模版文件采集数据后批量导入。 3.实时数据查询,如实际室温、设定温度、累计时间、剩余时间、阀门状态、采集时间等。 4.历史数据查询可查询任意时间的用户采暖数据。 (二)收退费管理模块 本模块主要完成采暖费收缴和退费工作。 1.系统可定义采暖费计算参数(供热天数、按面积收取价格、按实际用热价格等),用于自动计算采暖费。 2.收费员可通过系统查询欠费情况,便于采暖费催缴。 3.收费票据的打印输出。 4.滞纳金自动计算。

智能网络监控与供热安全(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 智能网络监控与供热安全(通用 版) Safety management is an important part of production management. Safety and production are in the implementation process

智能网络监控与供热安全(通用版) 丰台铁路供热厂依靠科技力量,投入大量资金,安装了智能自动网络监控设备,使供热自动化程度大为提高,为供热安全提供了可靠的物质保障。 智能自动化监控系统由两部分组成,一部分是厂内智能控制中心,另一部分则是换热站的自动控制。 厂内控制中心监控设备具有数据采集、控制运算、状态监视、实时数据处理、历史数据管理、事故顺序识别、事故追忆、控制调节、图形显示以及信息的组态、诊断等功能。它能够对锅炉及系统的压力、温度、压差、流量、炉排、鼓引风机等重要运行参数进行统计处理和保存,同时,根据需要对系统数据进行准确的趋势分析,提供最佳运行模型,并通过炉排、故引风机、一次循环水泵变频控制系统,实现系统动态控制调节。 换热站自动控制则是由采暖数字控制器参照温度传感器测量出

的换热站二次水水温和室外温度,根据预先设置的工作曲线,调整电动阀的开度,并同时将有关数据传输到厂内控制中心的热网计算机监控系统当中,控制中心则通过数据自动访寻采集并通过现场电动三通阀实施调控。另外控制中心设置的供热和外网系统监控网络模拟屏使各换热站及锅炉上所有测量数据均在模拟屏流程图上显示,系统运行情况一目了然。当出现超压、超温或系统出现故障时,监控系统发生报警,显示报警变量,并有声光显示。此时系统会自动停机,待报警消除后,可自动恢复运行,保证安全生产。特别是炉上各主要参数除在模拟屏和微机屏幕上显示之外,也同时在二次仪表上显示,而且,仪表也有报警显示输出。一旦微机系统出现故障不能工作,司炉人员仍可通过仪表监视锅炉的运行情况并且可以根据需要随时由自动运行状态切换到手动运行状态,保证安全生产。 通过丰台铁路供热厂智能自动网络监控系统的应用不难看到: a、智能自动化监控,采用智能全数字计算机管理,性能稳定,抗干扰性强能够实现目标管理,为安全生产的有序可控提供了先进的手段,奠定了良好的物质基础。

智能网络监控与供热安全(标准版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 智能网络监控与供热安全(标准 版)

智能网络监控与供热安全(标准版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 丰台铁路供热厂依靠科技力量,投入大量资金,安装了智能自动网络监控设备,使供热自动化程度大为提高,为供热安全提供了可靠的物质保障。 智能自动化监控系统由两部分组成,一部分是厂内智能控制中心,另一部分则是换热站的自动控制。 厂内控制中心监控设备具有数据采集、控制运算、状态监视、实时数据处理、历史数据管理、事故顺序识别、事故追忆、控制调节、图形显示以及信息的组态、诊断等功能。它能够对锅炉及系统的压力、温度、压差、流量、炉排、鼓引风机等重要运行参数进行统计处理和保存,同时,根据需要对系统数据进行准确的趋势分析,提供最佳运行模型,并通过炉排、故引风机、一次循环水泵变频控制系统,实现系统动态控制调节。 换热站自动控制则是由采暖数字控制器参照温度传感器测量出的换热站二次水水温和室外温度,根据预先设置的工作曲线,调整电动

供热计量管理系统

一、热源系统管理 一套完整的供热系统由三大部分组成,即集中供热热源系统、换热站供热节能系统和JFK集中供暖分户计量系统。集中供热热源系统常规采用锅炉制备热媒。换热站供热节能系统是连接热源与热用户的重要环节,根据室外温度的变化,按照制定的二次网供、回水温度曲线,自动控制一次网供水的流量和供热量。JFK集中供暖分户计量系统是由管路系统与末端装置组成的热量分配系统,按负荷的大小合理地将热量分配到各个房间。 集中供热热源系统 系统概述 集中供热热源系统是城市集中供热系统的热能制备和供应中心。该热源系统将其他形式的能源(矿物燃料、核能、工业余热等)转换为热能,或直接采用地热等天然热源,通过蒸汽或热水等介质,沿着热网输送到用户。集中供热热源有以下几种形式:热电厂和区域锅炉房、工业余热、地热、核能。除上述热源形式外,还有电能和太阳能供热。 系统控制 集中供热热源控制系统通过热源热效率平衡计算,采用最优化的计算方法,将热源各环节热损失进行科学分析,针对各热效率的特点进行优化设计控制,主要对热源、各动力辅机和管网进行节能控制,调整热源供热系统各应用工况的运行模式,使系统在任何负荷情况下能达到最可靠的工况节能运行,保证热源的热效率最大化。在满足末端供热系统要求的前提下,整个系统达到最经济的运行状态,即系统的运行费用最低。同时提高系统的自动化水平和管理效率,并降低管理劳动强度。 热源系统控制主要包括:各设备的节能运行控制、各设备运行状态的监控,系统能耗的监测。

系统概述 换热站供热节能系统是连接热源系统和热用户的重要环节,在整个供热系统中起到举足轻重的作用,热水管网又分为一次网和二次网,一次网是连接于管网与换热站之间的管网。二次网是指连接于换热站与热用户之间的管网。换热站供热系统是指连接于一次网与二次网并装有与用户连接的相关设备、仪表和控制设备的系统。 系统原理 针对目前集中供热换热站控制的现状,开发的换热站自动控制系统,是在保证热用户供热温度的前提下,实现按需供热,达到安全、经济运行。 根据热用户的实际需求,建立“供热-室外温度”智能决策模型和先进控制策略,通过换热站一次侧、二次侧温度、压力及流量、室外温度、热用户温度、运行状态、故障状态等参数的监测,自动控制调节阀、电机、变频器等工作,实现以节能为核心的按需供热。系统可以脱离远程中央控制室监控调度管理系统独立运行,其运行参数可以通过远程中央调度室监控调度管理系统监视并实施协调控制。 热力站控制系统采用一种变流量控制模式,根据各系统的实际情况,设定一个供水压力值,此供水压力值可以满足二次管网的最不利点供暖水循环。通过控制变频泵的转速保持该供水压力值恒定在设定值。在此基础上,换热站PLC控制系统通过实时监测量二次网供回水温差来对系统压力值设定进行必要修正。 一个建筑物的供热质量的好坏与整个管网的运行调节紧密相连。为保证供热质量,除了要在供热温度上保证达到设计温度外,就要在任何时候用户都要有足够的资用压头,以保证每个高层住宅在任何时刻都能有供热的可能性。 热源处循环泵的总流量用变频控制,根据压力控制点的压力变化而控制变频泵的转速。假如用户调小流量导致干管总流量下降,而干管的阻力系数未变,因此干管上的压力损失降低而导致压力控制点的供水压力升高。该压力值的升高反馈给循环泵,使泵的转速降低,一直降到压力控制点的压力值到设定值为止,这样,就可以保证压力控制点的供水压力值不变。 换热站二次网供水温度控制。通过一次侧电动阀门的调节控制二次管网供水温度达到设定值。通过增加室外温度补偿器,使换热站二次网的供水温度设定值根据室外温度进行动态调整,以使供热量和需热量进行更好的匹配。 系统功能及特点 1智能变频,稳定供水压力,保证管网平衡: 2.实时显示现场测量值,修改设定值以及参数值;现场画面模拟,实时显示各工况运行参数; 3.定时记录室内、外温度,供、回水温度和计算温度自诊断与现场诊断功能; 4.系统遵循了人性化设计理念,可实现分段、分时、分温和分模式的管理功能; 5.换热站控制系统采用PID算法实现了自动恒温恒压的调节; 6.各种报表生成以及数据存储、查询等其他用户定制的功能; 7.根据气候条件,控制器通过室外温度传感器测量的室外温度,经监控中心的统一调度对供热量进行控制,节省能源,提高了供热质量; 8.实现自动控制,并具有远传通讯和联网功能,系统可通过GPRS/GMS进行远程控制;

智能供热监控系统

智能供热监控系统 时间:2009-06-19 04:02来源:论文网https://www.doczj.com/doc/c75108436.html, 作者:秩名点击: 104次 【摘要】本系统介绍了由单片机控制的智能供热监控系统。采用ATM89C51系列单片机作为CPU,设置AD590温度传感器、压差传感器、涡轮流量计等传感器元件对供回水、补水、供热蒸汽的温度、压力检测;对回水、补水的流量检测,通过测量电路、A/D转换后把数据传送到CPU,CUP 【摘要】本系统介绍了由单片机控制的智能供热监控系统。采用ATM89C51系列单片机作为CPU,设置AD590温度传感器、压差传感器、涡轮流量计等传感器元件对供回水、补水、供热蒸汽的温度、压力检测;对回水、补水的流量检测,通过测量电路、A/D转换后把数据传送到CPU,CUP根据已经设置好的温度范围进行比较判断,并发回命令调整供回水的压力以及流量,最终达到自动控制温度的目的,这对于保证供热品质和节省能源都有着非常重要的意义。此外,本系统还安装了键盘,显示以及打印机,方便了数据的读取、切换和统计,使管理层对供热过程和供热品质有最直观的了解。 本设计应用前景广阔,可应用于城市或者小区的集中供热方便快捷,节约能源而且安全可靠。 关键词:智能控制集中供热监控信号采集 Single-chip Intelligent Heating Control System Abstract This paper present the general design and control conception of an intelligent heating control system in detail. ATM89c51 as the central intelligent unit in this system, which controls the temperature of each water-piping way’s in-or-out and surrounding the pressure of the out filter nets, the volume of offer-heat cycle water and so on. The temperature is changed by the pressure and volume’s change ,so using this system first can make sure consumer’s temperature is not enough, another hand it also can resources. The system also has the keyboard, display unit and typewriter, which can give an obvious understanding to workers. This system would develop and apply expansive, we can apply it to the central heating of a community. It has the merits of secure, tidy and convenient. This control system is a successful example, which combine theory automation with practice. Keywords: Intelligent Control, Central Heating, Monitor System, Collect Signal 目录 第一章绪论 5 1.1 国集中供热的现状 5 1.1.1 热源 6 1.1.2热用户 6 1.1.3热网 7 1.2 我国集中供热系统的发展趋势 7

供热计量远程抄表系统解决方案

供热计量远程抄表系统解决方案 1.系统介绍 供热计量远程抄表系统是一个对用户用热量、供水温度、回水温度等数据远程采集的系统。以热用户为采集目标,系统采用稳定可靠的无线数据传输技术,通过M-BUS或者RS-485通信单元和GPRS远程通信单元,将热量表的数据上送到热力企业管理中心,并结合相应的管理软件和计费软件,对系统数据进行分析、统计、发布;为收费及生产管理提供数据支撑。 系统具备: ●高可靠性、稳定性。 ●系统可长期、稳定、连续工作,无需现场维护。 ●实时性高、通讯量少。 ●模块化设计、应用灵活。 ●容错性高。 ●应用拓展性强。 2.系统网络结构 系统构成:系统按设备组成可分为主站服务器软件、数据采集器、热量表三个部分组成。

3.采集设备介绍 3.1.数据采集器 可连接M-Bus和RS485两种总线标准的热量表,实时数据采集、并将采集的数据上传到控制中心; 3.2.DTU模块 可以直接连接RS485总线标准的热量表实现数据上传。

3.3.数据采集箱 数据采集箱包括:箱体、数据采集器(或无线网络传输模块)、电源、开关等,安装在热量表附近,通过数据线连接到数据采集器上。 4.系统功能介绍 4.1.数据实时监控 通过采集器对热表数据进行远程采集,并对采集的数据在上位机软件中进行显示,可查看瞬时热量、累计热量、供水温度、回水温度等信息。

4.2.热量数据分析 通过对采集的热量数据的分析对比、测算,,可实现同一用户的不同时间段、用户与用户之间及各个时间段的供热效果情况的对比分析。 4.3.用户管理功能 可以实现热计量用户的添加、修改和删除操作功能。

智能供热管网节能调控系统的简介及应用

一、我国供热采暖系统的现状及供暖系统能耗高的主要原因 (一)我国供热采暖系统的现状: 1、系统相对锅炉技术落后:供热系统热效率低。我国住宅建筑采暖能耗为相近气候条件的发达国家的3倍左右,主要浪费在管网上。目前的采暖用能已占全国商品能源总耗的9.6%,采暖的高能耗不仅造成资源的浪费,而且还是造成大气污染的一个重要因素。 2、采暖系统的落后,造成的结果是:①低效率。我国采暖系统普遍在低负荷、低效率下运行,实际供暖面积平均只有设备能力的40~60%,管网输送效率低。②缺乏控制手段。我国供暖系统只有简单的调节手段,水平失调、垂直失调现象严重;少数系统有一些量化运行管理设备,供热管理人员普遍是看天凭感觉调控供水温度,供热不足或过度时,不能做到及时有效的调节。为了避免“欠供”索性提高出水温度,此时便出现“超供”现象。 (二)我国采暖系统与国外相比的差距: 主要可以归纳为设计落后、设备落后和调节功能落后及管理落后四个方面。其中调节功能落后和管理落后尤为突出,是造成浪费的主要因素。 :国内供热调控大致分为如下, 1.质调。在一次管网加装流量调节阀门,调节二次管网的水温,也叫一次网调平。用 锅炉的出水温度控制输配系统,再由输配系统控制外网。 弊端:①损失锅炉的运行效率。②一次管网调平费时费力。一次管网的调控没有根据,主要看回水温度,调节滞后造成浪费。③外管网末端缺少调控手段。 1.量调。在二次管网循环泵加装变频设备,调节系统流量。 弊端:①外管网末端没有控制。②加大管网的失调,温差过大。③为了缓解末端失调问题,必须加大供热量,造成能耗增加。 西安派克电子智能科技有限公司专注为供暖节能领域提供“节能减负系统化解决方案”,高新技术应用服务商。同时从事供暖项目能源管理、供暖系统节能诊断、企业托管运营服务。 自主研发的“TPK-8000智能控制系统”,超精细自动化控制模式和电脑远程调控,全面提升供暖系统运行效率,减少能耗浪费的同时高效提高供暖系统运行效率和人工效率。真正实现“智能化、现代化供暖节能技术全链条管理”,广泛应用于燃煤、燃油、燃气,燃电的供热系统,包括一次直供式、二次网供热的系统。 我公司的这套全智能供热管网节能调控系统,通过调控二次管网,能实现外管网供热量智能化控制,从而达到在不同的室外温度条件下,外管网能够在任何时间段自动输出任意设定好的供热量,使热用户的室温保持基本恒定的舒适温度。 当前先进供热采暖技术的主要特征之一是动态可调节的外网供水温度。针对我国现阶段供暖普遍存在的问题,我公司研发出的“TPK-8000智能控制器”通过设定合理的供暖曲线,达到一个基本供暖散热的标准。这个散热标准即根据室外天气的变化,使二次管网供回水混水比例随室外天气变化动态调控,最终使用户室内温度达到相对恒定。 二、智能调控设备的运行模式 1、天气控制模式。依照室外天气温度变化动态调节管网输出热值,使用户室内温度基本恒定。 2、热用户活动规律控制模式。在天气控制模式基础上,还可增加用户活动规律设定控制。例如,白天日照强烈,大部分用户外出工作,室内无人,或夜间用户睡觉时门窗关闭,盖被

城市供热监控系统方案v1.0

城市热换站监测系统方案 一、系统概述 城市热换站监测系统是通过对供热系统的温度、压力、流量、开关量等进行测量、控制及远传,实现对供热过程有效的遥测、遥调和遥控。城市热换站监测系统是区域供热系统中的重要组成部分,它将实时、全面了解供热系统的运行工况,监视不利工况点的压差,保证区域供热系统安全合理地运行,并可根据运行数据进行供热规划和科学调配,为热力部门提供准确、有效的重要数据。 二、系统简介和工作流程 集中供热系统包括热源、热网、热用户三个部分。热源产生的蒸汽或热水,通过管网向全市或部分地区的用户供应生产和生活用热;热换站是集中供热网络与热用户的接口,是热源与热用户之间的“热交换站”,换热站能否高效运行对改善整个热网的热力不足、提高供热品质起着重要作用。

热换站系统工作原理示意图 换热站热力系统由一次网供回水系统、二次网供回水系统、补水系统、热计量系统组成,各部分之间相互关联相互作用。热源经过一次网供水管路进入热交换器,经过充分的热交换后,再由一次网回水管路流回热源。而二次网中的水在热交换器中充分受热后经二次网供水管路进入热用户,用户取得热量后,二次网循环泵将水通过二次网回水管路再进入热交换器,如此循环供热给用户。 三、系统拓扑图 系统由现场感知层、数据处理层、网络传输层、系统应用层构成,其中现场感知层:包含现场设备:温度变送器、压力变送器、流量计、水泵/阀门控制柜等二次仪表;数据处理层:换热站监控终端;网络传输层:GPRS、INTERNET公网;系统应用层:监控中心:服务器、值班员计算机、管理计算机,手机移动端。

四、换热站监控终端 ?功能特点 换热站监控终端集数据采集、本地控制、7英寸电阻触控屏显示和远程通讯等功能于一体,采用模块化设计,通讯方式多样,监控方式灵活(可以PC端、移动端监控),接口丰

北京市居住建筑供热计量管理办法

北京市居住建筑供热计量管理办法 (试行) 第一条为推进本市供热计量改革,提高社会节能意识,促进节能减排,建设绿色北京,依据《中华人民共和国节约能源法》、《民用建筑节能条例》、《北京市供热采暖管理办法》、《民用建筑供热计量管理办法》和《北京市推进供热计量改革综合工作方案》等规定,结合本市实际,制定本办法。 第二条本市行政区域内从事居住建筑开发、规划、设计、建设、施工、监理、供热节能与建筑节能改造的单位和居住建筑供热单位、热用户,应当遵守本办法。 第三条本市新建居住建筑和具备供热计量条件的既有居住建筑应当实行供热计量收费。 不具备供热计量条件的既有居住建筑,分步骤实施建筑节能及热计量改造并实行供热计量收费。 第四条新建居住建筑和实施建筑节能改造的居住建筑应当严格按照本市有关建筑设计规范、技术导则、标准等要求进行规划、设计、施工、验收,确保供热系统安装热计量装置和室内温控装置,具有实现供热量自动控制和能耗统计功能,具备分户供热计量收费的条件。 第五条新建居住建筑的计量装置设备购置、安装、检定等费用应当纳入房屋建造成本。 既有二步、三步节能居住建筑,实施热计量改造的设备购置、安装、检定等改造费用由财政和供热单位按照一定比例分担,改造费用的具体使用管理办法由市财政会同市市政市容委研究制定。 既有非节能居住建筑的供热计量改造纳入全市既有建筑节能改造项目管理,组织实施及资金筹措按照市住房城乡建设委的有关文件执行。 第六条在新建居住建筑规划设计阶段或者既有居住建筑节能改造方案制定阶段,开发建设单位或者建筑节能改造单位应当与在市政市容主管部门备案的供热单位签订《供热计量装置分项工程建设专项合同》,并在合同中按照《北京市供热计量应用技术导则》确定供热计量方式,明确以下内容: (一)建筑物热力入口、供热计量装置和室内温度调控装置的技术指标及质量标准; (二)开发建设单位或者建筑节能改造单位的建筑节能质量责任; (三)供热单位采购供热计量装置、温度调控装置的责任、费用、管理责任、违约责任等内容。 开发建设单位和供热单位应当将确定的供热计量方式及相关事项分别列入房屋销售合同和供热用热合同。

供热采暖系统管理规范详细版

文件编号:GD/FS-7330 (管理制度范本系列) 供热采暖系统管理规范详 细版 The Daily Operation Mode, It Includes All Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify The Management Process. 编辑:_________________ 单位:_________________ 日期:_________________

供热采暖系统管理规范详细版 提示语:本管理制度文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1范围 本标准规定了供热企业(单位)的岗位职责、规章制度建设和标准化管理、运行管理、维修管理、质量管理、安全管理、服务管理、经营管理和档案信息管理等工作的要求。 本标准适用与锅炉房、热力站、室外供热管线和室内采暖系统的管理。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否

使用这些文件的最新版本。凡是不注日期的引用为文件,其最新版本适用于本标准。 GB/T16811工业锅炉水处理设施运行效果与监测 CJJ/T88城镇供热系统安全技术规程 JB/T10354工业锅炉运行规程 DB11/097低硫散煤及制品 DB11/139锅炉污染物综合排放标准 DB11/381既有居住建筑节能改造技术规程 DB11/T466供热采暖系统维修管理规范 3管理工作总体目标 3.1供热企业(单位)应在保障供热质量的同时,规范对采暖用户的服务。 3.2供热企业(单位)应采用节能技术措施,实现供热系统的节能减排,保障各项环保指标达标。

供热智能控制系统

供热智能控制系统 智能供热控制系统是北京博达兴创公司开发的换热站及公共建筑专用控制系统,系统能够实现换热站、公共建筑的自动化数据采集、计量、分析与控制,主要满足热力公司能源管理、换热站及建筑节能控制要求,达到提高供热服务质量,降低能源消耗的目的,系统组成如下: 一、系统组成: 1、换热站、公共建筑现场数据采集、计量、控制系统: 采用一体化的数据采集、计量、控制系统,实现换热站、公共建筑的自动化监测与控制,系统具有以下主要功能: 数据采集:系统能够采集换热站、公共建筑的压力、温度、流量等参数,系统采集数据如下: (1)温度:一次供水、回水温度,二次供水、回水温度,室外温度,用户室内温度; (2)压力:一次供水、回水压力,二次供水、回水压力; (3)流量、热量:换热站、公共建筑一次水流量、热量; (4)电动阀门开度。 计量分析:系统能够进行流量、热量的瞬时计算与累积计算,进行能源的管理与考核。 实时控制:系统能够根据换热站或公共建筑的用热特点进行自动化的控制,系统软件有多种控制策略组成,可以满足不同用热特性的控制要求,提高换热站及建筑的供暖质量,降低能源消耗。 2、数据通讯系统:系统能够通过各种网络系统(宽带、GPRS、CDMA等),将换热站及公共建筑的实时数据传输到调度管理中心,管理中心也可以通过网络系统将控制指令下达到现场控制器,执行控制调节指令。 3、调度中心管理系统:调度中心可以实时接收换热站、公共建筑现场采集系统传输上来的各种运行数据,系统将实时运行参数存储在中央数据库中,为后续的管理、分析、控制提供基础数据。调度中心管理系统可以实时对上传数据进行连续动态分析,并可以根据分析结果下达调节指令。 4、实时影像监控系统:在换热站安装监控摄像设备,可以将换热站的实时影像传输到调度中心,进行安防监控,实现无人值守。 二、管理系统功能及控制策略: (一)换热站、公共建筑控制策略: (1)手动控制:通过现场控制器直接输入控制参数,可以直接控制电动阀门开度、控制温度、控制补水压力等; (2)气候补偿控制:系统能够自动采集室外温度,根据预设的气候补偿曲线来调整电动阀门的开度,从而保证二级网或公共建筑供热温度达到规定参数。 (3)室温控制:系统能够自动采集建筑室内温度,根据设定的室内温度来调整电动阀门开度,保证用户室内温度保持在规定的范围内。 (4)分时控制:系统可以根据用户用热特性来制定建筑用热控制模式,对于公共建筑,可以在白天保证用户室内温度,在夜间保持值班温度,节约热量,降低运行成本。 (5)周末及节假日控制:对于公共建筑,可以设定周末及节假日控制曲线,在周末及节假日可以按照特定曲线运行,维持低供热参数,可以节约热量,降低运行费用。 (6)补水控制:控制器能够设定二级网补水压力,系统能够根据设定补水压力来控制二级管网补水电磁阀的开关,保证二级管网定压值保持在设定的范围内。 (7)综合控制:上述控制模式可以单独设定及运行,也可以将上述各种控制模式集成设定,形成一套综合的控制模式,满足换热站及公共建筑的各种用热模式需求。 (二)数据通讯系统功能: (1)实时数据通讯功能:调度中心可以实时与换热站和公共建筑控制器实时通讯,将控制器采集的实时

中华人民共和国行业标准供热计量表

中华人民共和国行业标准 供热计量技术规程 JCJ 173—2009 条文说明 目次 1 总则 2 术语 3 基本规定 4 热源和热力站热计量 4.1 计量方法 4.2 调节和控制 5 楼栋热计量 5.1 计量方法 5.2 调节和控制 6 分户热计量 6.1 一般规定 6.2 散热器热分配计法 6.3 户用热量表法 7 室内供暖系统 7.1 系统配置 7.2 系统调控 1 总则 1.0.1 供热计量的目的在于推进城镇供热体制改革,在保证供热质量、改革收费制度的同时,实现节能降耗。室温调控等节能控制技术是热计量的重要前提条件,也是体现热计量节能效果的基本手段。《中华人民共和国节约能源法》第三十八条规定:国家采取措施,对实行集中供热的建筑分步骤实行供热分户计量、按照用热量收费的制度。新建建筑或者对既有建筑进行节能改造,应当按照规定安装用热计量装置、室内温度调控装置和供热系统调控装置。因此,本规程以实现分户热计量为出发点,在规定热计量方式、计量器具和施工要求的同时,也规定了相应的节能控制技术。 5 供热计量技术规程 1.0.2 本规程对于新建、改扩建的民用建筑,以及既有民用建筑的改造都适用。 1.0.3 本规程在紧紧围绕热计量和节能目标的前进下,留有较大技术空间和余地,没有强制规定热计量的方式、方法和器具,供各地根据自身具体情况自主选择。特别是分户热计量的若干方法都有各自的缺点,没有十全十美的方法,需要根据具体情况具体分析,选择比较适用的计量方法。 2 术语 2.0.4 热量计量装置包括用于热量结算的热量表,还有针对若干不同的用户热分摊方法所采用的仪器仪表。

2.0.5 热量测量装置包括符合《热量表》CJ 128产品标准的热量表,也包括其他的用户自身管理使用的不作结算用的测量热量的仪表。 2.0.6 分户热计量从计量结算的角度看,分为两种方法,一种是采用楼栋热量表进行楼栋计量再按户分摊;另一种是采用户用热量表按户计量直接结算。其中,按户分摊的方法又有若干种。本术语条文列出了当前应用的四种分摊方法,排名不分先后,其工作原理分别如下: 散热器热分配计法是通过安装在每组散热器上散热器热分配计(简称热分配计)进行用户热分摊的方式。 流量温度法是通过连续测量散热器或共用立管的分户独立系统的进出口温差,结合测算的每个立管或分户独立系统与热力人口的流量比例关系进行用户热分摊的方式。 通断时间面积法是通过温控装置控制安装在每户供暖系统入口支管上的电动通断阀门,根据阀门的接通时间与每户的建筑面积进行用户热分摊的方式。 户用热量表法是通过安装在每户的户用热量表进行用户热分摊的方式,采用户表作为分摊依据时,楼栋或者热力站需要确定一个热量结算点,由户表分摊总热量值。该方式与户用热量表直接计量结算的做法是不同的。采用户表直接结算的方式时,结算点确定在每户供暖系统上,设在楼栋或者热力站的热量表不可再作结算之用;如果公共区域有独立供暖系统,应要考虑这部分热量由谁承担的问题。2.0.7 室温调控包括两个调节控制功能,一是自动的室温恒温控制,二是人为主动的调节说定温度。 3 基本规定 3.0.1 本条是强制性条文。根据《中华人民共和国节约能源法》的规定,新建建筑和既有建筑的节能改造应当按照规定安装用热计量装置。目前很多项目只是预留了计量表的安装位置,没有真正具备热计量的条件,所以本条文强调必须安装热量计量仪表,以推动热计量工作的实现。 3.0.2 本条是强制性条文。供热企业和终端用户间的热量结算,应以热量表作为结算依据。用于结算的热量表应符合相关国家产品标准,且计量检定证书应在检定的有效期内。 3.0.3 《中华人民共和国计量法》等九条规定:县级以上人民政府计量行政部门对社会公用计量标准器具,部门和企业、事业单位使用的最高计量标准器具,以及用于贸易结算、安全防护、医疗卫生、环境监测方面的列入强制检定目录的工作计量器具,实行强制检定。未按照规定申请检定或者检定不合格的,不得使用。实行强制检定的工作计量器具的目录和管理方法,由国务院制定。其他计量标准器具和工作计量器具,使用单位应当自行定期检定或者送其他计量检定机构检定,县级以上人民政府计量行政部门应当进行监督检查。 依据《计量法》规定,用于热量结算点的热量表应该实行首检和周期性强制检定,不设置于热量结算点的热量表和热量分摊仪表如散热器热分配计应按照产品标准,具备合格证书和型式检验证书。 3.0.4 热计量和节能改造工作应采用技术和管理手段,不能一味为了供热节能、而牺牲了室内热舒适度,甚至造成室温不达标。当然,室内温度过高是不合理的,在改造中没有必要保持原来过高的室温。

相关主题
文本预览
相关文档 最新文档