当前位置:文档之家› 二次函数综合(动点)问题——三角形存在问题培优教案设计(一)(横版)

二次函数综合(动点)问题——三角形存在问题培优教案设计(一)(横版)

二次函数综合(动点)问题——三角形存在问题培优教案设计(一)(横版)
二次函数综合(动点)问题——三角形存在问题培优教案设计(一)(横版)

教学过程

一、课堂导入

1、在平面直角坐标系中,已知点A(4,4)、B(-4,4),试在x轴上找出点P,使△APB为直角三角形,请直接写出所有符合条件的P点的坐标

2、在平面直角坐标系中找出所有的点C,使得△ABC是以AB为腰的等腰三角形,且C点的横坐标与纵坐标为自然数.画出C点的位置并写出C点的坐标.

问题:这是我们在平面直角坐标系那章学习的内容,如果我们将二次函数容纳其中,在抛物线上求作一点,使得三角形是等腰三角形(等边三角形、直角三角形等)并求出该点坐标时,又该如何解答呢?

二、复习预习

根据实际问题列二次函数关系式:

1、列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函

数后,表示量与量的关系的代数式是含有两个变量的等式.对于应用题要注意以下步骤:

(1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等

量关系(即函数关系).

(2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确.

(3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数.

(4)按题目要求,结合二次函数的性质解答相应的问题。

(5)检验所得解是否符合实际:即是否为所提问题的答案.

(6)写出答案.

2、常见题目类型

(1)几何类(三角形、四边形、圆等)

一般问题是求图形的面积,首先可以根据特殊图形的面积公式来求解,这时关键是表示出公式里各个部分的代数式;其次,如果不是特殊的图形,可以通过特殊图形的面积相加减来表示;最后,还可以通过构造特殊图形来进行表示求解;总之,要根据题目给的条件实际运用。

(2)桥梁问题

这类题型是出现较多的类型,首先应该建立适当的直角坐标系,将桥梁的拱形转化为二次函数来进行求解,强调的是特殊点的表示与运用。

(3)销售问题

这类题型会在考试中频繁出现,解题的方法就是:围绕总利润=(售价-进价)×数量这个公式去进行,难度大一点的就是会涉及提价跟降价两种情况,关键是要根据题意分别表示出降价或者提价后商品

的售价、数量(进价一般不变),然后再通过公式将各个部分组合在一起就可以了。

二次函数的应用:

1、应用类型一、利用二次函数求实际问题中的最大(小)值:

这类问题常见有面积、利润销售量的最大(小)值,一般这类问题的解题方法是:先表示出二次函数关系式,再根据二次函数的最值问题来求解即可。

2、应用类型二、利用二次函数解决抛物线形建筑问题:

这类型的题目关键是要求出二次函数解析式,再根据解析式求出顶点坐标。

3、应用类型三、利用二次函数求跳水、投篮、网球等实际问题;

这类型的题目关键是要求出二次函数解析式,再根据解析式求出顶点坐标。

三、知识讲解

考点/易错点1

三角形的性质和判定:

1、等腰三角形

性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。

判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。

2、直角三角形

性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。

判定:有一个角是直角的三角形是直角三角形。

3、等腰直角三角形

性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。

判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形

4、等边三角形

性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。判定:三边相等,三个角相等,有一个角是60°的等腰三角形是等边三角形。

考点/易错点2

求作等腰三角形、直角三角形的方法:

图一两圆一线图解图二两线一圆图解

总结:(1)通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A、B点重合)即在两圆上以及两圆的公共弦上

(2)通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A、B点重合)即在圆上以及在两条与直径AB垂直的直线上。

考点/易错点3

等腰三角形、直角三角形可能的情况:

(1)当所求三角形是等腰三角形时,可以是三角形任意两边相等,即:AB=AC、AB=BC、AC=BC如图;

(2)当所求三角形是直角三角形时,可以是三角形任意的内角为直角,即:∠A=90°、∠B=90°、∠C=90°,如图所示;

考点/易错点4

二次函数中三角形的存在性问题解题思路:

(1)先分类,罗列线段的长度,如果是等腰三角形则分别令三边两两相等去求解;如果是直角三角形则分别令每个内角等腰90°去分类讨论;

(2)再画图;

(3)后计算。

四、例题精析

【例题1】

【题干】(扬州)已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

【答案】(1)y=-x2+2x+3;(2)P(1,2);(3)M(1,√6)(1,-√6)(1,1)(1,0).

【解析】解:(1)将A(-1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:

{a?b+c=0

9a+3b+c=0

c=3,解得:{

a=?

1

b=2

c

=3

∴抛物线的解析式:y=-x2+2x+3.

(2)连接BC ,直线BC 与直线l 的交点为P ; ∵点A 、B 关于直线l 对称, ∴PA=PB ,

∴BC=PC+PB=PC+PA

设直线BC 的解析式为y=kx+b (k ≠0),将B (3,0),C (0,3)代入上式,得: {3k +b =0b =3,解得:{k =?1b =3

∴直线BC 的函数关系式y=-x+3; 当x=1时,y=2,即P 的坐标(1,2). (3)抛物线的对称轴为:x=- b

2a

=1,设M (1,m ),已知A (-1,0)、C (0,3),则: MA 2

=m 2

+4,MC 2

=(3-m )2

+1=m 2

-6m+10,AC 2=10; ①若MA=MC ,则MA 2=MC 2,得: m 2+4=m 2-6m+10,得:m=1; ②若MA=AC ,则MA 2=AC 2,得: m 2+4=10,得:m=±√6;

③若MC=AC ,则MC 2=AC 2,得: m 2-6m+10=10,得:m 1=0,m 2=6;

当m=6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;

综上可知,符合条件的M点,且坐标为 M(1,√6)(1,- √6)(1,1)(1,0).

【例题2】

【题干】(攀枝花)如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1,0),C(0,-3).

(1)求抛物线的解析式;

(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;

(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

【答案】(1) y=x 2+2x-3;(2) P 的坐标为(- 32

,- 154

);(3) (0,32

)或(0,-7

2

)或(0,-1)或(0,-3).

【解析】解:(1)由于抛物线y=ax 2+bx+c 经过A (-3,0),B (1,0),可设抛物线的解析式为:y=a

(x+3)(x-1),

将C 点坐标(0,-3)代入,得: a (0+3)(0-1)=-3,解得 a=1, 则y=(x+3)(x-1)=x 2+2x-3,

所以抛物线的解析式为:y=x 2+2x-3;

(2)过点P 作x 轴的垂线,交AC 于点N . 设直线AC 的解析式为y=kx+m ,由题意,得 {?3k +m =0m =?3,解得{k =?1m =?3 ∴直线AC 的解析式为:y=-x-3.

设P 点坐标为(x ,x 2+2x-3),则点N 的坐标为(x ,-x-3),

∴PN=PE-NE=-(x 2+2x-3)+(-x-3)=-x 2-3x . ∵S △PAC =S △PAN +S △PCN , S=12

PN ?OA=12

×3(-x 2-3x )=- 32

(x+32

)2+27

8

∴当x=- 32

时,S 有最大值27

8

,此时点P 的坐标为(- 32

,- 15

4

); (3)在y 轴上是存在点M ,能够使得△ADM 是直角三角形.理由如下: ∵y=x 2+2x-3=y=(x+1)2-4, ∴顶点D 的坐标为(-1,-4), ∵A (-3,0),

∴AD 2=(-1+3)2+(-4-0)2=20. 设点M 的坐标为(0,t ),分三种情况进行讨论: ①当A 为直角顶点时,如图3①,由勾股定理, 得AM 2+AD 2=DM 2,

即(0+3)2+(t-0)2+20=(0+1)2+(t+4)2,

解得t=3

2,

所以点M 的坐标为(0,3

2

);

②当D 为直角顶点时,如图3②, 由勾股定理,得DM 2+AD 2=AM 2,

即(0+1)2+(t+4)2+20=(0+3)2+(t-0)2,

解得t=- 7

2

所以点M 的坐标为(0,- 7

2

); ③当M 为直角顶点时,如图3③,

由勾股定理,得AM 2+DM 2=AD 2

即(0+3)2+(t-0)2+(0+1)2+(t+4)2=20, 解得t=-1或-3,

所以点M 的坐标为(0,-1)或(0,-3); 综上可知,在y 轴上存在点M ,

能够使得△ADM 是直角三角形,此时点M 的坐标为

(0,32

)或(0,- 7

2

)或(0,-1)或(0,-3).

【例题3】

【题干】(东营)在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A (0,2),点C (1,0),如图所示,抛物线y=ax 2-ax-2经过点B . (1)求点B 的坐标; (2)求抛物线的解析式;

(3)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存

在,求所有点P 的坐标;若不存在,请说明理由.

【答案】(1) 点B 的坐标为(3,1);(2) y=1

2

x 2

-1

2x-2;(3) P 1(-1,-1),P 2(-2,1).

【解析】解:(1)过点B 作BD ⊥x 轴,垂足为D ,

∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°, ∴∠BCD=∠CAO ,

又∵∠BDC=∠COA=90°,CB=AC , ∴△BDC ≌△COA ,

∴BD=OC=1,CD=OA=2, ∴点B 的坐标为(3,1);

(2)∵抛物线y=ax 2-ax-2过点B (3,1), ∴1=9a-3a-2, 解得:a=1

2,

∴抛物线的解析式为y=12

x 2-1

2

x-2;

(3)假设存在点P ,使得△ACP 是等腰直角三角形, ①若以AC 为直角边,点C 为直角顶点,

则延长BC 至点P 1使得P 1C=BC ,得到等腰直角三角形ACP 1, 过点P 1作P 1M ⊥x 轴,如图(1),

∵CP 1=BC ,∠MCP 1=∠BCD ,∠P 1MC=∠BDC=90°,

专题:二次函数中的动点问题

y x O 二次函数中的动点问题(二) 平行四边形的存在性问题 一、技巧提炼 1、二次函数y=ax 2 +bx+c 的图像和性质 a >0 a <0 图 象 开 口 对 称 轴 顶点坐标 最 值 当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减 性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而 y 随x 的增大而 2、平行四边形模型探究 如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。 A B C x y 图1 图2 如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。 3、平面直角坐标系中直线和直线l2: 当l1∥l2时k1= k2; 4、二次函数中平行四边形的存在性问题: 解题思路:(1)先分类(2)再画图(3)后计算 二、精讲精练 1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1) (1)求抛物线的解析式; (2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由; (3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

九年级培优圆与相似辅导专题训练含答案

九年级培优圆与相似辅导专题训练含答案 一、相似 1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧). (1)求函数y=ax2+bx+c的解析式; (2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率; (3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的 Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由. 【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2, 把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4, ∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4 (2)解:∵y=x2+2x+1=(x+1)2, ∴A(﹣1,0), 当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0); 当x=0时,y=﹣x2+4=4,则B(0,4), 从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB, ∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 , ∴△BCD为等腰三角形, ∴构造的三角形是等腰三角形的概率=

(3)解:存在, 易得BC的解析是为y=﹣2x+4,S△ABC= AC?OB= ×3×4=6, M点的坐标为(m,﹣2m+4)(0≤m≤2), ①当N点在AC上,如图1, ∴△AMN的面积为△ABC面积的, ∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1, 当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4, ∴tan∠MAC= =4; 当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2, ∴tan∠MAC= =1; ②当N点在BC上,如图2, BC= =2 , ∵BC?AN= AC?BC,解得AN= , ∵S△AMN= AN?MN=2,

最新最新中考二次函数动点问题(含答案)

二次函数的动点问题 1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长. (2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度. (3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =o ∠的点P 有 个. (抛物线()2 0y ax bx c a =++≠的顶点坐标是2424b ac b a a ?? -- ??? ,.

[解] (1)作BF y ⊥轴于F . ()()01084A B Q ,,,, 86FB FA ∴==,. 10AB ∴=. (2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=Q ,. P Q ∴,两点的运动速度均为每秒1个单位. (3)方法一:作PG y ⊥轴于G ,则PG BF ∥. GA AP FA AB ∴ =,即610 GA t =. 35GA t ∴=. 3 105OG t ∴=-. 4OQ t =+Q , ()113410225S OQ OG t t ? ?∴= ??=+- ?? ?.

中考数学备考之圆与相似压轴突破训练∶培优 易错 难题篇含答案

中考数学备考之圆与相似压轴突破训练∶培优易错难题篇含答案 一、相似 1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC. (1)求证:BD是⊙O的切线; (2)求证:CE2=EH?EA; (3)若⊙O的半径为,sinA= ,求BH的长. 【答案】(1)证明:如图, ∵∠ODB=∠AEC,∠AEC=∠ABC, ∴∠ODB=∠ABC, ∵OF⊥BC, ∴∠BFD=90°, ∴∠ODB+∠DBF=90°, ∴∠ABC+∠DBF=90°, 即∠OBD=90°, ∴BD⊥OB, ∴BD是⊙O的切线 (2)证明:连接AC,如图2所示: ∵OF⊥BC, ∴, ∴∠CAE=∠ECB, ∵∠CEA=∠HEC,

∴△CEH∽△AEC, ∴, ∴CE2=EH?EA (3)解:连接BE,如图3所示: ∵AB是⊙O的直径, ∴∠AEB=90°, ∵⊙O的半径为,sin∠BAE= , ∴AB=5,BE=AB?sin∠BAE=5× =3, ∴EA= =4, ∵, ∴BE=CE=3, ∵CE2=EH?EA, ∴EH= , ∴在Rt△BEH中,BH= . 【解析】【分析】(1)要证BD是⊙O的切线,只需证∠OBD=90°,因为∠OBC+∠BOD=90°,所以只须证∠ODB=∠OBC即可。由圆周角定理和已知条件易得∠ODB=∠ABC,则∠OBC+∠BOD=90°=∠ODB+∠BOD,由三角形内角和定理即可得∠OBD=90°; (2)连接AC,要证CE2=EH?EA;只需证△CEH∽△AEC,已有公共角∠AEC,再根据圆周角定理可得∠CAE=∠ECB,即可证△CEH∽△AEC,可得比例式求解; (3)连接BE,解直角三角形AEB和直角三角形BEH即可求解。 2.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结: ⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断 图象的位置,要数形结合; ⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC 平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。 共同点:

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

人教【数学】数学 二次函数的专项 培优练习题及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D. (1)求抛物线的解析式; (2)求点P在运动的过程中线段PD长度的最大值; (3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由. 【答案】(1)y=x2﹣4x+3;(2)9 4 ;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣ 3). 【解析】 试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解; (2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答; (3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可; (4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可. 试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0), ∴ 930 10 b c b c ++= ? ? ++= ? ,解得 4 3 b c =- ? ? = ? ,∴抛物线解析式为y=x2﹣4x+3; (2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣ (x﹣3 2 )2+ 9 4 .∵a=﹣1<0,∴当x= 3 2 时,线段PD的长度有最大值 9 4 ;

相似三角形培优难题集锦(含答_案)

一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F, G是EF中点,连接DG.设点D 运动的时间为t秒. (1)当t为何值时,AD=AB,并 求出此时DE的长度; (2)当△DEG与△ACB相似时, 求t的值. 2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它 们都停止移动.设移动的时间为t 秒. (1)①当t=2.5s时,求△CPQ的 面积; ②求△CPQ的面积S(平方米)关 于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中 , ACB=90°,AC=6,BC= (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中, BA=BC=20cm,AC= 30cm,点P从A点出发, 沿着AB以每秒4cm的速 度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

二次函数培优经典题

112O x y 培优训练五(二次函数1) 1、如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( ) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =h D .m <n ,k =h 2、已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a =0;②abc <0;③a ﹣2b +4c <0;④8a +c >0.其中正确的有( ) A . 3个 B . 2个 C . 1个 D . 0个 3、如图,二次函数2y ax bx c =++的图像与y 轴正半轴相交,其顶点坐标 为(1,12 ),下列结论:①0ac <;②0a b +=; ③244ac b a -=;④0a b c ++<.其中正确结论的个数是 A . 1 B . 2 C . 3 D . 4 4、若二次函数c x x y +-=62的图象经过A (-1,y 1)、B (2,y 2)、C (23+,y 3)三点,则关于y 1、y 2、y 3大小关系正确的是 A .y 1>y 2>y 3 B .y 1>y 3>y 2 C .y 2>y 1>y 3 D .y 3>y 1>y 2 5、如图,一次函数)0(1≠+=k n kx y 与二次函数 )0(22≠++=a c bx ax y 的图象相交于A (1-,5)、B (9,2)两点,则关 于x 的不等式c bx ax n kx ++≥+2 的解集为 A 、91≤≤-x B 、91<≤-x C 、91≤<-x D 、1-≤x 或9≥x 6.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、

二次函数动点问题解答方法技巧分析

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求与已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标、 ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式与一元二次方程之间的内在联系: 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)与点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上就是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.

注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。 ①特殊四边形为背景; ②点动带线动得出动三角形; ③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式; ⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。 二次函数的动态问题(动点)

2020-2021九年级培优相似辅导专题训练及详细答案

2020-2021九年级培优相似辅导专题训练及详细答案 一、相似 1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒. (1)求抛物线的解析式和对称轴; (2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由; (3)设四边形DECO的面积为s,求s关于t的函数表达式. 【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入 得:,解得:, ∴抛物线的解析式为:, 对称轴为:直线x=﹣; (2)解:存在,∵AD=2t, ∴DF=AD=2t, ∴OF=4﹣4t, ∴D(2t﹣4,0), ∵直线AC的解析式为:,∴E(2t﹣4,t), ∵△EFC为直角三角形,分三种情况讨论: ①当∠EFC=90°,则△DEF∽△OFC, ∴,即,解得:t= ; ②当∠FEC=90°,

∴∠AEF=90°, ∴△AEF是等腰直角三角形, ∴DE= AF,即t=2t, ∴t=0,(舍去), ③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或; (3)解:∵B(1,0),C(0,2), ∴直线BC的解析式为:y=﹣2x+2, 当D在y轴的左侧时,S= (DE+OC)?OD= (t+2)?(4﹣2t)=﹣t2+4 (0<t<2); 当D在y轴的右侧时,如图2, ∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)?OD= (﹣8t+10+2)?(4t﹣4),即 (2<t<). 综上所述: 【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。 (2)根据题意分别求出AD、DF、OF的长,表示出点D的坐标,利用待定系数法求出直线BC的函数解析式,表示出点E的坐标,再分三种情况讨论△EFC为直角三角形:①当∠EFC=90°,则△DEF∽△OFC,根据相似三角形的性质,列出关于t的方程求解即可; ②∠FEC=90°,∠AEF=90°,△AEF是等腰直角三角形求出t的值即可;③当∠ACF=90°,则AC2+CF2=AF2,建立关于t的方程求解即可,从而可得出答案。 (3)求得直线BC的解析式为:y=-2x+2,当D在y轴的左侧时,当D在y轴的右侧时,如图2,根据梯形的面积公式即可得到结论。 2.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点

【数学】数学二次函数的专项培优易错试卷练习题(含答案)及答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封 闭曲线称为“蛋线”.已知点C 的坐标为(0, ),点M 是抛物线C 2: 2y mx 2mx 3m =--(m <0)的顶点. (1)求A 、B 两点的坐标; (2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值. 【答案】(1)A ( ,0)、B (3,0). (2)存在.S △PBC 最大值为2716 (3)2 m 2 =-或1m =-时,△BDM 为直角三角形. 【解析】 【分析】 (1)在2 y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标. (2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值. (3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值. 【详解】 解:(1)令y=0,则2mx 2mx 3m 0--=, ∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=. ∴A ( ,0)、B (3,0). (2)存在.理由如下: ∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数专题培优(含答案)

二次函数专题复习 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,.

人教版初三数学上册二次函数与动点问题

(2)过点P作PF垂直AB,垂足为F 因为AQ=t,所以QB=8-t,PB=t 由图可知,PF//CE,所以PF CE = PB BC , 即PF 4 = t 5 , PF= 4 5 t, 所以S=1 2 QB?PF= 1 2 ? 4 5 t(8-t)=- 2 5 t2+ 16 5 t =-2 5 (t-4)2+ 32 5 故,当t=4时,S取得最大值,最大值为32 5 . (1)解:过点C作CE垂直AB,垂足为E 求得CE=4,BE=3,BC=5, 所以,当t=5时,P、Q两点停止运动。 (3)当PQ=PB时,过P作PF垂直AB,垂足直为F,则有BF=1 2 BQ, 由PF//CE可得,BF BE = BP BC ,即 BF 3 = t 5 ,BF= 3 5 t, 所以3 5 t= 1 2 (8-t),t= 40 11 . 当BQ=BP时,有8-t=t,t=4.

当QB=QP 时,过Q 作QG 垂直BC ,垂足为G ,则BG=12BP=12 t.此时,ΔBGQ~ΔBEC ,所以BG BE =BQ BC ,即,12t 3=8-t 4,t=245 .所以,当t=4011或4或245 时,ΔPQB 为等腰三角形. (2)1.当 EFG 在梯形内部,重叠部分面积就是ΔEFG 的面积, ∴y=12x 2. 2.当2

相似三角形培优训练(含答案)之令狐文艳创作

相似三角形分类提高训练 令狐文艳 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC 交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点 到达终点时,它们都停止移动.设移动的时间为t 秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的 面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D 在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q 从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x 为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB 边从A开始向点B以2cm/s的速度移动;点Q沿DA边从 点D开始向点A以1cm/s的速度移动.如果P、Q同时出 发,用t(s)表示移动的时间(0<t<6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t 为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

二次函数培优专题训练

二次函数培优专题训练 一、实际应用专题 例题1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 例题2 小华的爸爸在国际商贸城开专卖店专销某种品牌的计算器,进价12元∕只,售价20元∕只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降低0.10元(例如:某人买20只计算器,于是每只降价0.10×(20-10)=1元,就可以按19元∕只的价格购买),但是最低价为16元∕只.(1)顾客一次至少买多少只,才能以最低价购买? (2)写出当一次购买x只时(x>10),利润y(元)与购买量x(只)之间的函数关系式. (3)星期天,小华来到专卖店勤工俭学,上午做成了两笔生意,一是向顾客甲卖了46只,二是向顾客乙卖了50只,记账时小华发现卖50只反而比卖46只赚的钱少.为了使每次卖得越多赚钱越多,在其他促销条件不变的情况下,最低价16元∕只至少要提高到多少?为什么? 例题3(2010?恩施州)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售. (1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式. (2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用) (3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

中考二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

相似三角形的综合应用(培优提高)

相似三角形的应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算. 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【知识回顾】 一、相似三角形的性质 (1)对应边的比相等,对应角相等. (2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方...... . (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 二、相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等. 【典型例题】 例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少? 例2:阅读以下文字并解答问题: 在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高 A B C Q M D N P E

度.在同一时刻的阳光下,他们分别做了以下工作: 小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米. 小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米. 小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m . (1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图). (3)请选择丙树的高度为( ) A 、6.5米 B 、5.75米 C 、6.05米 D 、7.25米 (4)你能计算出丁树的高度吗?试试看. 【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度. 图1 图2 图3 图4

九年级二次函数培优竞赛试题及答案

九年级二次函数培优竞赛试题及答案 1.在如图的直角坐标系中,已知点A(2,0)、B(0,-4),将线段AB绕点A按逆时针方向旋转90°至AC. (1)求点C的坐标; (2)若抛物线y=-1 4 x2+ax+4经过点C. ①求抛物线的解析式; ②在抛物线上是否存在点P(点C除外)使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

2.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c 经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D. (1)求抛物线的解析式; (2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标; (3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

1.【解析】 试题分析:(1)过点C作CD垂直于x轴,由线段AB绕点A按逆时针方向旋转90°至AC,根据旋转的旋转得到AB=AC,且∠BAC为直角,可得∠OAB与∠CAD 互余,由∠AOB为直角,可得∠OAB与∠ABO互余,根据同角的余角相等可得一对角相等,再加上一对直角相等,利用ASA可证明三角形ACD与三角形AOB全等,根据全等三角形的对应边相等可得AD=OB,CD=OA,由A和B的坐标及位置特点求出OA及OB的长,可得出OD及CD的长,根据C在第四象限得出C的坐标; (2)①由已知的抛物线经过点C,把第一问求出C的坐标代入抛物线解析式,列出关于a的方程,求出方程的解得到a的值,确定出抛物线的解析式; ②假设存在点P使△ABP是以AB为直角边的等腰直角三角形,分三种情况考虑: (i)A为直角顶点,过A作AP 1垂直于AB,且AP 1 =AB,过P 1 作P 1 M垂直于x轴, 如图所示,根据一对对顶角相等,一对直角相等,AB=AP 1 ,利用AAS可证明三角 形AP 1M与三角形ACD全等,得出AP 1 与P 1 M的长,再由P 1 为第二象限的点,得出 此时P 1 的坐标,代入抛物线解析式中检验满足;(ii)当B为直角顶点,过B作 BP 2垂直于BA,且BP 2 =BA,过P 2 作P 2 N垂直于y轴,如图所示,同理证明三角形 BP 2N与三角形AOB全等,得出P 2 N与BN的长,由P 2 为第三象限的点,写出P 2 的 坐标,代入抛物线解析式中检验满足;(iii)当B为直角顶点,过B作BP 3 垂直 于BA,且BP 3=BA,如图所示,过P 3 作P 3 H垂直于y轴,同理可证明三角形P 3 BH 全等于三角形AOB,可得出P 3H与BH的长,由P 3 为第四象限的点,写出P 3 的坐 标,代入抛物线解析式检验,不满足,综上,得到所有满足题意的P的坐标.试题解析:(1)过C作CD⊥x轴,垂足为D, ∵BA⊥AC,∴∠OAB+∠CAD=90°, 又∠AOB=90°,∴∠OAB+∠OBA=90°, ∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°, ∴△AOB≌△CDA,又A(1,0),B(0,﹣2), ∴OA=CD=1,OB=AD=2, ∴OD=OA+AD=3,又C为第四象限的点, ∴C的坐标为(3,﹣1); (2)①∵抛物线y=﹣1 2 x2+ax+2经过点C,且C(3,﹣1), ∴把C的坐标代入得:﹣1=﹣9 2 +3a+2,解得:a= 1 2 , 则抛物线的解析式为y=﹣1 2 x2+ 1 2 x+2; ②存在点P,△ABP是以AB为直角边的等腰直角三角形,(i)若以AB为直角边,点A为直角顶点,

相关主题
文本预览
相关文档 最新文档