当前位置:文档之家› 中考二次函数动点问题(含答案)

中考二次函数动点问题(含答案)

中考二次函数动点问题(含答案)
中考二次函数动点问题(含答案)

中考二次函数动点问题(含答案)

1.如图①,正方形的顶点的坐标分别为,顶点在第一象限.点从点出发,沿正方形按逆时针方

向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动.当点到达点时,两点同时停止

运动,设运动的时间为秒.

(1)求正方形的边长.

(2)当点在边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分

(如图②所示),求两点的运动速度.

(3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标.(4)若点ABCD保持(2)中的速度不变,则点ABCD沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而增大;沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而减小.当点ABCD沿着这两边运动时,使ABCD的点ABCD有个.

(抛物线ABCD的顶点坐标是.

[解] (1)作轴于.

(2)由图②可知,点从点运动到点用了10秒.

又.

两点的运动速度均为每秒1个单位.

(3)方法一:作ABCD轴于ABCD,则ABCD.

ABCD ,即

ABCD

ABCD

.ABCD

.ABCD,

ABCD

ABCD

ABCD ,且

ABCD

ABCD当

ABCD

时,ABCD有最大值.

此时

ABCD

ABCD点ABCD的坐标为

ABCD

.(8分)

方法二:当ABCD时,

ABCD

设所求函数关系式为.

抛物线过点,

,且,

当时,有最大值.

此时,

点的坐标为.

(4).

[点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。

2. 如图①,中,,.它的顶点的坐标为,顶点的坐标为,,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒.

(1)求的度数.

(2)当点在上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分,(如图②),求点的运动速度.

(3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标.

(4)如果点ABCD保持(2)中的速度不变,那么点ABCD沿ABCD边运动时,ABCD的大小随着时间ABCD的增大而增大;沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而减小,当点ABCD沿这两边运动时,使ABCD的点ABCD有几个?请说明理由.

解: (1)ABCD.

(2)点 的运动速度为2个单位/秒. (3) ( )

. 当 时, 有最大值为 ,

此时

(4)当点ABCD 沿这两边运动时,ABCD 的点ABCD 有2个. ①当点ABCD 与点ABCD 重合时,ABCD ,

当点ABCD 运动到与点ABCD 重合时,ABCD 的长是12单位长度, 作ABCD 交ABCD 轴于点ABCD ,作ABCD 轴于点ABCD , 由ABCD 得:

ABCD

所以ABCD ,从而ABCD .

所以当点ABCD 在ABCD 边上运动时,ABCD 的点ABCD 有1个. ②同理当点ABCD 在ABCD 边上运动时,可算得ABCD

而构成直角时交ABCD 轴于ABCD

,ABCD ,

所以ABCD ,从而ABCD 的点ABCD 也有1个.

所以当点ABCD 沿这两边运动时,ABCD 的点ABCD 有2个.

3. (本题满分14分)如图12,直线4

34

+-=x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图

象经过点A 、C 和点()0,1-B .

(1)求该二次函数的关系式;

(2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积;

(3)有两动点D 、E 同时从点O 出发,其中点D 以每秒23

个单位长度的速度沿折线OAC 按O →A →C

的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C →A 的路线运动,当D 、E 两

点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S .

①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由;

②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = .

E

C

A

y

O

B F x M

D

解:(1)令0=x ,则4=y ; 令0=y 则3=x .∴ABCD .ABCD

∵二次函数的图象过点

∴可设二次函数的关系式为 42++=bx ax y

又∵该函数图象过点 .

∴ 解之,得

34-

=a ,38

=b .

∴所求二次函数的关系式为4

38

342++-=x x y (2)∵4

38

342++-=x x y

=()316

134

2+--

x ∴顶点M 的坐标为 过点M 作MF x ⊥轴于F ∴ABCD

=()10

13164213161321=????

??+?+?-?

∴四边形AOCM 的面积为10 (3)①不存在DE ∥OC

∵若DE ∥OC ,则点D ,E 应分别在线段OA ,CA 上,此时ABCD ,在ABCD 中,ABCD . 设点E 的坐标为ABCD ∴5443

1

-=

t x ,∴512

121-=

t x ∵ABCD ,

t

t 2351212=- ∴38

=t

38

=

t >2,不满足ABCD .

∴不存在ABCD .

②根据题意得D ,E 两点相遇的时间为

1124

423543=+++(秒)

现分情况讨论如下: ⅰ)当ABCD 时,

ABCD

ⅱ)当ABCD 时,设点E 的坐标为ABCD

∴()544542

--=

t y ,∴516362t

y -=

t

t t t S 5275125163623212+-=-??= ⅲ)当2

,类似ⅱ可得516363t

y -=

设点D 的坐标为()44,y x

∴532

3

4

4

-=t y , ∴

51264-=

t y ∴

512632151636321-??--??=t t =572533+

-t ③802430=

S

47.关于 的二次函数 以 轴为对称轴,且与 轴的交点在 轴上方. (1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;

(2)设 是 轴右侧抛物线上的一个动点,过点 作 垂直于 轴于点 ,再过点 作 轴的平行线交抛物线于点 ,过点 作 垂直于 轴于点 ,得到矩形 .设矩形 的周长为 ,点 的横坐标为 ,试求 关于 的函数关系式;

(3)当点 在 轴右侧的抛物线上运动时,矩形 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.

参考资料:抛物线 的顶点坐标是 ,对称轴是直线 .

解:(1)据题意得: ,

当时,.

当时,.

又抛物线与轴的交点在轴上方,ABCD.

ABCD抛物线的解析式为:ABCD.

函数的草图如图所示.(只要与坐标轴的三个交点的位置及图象大致形状正确即可)

(2)解:令ABCD,得ABCD.

不ABCD时,ABCD,ABCD,

ABCD.

当ABCD时,,

关于的函数关系是:

当时,;

当时,.

(3)解法一:当时,令,

得ABCD.

解得ABCD(舍),或ABCD.

将ABCD代入ABCD,

得ABCD.

当ABCD时,令ABCD,得ABCD.

解得ABCD(舍),或ABCD.

将ABCD代入ABCD,得ABCD.

综上,矩形ABCD能成为正方形,且当ABCD时正方形的周长为ABCD;当ABCD时,正方形的周长为ABCD.

解法二:当ABCD时,同“解法一”可得.

正方形的周长.

当时,同“解法一”可得.

正方形的周长.

综上,矩形能成为正方形,且当时正方形的周长为;当时,正方形的周长为.

解法三:点在轴右侧的抛物线上,

,且点的坐标为.

令,则.

,①或②

由①解得(舍),或;

由②解得(舍),或.

又,

当时;

当时.

综上,矩形能成为正方形,且当时正方形的周长为;当时,正方形的周长为.

5.已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C

在y轴的正半轴上,线段OB、OC的长(OB

(1)求A、B、C三点的坐标;

(2)求此抛物线的表达式;

(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC 交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

解:(1)解方程x2-10x+16=0得x1=2,x2=8

∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC

∴点B的坐标为(2,0),点C的坐标为(0,8)

又∵抛物线y=ax2+bx+c的对称轴是直线x=-2

∴由抛物线的对称性可得点A的坐标为(-6,0)

(2)∵点C(0,8)在抛物线y=ax2+bx+c的图象上

∴c=8,将A(-6,0)、B(2,0)代入表达式,得

解得

∴所求抛物线的表达式为y=-x2-x+8

(3)依题意,AE=m,则BE=8-m,

∵OA=6,OC=8,∴AC=10

∵EF∥AC∴△BEF∽△BAC

∴=即=

∴EF=

过点F作FG⊥AB,垂足为G,则sin∠FEG=sin∠CAB=

∴=∴FG=·=8-m

∴S=S△BCE-S△BFE=(8-m)×8-(8-m)(8-m)

=(8-m)(8-8+m)=(8-m)m=-m2+4m

自变量m的取值范围是0<m<8

(4)存在.

理由:∵S=-m2+4m=-(m-4)2+8 且-<0,

∴当m=4时,S有最大值,S最大值=8

∵m=4,∴点E的坐标为(-2,0)

∴△BCE为等腰三角形.

6.(14分)如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.

(1)求抛物线的解析式.

(2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度

移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值;

(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由。

(注:抛物线的对称轴为

(1)解法一:设抛物线的解析式为y = a (x +3 )(x - 4)

因为B(0,4)在抛物线上,所以4 = a ( 0 + 3 ) ( 0 - 4 )解得a= -1/3

所以抛物线解析式为

ABCD

解法二:设抛物线的解析式为ABCD,

依题意得:c=4且

ABCD

解得

ABCD

所以所求的抛物线的解析式为

ABCD

(2)连接DQ,在Rt△AOB中,ABCD

所以AD=AB= 5,AC=AD+CD=3 + 4 = 7,CD = AC - AD = 7 – 5 = 2

因为BD垂直平分PQ,所以PD=QD,PQ⊥BD,所以∠PDB=∠QDB

因为AD=AB,所以∠ABD=∠ADB,∠ABD=∠QDB,所以DQ∥AB

所以∠CQD=∠CBA。∠CDQ=∠CAB,所以△CDQ∽△CAB

ABCD 即

ABCD

所以AP=AD – DP = AD – DQ=5 –

ABCD

=,所以t的值是

(3)答对称轴上存在一点M,使MQ+MC的值最小理由:因为抛物线的对称轴为

所以A(- 3,0),C(4,0)两点关于直线对称连接AQ交直线于点M,则MQ+MC的值最小

过点Q作QE⊥x轴,于E,所以∠QED=∠BOA=900 DQ∥AB,∠ BAO=∠QDE,△DQE ∽△ABO 即

所以QE=,DE=,所以OE = OD + DE=2+=

ABCD ,所以Q(

ABCD

ABCD

设直线AQ的解析式为ABCD

ABCD 由此得

ABCD

所以直线AQ的解析式为

ABCD

联立

ABCD

由此得

ABCD 所以M

ABCD

则:在对称轴上存在点M

ABCD

,使MQ+MC的值最小。

7. 如图9,在平面直角坐标系中,二次函数ABCD的图象的顶点为D点,与y轴交于C点,与x轴交于

A、B两点, A点在原点的左侧,B点的坐标为(3,0),

OB=OC ,tan∠ACO=

ABCD

(1)求这个二次函数的表达式.

(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、

E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.

(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.

(4)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P 运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.

(1

ABCD

解得:

ABCD

……………………3分

所以这个二次函数的表达式为:ABCD……………………3分

方法二:由已知得:C(0,-3),A(-1,0)………………………1分

设该表达式为:ABCD……………………2分

将C点的坐标代入得:ABCD……………………3分

所以这个二次函数的表达式为:ABCD……………………3分

(注:表达式的最终结果用三种形式中的任一种都不扣分)

(2)方法一:存在,F点的坐标为(2,-3)……………………4分

理由:易得D(1,-4),所以直线CD的解析式为:ABCD

∴E点的坐标为(-3,0)……………………4分

由A、C、E、F四点的坐标得:AE=CF=2,AE∥CF

∴以A、C、E、F为顶点的四边形为平行四边形

∴存在点F,坐标为(2,-3)……………………5分

方法二:易得D(1,-4),所以直线CD的解析式为:ABCD

∴E点的坐标为(-3,0)………………………4分

∵以A、C、E、F为顶点的四边形为平行四边形

∴F点的坐标为(2,-3)或(―2,―3)或(-4,3)

代入抛物线的表达式检验,只有(2,-3)符合

∴存在点F,坐标为(2,-3)………………………5分

(3)如图,①当直线MN在x轴上方时,设圆的半径为R(R>0),则N(R+1,R),代入抛物线的表达式,解得

…………6分

ABCD Array

②当直线MN在x轴下方时,设圆的半径为r(r>0),

则N(r+1,-r),

………7分

代入抛物线的表达式,解得

ABCD

或.……………7分

∴圆的半径为

ABCD

(4)过点P作y轴的平行线与AG交于点Q,

易得G(2,-3),直线AG为.……………8分

设P(x,),则Q(x,-x-1),PQ.

……………………9分

当时,△APG的面积最大

此时P点的坐标为,.……………………10分

8.(本小题12分)解:(1)解方程x2-10x+16=0得x1=2,x2=8

∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC

∴点B的坐标为(2,0),点C的坐标为(0,8)

又∵抛物线y=ax2+bx+c的对称轴是直线x=-2

∴由抛物线的对称性可得点A的坐标为(-6,0)

∴A、B、C三点的坐标分别是A(-6,0)、B(2,0)、C(0,8)

(2)∵点C(0,8)在抛物线y=ax2+bx+c的图象上

∴c=8,将A(-6,0)、B(2,0)代入表达式y=ax2+bx+8,得

解得

∴所求抛物线的表达式为y=-x2-x+8

(3)∵AB=8,OC=8

∴S△ABC =×8×8=32

(4)依题意,AE=m,则BE=8-m,

∵OA=6,OC=8,∴AC=10

∵EF∥AC∴△BEF∽△BAC

∴=即=∴EF=

过点F作FG⊥AB,垂足为G,则sin∠FEG=sin∠CAB=

∴=∴FG=·=8-m

∴S=S△BCE-S△BFE=(8-m)×8-(8-m)(8-m)

=(8-m)(8-8+m)=(8-m)m=-m2+4m

自变量m的取值范围是0<m<8

(5)存在.理由:

∵S=-m2+4m=-(m-4)2+8 且-<0,

∴当m=4时,S有最大值,S最大值=8

∵m=4,∴点E的坐标为(-2,0)

∴△BCE为等腰三角形.

9.(12分)已知:如图14,抛物线与轴交于点,点,与直线相交于点,点,直线与轴交于点.

(1)写出直线的解析式.

(2)求的面积.

(3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动.设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

解:(1)在中,令

,1分

又点在上

的解析式为

ABCD

2分

(2)由

ABCD ,得

ABCD

ABCD

4分

ABCD

,ABCD

ABCD,

ABCD

5分ABCD

6分(3)过点ABCD作于点

7分

8分由直线可得:

在中,,

ABCD ,则

ABCD

ABCD ,

ABCD

9分

ABCD

ABCD

10分ABCD

11分

ABCD此抛物线开口向下,ABCD当ABCD时,

ABCD

ABCD当点ABCD运动2秒时,ABCD的面积达到最大,最大为

ABCD

.12分

中考二次函数压轴题经典题型

中考二次函数压轴题经典题型 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM 有最大面积,求矩形PNDM的面积最大值? 2、如图,二次函数的图象经过点D(0, 3 9 7 ),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 3.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(1 2 , 5 2 )和B(4,m),点P是线段AB 上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标.

4、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值。 5、如图1,对称轴x=为直线的抛物线经过B(2,0)、C(0,4)两点,抛物线与轴的另一交点为A.(1)求抛物线的解析式; (2)若点P为第一象限内抛物线上一点,设四边形COBP的面积为S,求S的最大值; (3)如图2,若M是线段BC上一动点,在轴上是否存在这样有点Q,使△MQC为等腰三角形且△MQB 为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.

最新最新中考二次函数动点问题(含答案)

二次函数的动点问题 1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长. (2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度. (3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =o ∠的点P 有 个. (抛物线()2 0y ax bx c a =++≠的顶点坐标是2424b ac b a a ?? -- ??? ,.

[解] (1)作BF y ⊥轴于F . ()()01084A B Q ,,,, 86FB FA ∴==,. 10AB ∴=. (2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=Q ,. P Q ∴,两点的运动速度均为每秒1个单位. (3)方法一:作PG y ⊥轴于G ,则PG BF ∥. GA AP FA AB ∴ =,即610 GA t =. 35GA t ∴=. 3 105OG t ∴=-. 4OQ t =+Q , ()113410225S OQ OG t t ? ?∴= ??=+- ?? ?.

2020年中考二次函数与几何图形经典题型汇编【含中考相似三角形中考线段中的动点问题】

2020 年中考二次函数与几何图形

1.中考相似三角形 2.中考线段中的动点问题 目录 中考复习战略汇集 (1) 二次函数与几何图形 (2) 模式1:平行四边 形 (2) 模式2:梯 形 (4) 模式3:直角三角 形 (6) 模式4:等腰三角 形 (8) 模式5:相似三角 形 (10) 模拟题汇编之动点折叠问题 (11)

二次函数与几何图形 模式 1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点 p 使得 A 、B 、C 、P 四点构成平行四边形,则可分成 以下几种情况 ( ( ( 1)当边 AB 是对角线时,那么有 AP // BC 2)当边 AC 是对角线时,那么有 AB //CP 3)当边 BC 是对角线时,那么有 AC // BP 1 、在平面直角坐标系中,已知抛物线经过 A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点 M 为第三象限内抛物线上一动点,点 M 的横坐标为 m ,△AMB 的面积为 S. 求 S 关于 m 的函数关系式,并求出 S 的最大值; (3)若点 P 是抛物线上的动点,点 Q 是直线 y=-x 上的动点,判断有几个位置能 使以点 P 、Q 、B 、0 为顶点的四边形为平行四边形,直接写出相应的点 Q 的坐标.

2 、如图,抛物线 y x 2 2x 3与 x 轴相交于 A 、B 两点(点 A 在点 B 的左侧), 与 y 轴相交于点 C ,顶点为 D . ( ( 1)直接写出 A 、B 、C 三点的坐标和抛物线的对称轴; 2)连结 BC ,与抛物线的对称轴交于点 E ,点 P 为线段 BC 上的一个动点,过 点 P 作 PF//DE 交抛物线于点 F ,设点 P 的横坐标为 m . ① 用含 m 的代数式表示线段 PF 的长,并求出当 m 为何值时,四边形 PEDF 为 平行四边形? ② 设△BCF 的面积为 S ,求 S 与 m 的函数关系.

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

精选中考二次函数压轴题[附答案解析]

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +-=2 21的图象经过点D ??? ? ?-29,3,与x 轴交于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值; (3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式. 3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16 x 2+bx +c 过O 、A 两点. (1)求该抛物线的解析式; (2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由 4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC =23.设直线AC (第2(图1) (图

二次函数经典中考试题(含答案)

二次函数经典中考试题(含答案) —、解答题(共30小题) 1. (2013?武汉)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物 分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表) : 温度 x/C … -4 - 2 0 2 4 4.5 … 植物每天高度增长量 y/mm … 41 49 49 41 25 19.75 … 由这些数据,科学家推测出植物每天高度增长量 y 是温度x 的函数,且这种函数是反比例函 数、一次函数和二次函数中的一种. (1) 请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理 由; (2) 温度为多少时,这种植物每天高度增长量最大? (3) 如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过 250mm ,那么 实验室的温度x 应该在哪个范围内选择?请直接写出结果. 2. (2013?莆田)如图所示,某学校拟建一个含内接矩形的菱形花坛 (花坛为轴对称图形).矩 形的四个顶点分别在菱形四条边上,菱形 ABCD 的边长AB=4米,/ ABC=60 °设AE=x 米 (0v x V 4),矩形EFGH 的面积为S 米2. (1) 求S 与x 的函数关系式; (2) 学校准备在矩形内种植红色花草,四个三角形内种植黄色花草?已知红色花草的价格为 20元咪2,黄色花草的价格为40元咪2?当x 为何值时,购买花草所需的总费用最低,并求 出最低总费用(结果保留根号)? y 的二元一次方程组 (1) 若a=3.求方程组的解; (2) 若S=a (3x+y ),当a 为何值时,S 有最值. 4. (2013?南宁)如图,抛物线 y=ax 2+c (a 旳)经过C (2,0),D (0,- 1)两点,并与直 线y=kx 交于A 、B 两点,直线I 过点E (0,- 2)且平行于x 轴,过A 、B 两点分别作直线 l 的垂线,垂足分别为点M 、N . (1) 求此抛物线的解析式; (2) 求证:AO=AM ; (3) 探究: ①当k=0时,直线y=kx 与x 轴重合,求出此时 的值; 3. (2013?资阳)在关于 x ,

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

中考数学 二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结: ⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或 由二次函数中a,b,c的符号判断图象的位置,要数形结合; ⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知 一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称 性求出另一个交点坐标. ⑸与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a ≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)

动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、抛物线上动点 5、(湖北十堰市)如图①,已知抛物线3 2+ y(a≠0)与x轴 ax + =bx 交于点A(1,0)和点B (-3,0),与y轴交于点C. (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

《二次函数热点压轴题》

第一部分:以“增减性”为主导的综合问题 【典型例题1】 在平面直角坐标系xOy 中.已知抛物线22y ax bx a =++-的对称轴是直线x =1. (1)用含a 的式子表示b ,并求抛物线的顶点坐标; (2)已知点()0,4A -,()2,3B -,若抛物线与线段AB 没有公共点,结合函数图象, 求a 的取值范围; (3)若抛物线与x 轴的一个交点为C (3,0),且当m ≤x ≤n 时,y 的取值范围是 m ≤y ≤6,结合函数图象,直接写出满足条件的m ,n 的值 . 二次函数热点压轴题

【变式与拓展】 1.在平面直角坐标系xOy 中,已知抛物线222++-=a ax x y 2的顶点C ,过点B (0,t )作与y 轴垂直的直线l ,分别交抛物线于E ,F 两点,设点E (x 1,y 1),点F (x 2,y 2)(x 1<x 2). (1)求抛物线顶点C 的坐标; (2)当点C 到直线l 的距离为2时,求线段EF 的长; (3)若存在实数m ,使得x 1≥m -1且x 2≤m +5成立,直接写出t 的取值范围.

2.在平面直角坐标系xOy中,抛物线223 y x bx =-+-的对称轴为直线x=2. (1)求b的值; (2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2), 其中 12 x x<. ①当 213 x x-=时,结合函数图象,求出m的值; ②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,44 y -≤≤,求m的取值范围.

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

人教版中考数学压轴题型24道:二次函数专题含答案解析

人教版中考数学压轴题24道:二次函数专题 1.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M. (1)求抛物线的解析式; (2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值; (3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值. 2.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式; (2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标; (3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由. 3.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B. (1)求抛物线解析式及B点坐标; (2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积; (3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位

置时,PC+PA 的值最小,请求出这个最小值,并说明理由. 4.已知函数y =(n 为常数) (1)当n =5, ①点P (4,b )在此函数图象上,求b 的值; ②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为A (2,2)、B (4,2),当此函数的图象与线段 AB 只有一个交点时,直接写出n 的取值范围. (3)当此函数图象上有4个点到x 轴的距离等于 4,求n 的取值范围. 5.在平面直角坐标系 xOy 中(如图),已知抛物线 y =x 2 ﹣2x ,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点” . ①试求抛物线y =x 2 ﹣2x 的“不动点”的坐标; ②平移抛物线y =x 2﹣2x ,使所得新抛物线的顶点 B 是该抛物线的“不动点”,其对称轴 与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

2019年中考二次函数压轴题整理

中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 平行四边形类 3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.

(1)分别求出直线AB和这条抛物线的解析式. (2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积. (3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由. 4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O. (1)一抛物线经过点A′、B′、B,求该抛物线的解析式; (2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由. (3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质. 5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上. (1)求抛物线顶点A的坐标; (2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;

初中数学二次函数经典测试题及答案

初中数学二次函数经典测试题及答案 一、选择题 1.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当 2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲 B .乙 C .丙 D .丁 【答案】B 【解析】 【分析】 利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】 解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得 01442b c b c =-+?? =++? 解得:13 23b c ? =????=-?? ∴二次函数的解析式为:2 21212533636 ??=+-=+ ???-y x x x ∴当x=16-时,y 的最小值为25 36 -,与丙的结论矛盾,故假设不成立,故本选项不符合题意; B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()2 13y x =-+ 当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意; C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得 1 2 01b b c ?-=???=-+? 解得:23b c =-??=-?

∴223y x x =-- 当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()2 13y x =-+ 当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】 此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键. 2.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( ) A .-12<t ≤3 B .-12<t <4 C .-12<t ≤4 D .-12<t <3 【答案】C 【解析】 【分析】 根据给出的对称轴求出函数解析式为y =-x 2?2x +3,将一元二次方程-x 2+bx +3?t =0的实数根看做是y =-x 2?2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解. 【详解】 解:∵y =-x 2+bx +3的对称轴为直线x =-1, ∴b =?2, ∴y =-x 2?2x +3, ∴一元二次方程-x 2+bx +3?t =0的实数根可以看做是y =-x 2?2x +3与函数y =t 的交点, ∵当x =?1时,y =4;当x =3时,y =-12, ∴函数y =-x 2?2x +3在﹣2<x <3的范围内-12<y≤4, ∴-12<t≤4, 故选:C . 【点睛】 本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键. 3.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )

初中数学二次函数动点问题

函数性问题专题—动点问题 函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的综合性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.以函数为背景的综合性问题往往都可归结为动点性问题,我们把它归纳为以下七种题型(附例题) 一、因动点而产生的面积问题 例1:如图10,已知抛物线P :y =ax 2 +bx +c (a ≠0 与x 轴交于A 、B 两点(点A 在x 轴的正半轴上,与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下: (1 求A 、B 、C 三点的坐标; (2 若点D 的坐标为(m ,0 ,矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围; (3 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM =k ·DF ,若点M 不在抛物线P 上,求k 的取值范围. 若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2、(3小题换为下列问题解答(已知条件及第(1小题与上相同,完全正确解答只能得到5分: (2 若点D 的坐标为(1,0 ,求矩形DEFG 的面积 . 例2:如图1,已知直线

12 y x =-与抛物线2 164 y x =- +交于A B ,两点. (1)求A B ,两点的坐标; (2)求线段A B 的垂直平分线的解析式; (3)如图2,取与线段A B 端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线A B 动点P 将与A B ,构成无数个三角形,这些三角求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.图2 图1 图10 第-2-页共4页 例3:如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODE F ∽矩形ABCO ,其相似比为1 : 4,矩形ABCO 的边 AB=4,BC=4

全国中考二次函数压轴题集锦(附详细答案)

1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4, 抛物线y=x2+bx+c经过A,B两点. (1)求抛物线的解析式; (2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于 点F,当线段EF的长度最大时,求点E、F的坐标; (3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由. 2.如图,关于x的二次函数y=x2+b x+c的图象与x轴交于点A(1,0)和点B,与y轴交于点 C(0,3),抛物线的对称轴与x轴交于点D. (1)求二次函数的表达式; (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积. 3.如图,已知二次函数y=ax2+b x+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2) 三点. (1)求该二次函数的解析式; (2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标; (3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值. 4.如图1,已知二次函数y=ax2+b x+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A (4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.

二次函数典型例题50题

选择 1.二次函数y=(x-3)(x+2)的图象的对称轴是 ( ) A.x=3 B.x=-2 C.x=-12 D.x=1 2 2. 抛物线y=2x 2-5x+3与坐标轴的交点共有 ( ) A . 1个 B. 2个 C. 3个 D. 4个 3.二次函数y= a (x+m)2-m (a ≠0) 无论m 为什么实数,图象的顶点必在 ( ) A.直线y=-x 上 B. 直线y=x 上 C.y 轴上 D.x 轴上 4. 如图2,抛物线 ,OA=OC ,下列关系中正确的是 ( ) A .ac+1=b B .ab+1=c C .bc+1=a D .b a +1=c 5.如图6,是二次函数的图象在x 轴上方的一部分,若这段图象与x 轴所围成的阴影部分面积为S ,则S 取值最接近( ). A.4 B.16 3 C.2π D.8 6.如图7,记抛物线 2 1y x =-+的图象与x 正半轴的交点为A ,将线段OA 分成n 等份,设分点分别为1P ,2P ,…1n P -,过每个分点作x 轴的垂线,分别与抛物线交于点 2 y ax bx c =+ +21 2 2y x =- +

1Q ,2Q ,…1n Q -,再记直角三角形11OPQ ,122PP Q 的面积分别为1S ,2S ,这样就有 21312n S n -=,22342n S n -= ,…;记121 n W S S S -=+++… ,当n 越来越大时,你猜想W 最 接近的常数是( ) A. 23 B. 12 C. 1 3 D.14 7.定义[]为函数 的特征数, 下面给出特征数为 [2m ,1 – m , –1– m] 的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(,); ② 当m > 0时,函数图象截x 轴所得的线段长度大于; ③ 当m < 0时,函数在x >时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( ) A. ①②③④ B. ①②④ C. ①③④ D. ②④ 8. (2010宿迁改编)如图11,在矩形ABCD 中, AB=4,BC=6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边线段 MP=A , 设直角三角板的另一直角边PN 与CD 相交于点Q .BP=x ,CQ=y ,那么y 与x 之间的函数图象大致是( ) ,,a b c 2 y ax bx c =++3138 23 41 C B A D

中考二次函数动点问题(含答案)

中考二次函数动点问题(含答案) 1.如图①,正方形的顶点的坐标分别为,顶点在第一象限.点从点出发,沿正方形按逆时针方 向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动.当点到达点时,两点同时停止 运动,设运动的时间为秒. (1)求正方形的边长. (2)当点在边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分 (如图②所示),求两点的运动速度. (3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标.(4)若点ABCD保持(2)中的速度不变,则点ABCD沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而增大;沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而减小.当点ABCD沿着这两边运动时,使ABCD的点ABCD有个. (抛物线ABCD的顶点坐标是. [解] (1)作轴于. , . . (2)由图②可知,点从点运动到点用了10秒. 又. 两点的运动速度均为每秒1个单位. (3)方法一:作ABCD轴于ABCD,则ABCD. ABCD ,即 ABCD . ABCD .ABCD .ABCD,

ABCD . 即 ABCD . ABCD ,且 ABCD , ABCD当 ABCD 时,ABCD有最大值. 此时 ABCD , ABCD点ABCD的坐标为 ABCD .(8分) 方法二:当ABCD时, ABCD . 设所求函数关系式为. 抛物线过点, . ,且, 当时,有最大值. 此时, 点的坐标为. (4). [点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。 . 2. 如图①,中,,.它的顶点的坐标为,顶点的坐标为,,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒. (1)求的度数. (2)当点在上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分,(如图②),求点的运动速度. (3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标. (4)如果点ABCD保持(2)中的速度不变,那么点ABCD沿ABCD边运动时,ABCD的大小随着时间ABCD的增大而增大;沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而减小,当点ABCD沿这两边运动时,使ABCD的点ABCD有几个?请说明理由. 解: (1)ABCD.

中考二次函数压轴题及答案

二次函数压轴题精讲 1.二次函数综合题 (1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项. (2)二次函数与方程、几何知识的综合应用 将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题 从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

例1. 已知:如图,在平面直角坐标系中,直线与x轴、y轴的交点分 别为A、B,将∠对折,使点O的对应点H落在直线上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线上是否存在点P,使得四边形为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线的交点为T,Q为线段上一点,直接写出﹣的取值范围.

2.如图,直线2与抛物线26(a≠0)相交于A(,)和B(4,m),点P是线 段上异于A、B的动点,过点P作⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△为直角三角形时点P的坐标.

相关主题
文本预览
相关文档 最新文档