当前位置:文档之家› 差分信号PCB布局的3大误区,不看后悔

差分信号PCB布局的3大误区,不看后悔

差分信号PCB布局的3大误区,不看后悔

差分信号PCB布局的3大误区,不看后悔

【导读】PCB 差分走线的设计中最重要的规则就是匹配线长,其它的规则都可以根据设计要求和实际应用进行灵活处理。同时为了弥补阻抗的匹配可以采用接收端差分线对之间加一匹配电阻。其值应等于差分阻抗的值。这样信号品质会好些。

误区一

认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认识还不够深入。虽然差分电路对于类似地弹以及其它可能存在于电源和地平面上的噪音信号是不敏感的。地平面的部分回流抵消并不代表差分电路就不以参考平面作为信号返回路径,其实在信号回流分析上,差分走线和普通的单端走线的机理是一致的,即高频信号总是沿着电感最小的回路进行回流,最大的区别在于差分线除了有对地的耦合之外,还存在相互之间的耦合,哪一种耦合强,那一种就成为主要的回流通路。

在PCB电路设计中,一般差分走线之间的耦合较小,往往只占10~20%的耦合度,更多的还是对地的耦合,所以差分走线的主要回流路径还是存在于地平面。当地平面发生不连续的时候,无参考平面的区域,差分走线之间的耦合才会提供主要的回流通路。尽管参考平面的不连续对差分走线的影响没有对普通的单端走线来的严重,但还是会降低差分信号的质量,增加EMI,要尽量避免。也有些设计人员认为,可以去掉差分走线下方的参考平面,以抑制差分传输中的部分共模信号,但从理论上看这种做法是不可取的,阻抗如何控制?不给共模信号提供地阻抗回路,势必会造成EMI辐射,这种做法弊大于利。

差分信号原理

差分信号(上) 我们中的大部分都能直观地理解信号是如何沿导线或走线传播的,即便我们也许对这种连接方式的名称并不熟悉——单端模式。术语“单端”模式将这种方式同至少其它两种信号传播模式区分开来:差模和共模。后面两种常常看起来更加复杂。 差模 差模信号沿一对走线传播。其中一根走线传送我们通常所理解的信号,另一根传送一个严格大小相等且极性相反(至少理论上如此)的信号。差分与单端 模式并不像它们乍看上去那样有很大的不同。记住,所有信号都有回路。一般地,单端信号从一个零电位,或地,电路返回。差分信号的每一分支都将从地电路返 回,除非因为每个信号都大小相 等且极性相反以至于返回电流完全抵消了(它们中没有任何一部分出现 在零电位或地电路上)。 尽管我不打算在专栏中就这个问题花太多时间,共模是指同时在一个(差分)信号的线对或者在单端走线和地上出现的信号。对我们来说这并不容易直观 地去理解,因为我们很难想象怎样才能产生这样的信号。相反通常我们不会产生共模信号。通常这些都是由电路的寄生环境或者从邻近的外部源耦合进电路产生的。 共模信号总是很“糟糕”,许多设计规则就是用来防止它们的发生。 差分走线 尽管看起来这样的顺序不是很好,我要在叙述使用差分走线的优点之前首先来讲述差分信号的布线规则。这样当我讨论(下面)这些优点时,就可以解释这些相关的规则是如何来支持这些优点的。 大部分时候(也有例外)差分信号也是高速信号。这样,高速设计规则通常也是适用的,尤其是关于设计走线使之看起来像是传输线的情况 。这意味着我们必须仔细地进行设计和布线,如此,走线的特征阻抗在沿线才能保持不变。 在差分对布线时,我们期望每根走线都与其配对走线完全一致。也就是说,在最大的可实现范围内,差分对中每根走线应该具有一致的阻抗与一致的长度。差分走线通常以线对的方式进行布线,线对的间距沿线处处保持不变。通常地,我们尽可能将差分对靠近布线。 差分信号的优点

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

共模和差模信号的定义及产生机理

共模和差模信号的定义及产生机理、电缆、绞线、变压器和扼流圈电磁干扰产生及其的抑制 1 引言 了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。变压器、 共模扼流圈和自耦变压器的端接法,对在局域网(LAN)和通信接口电路中减小共模干扰起关键作用。共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心的磁性界面的电磁兼容论点。本文的主要目的是阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引

起噪音发射。在介绍这些信号特点的同时,还介绍了抑制一般噪音常用的方法。 2 差模和共模信号 我们研究简单的两线电缆,在它的终端接有负载阻抗。每一线对地的电压用符号V1和V2来表示。差模信号分量是VDIFF,共模信号分量是VCOM,电缆和地之间存在的寄生电容是Cp。其电路如图1所示,其波形如图2所示。 2.1 差模信号

纯差模信号是:V1=-V2 (1) 大小相等,相位差是180° VDIFF=V1-V2 (2) 因为V1和V2对地是对称的,所以地线上没有电流流过。所有的差模电流(IDIFF)全流过负载。在以电缆传输信号时,差模信号是作为携带信息“想要”的信号。局域网(LAN)和通信中应用的无线收发机的结构中安装的都是差模器件。两个电压(V1+V2)瞬时值之和总是等于零。 2.2 共模信号 纯共模信号是: V1=V2=VCOM (3) 大小相等,相位差为0° V3=0 (4) 共模信号的电路如图3所示,

其波形如图4所示。 因为在负载两端没有电位差,所以没有电流流过负载。所有的共模电流都通过电缆和地之间的寄生电容流向地线。在以电缆传输信号时,因为共模信号不携带信息,所以它是“不想要”的信号。 两个电压瞬时值之和(V1+V2)不等于零。相对于地而言,每一电缆上都有变化的电位差。这变化的电位差就会从电缆上发射电磁波。 3 差模和共模信号及其在无屏蔽对绞线中的EMC 在对绞电缆线中的每一根导线是以双螺旋形结构相互缠绕着。流过每根导线的电流所产生的磁场受螺旋形的制约。流过对绞线中每一根导线的电流方向,决定每对导线发射噪音的程度。在每对

共模信号和差模信号

共模信号和差模信号 了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。变压器、共模扼流圈和自耦变压器的端接法,对在局域网(LAN)和通信接口电路中减小共模干扰起关键作用。共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心的磁性界面的电磁兼容论点。本文的主要目的是阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引起噪音发射。在介绍这些信号特点的同时,还介绍了抑制一般噪音常用的方法。 图1差模信号 图2差模信号的波形图 2差模和共模信号 我们研究简单的两线电缆,在它的终端接有负载阻抗。每一线对地的电压用符号V1和V2 来表示。差模信号分量是VDIFF,共模信号分量是VCOM,电缆和地之间存在的寄生电容是C p。其电路如图1所示,其波形如图2所示。

2.1差模信号 纯差模信号是:V1=-V2(1) 大小相等,相位差是180° VDIFF=V1-V2(2) 因为V1和V2对地是对称的,所以地线上没有电流流过。所有的差模电流(IDIFF)全流过负载。 在以电缆传输信号时,差模信号是作为携带信息“想要”的信号。局域网(LAN)和通信中应用的无线收发机的结构中安装的都是差模器件。两个电压(V1+V2)瞬时值之和总是等于零。 2.2共模信号 纯共模信号是: V1=V2=VCOM(3) 大小相等,相位差为0° V3=0(4) 共模信号的电路如图3所示,其波形如图4所示。 因为在负载两端没有电位差,所以没有电流流过负载。所有的共模电流都通过电缆和地之间的寄生电容流向地线。在以电缆传输信号时,因为共模信号不携带信息,所以它是“不想要”的信号。 图3共模信号

差分电路与单端电路的区别

差分信号与单端信号 一、基本区别 不说理论上的定义,说实际的单端信号指的是用一个线传输的信号,一根线没参考点怎么会有信号呢? easy,参考点就是地啊。也就是说,单端信号是在一跟导线上传输的与地之间的电平差那么当你把信号从A点传递到B点的时候,有一个前提就是A点和B点的地电势应该差不多是一样的,为啥说差不多呢,后面再详细说。差分信号指的是用两根线传输的信号,传输的是两根信号之间的电平差。当你把信号从A点传递到B点的时候,A点和B点的地电势可以一样也可以不一样但是A点和B点的地电势差有一个范围,超过这个范围就会出问题了。 二、传输上的差别 单端信号的优点是,省钱~方便~大部分的低频电平信号都是使用单端信号进行传输的。一个信号一根线,最后把两边的地用一根线一连,完事。缺点在不同应用领域暴露的不一样归结起来,最主要的一个方面就是,抗干扰能力差。首先说最大的一个问题,地电势差以及地一致性。大家都认为地是0V,实际上,真正的应用中地是千奇百怪变化莫测的一个东西我想我会专门写一些地方面的趣事。比如A点到B点之间,有那么一根线,用来连接两个系统之间的地那么如果这根线上的电流很大时,两点间的地电势可能就不可忽略了,这样一个信号从A的角度看起来是1V,从B的角度看起来可能只有0.8V了,这可不是一个什么好事情。这就是地电势差对单端信号的影响。接着说地一致性。实际上很多时候这个地上由于电流忽大忽小,布局结构远远近近地上会产生一定的电压波动,这也会影响单端信号的质量。差分信号在这一点有优势,由于两个信号都是相对于地的当地电势发生变化时,两个信号同时上下浮动(当然是理想状态下)差分两根线之间的电压差却很少发生变化,这样信号质量不久高了吗?其次就是传输过程中的干扰,当一根导线穿过某个线圈时,且这根线圈上通着交流电时,这根导线上会产生感应电动势~~好简单的道理,实际上工业现场遇到的大部分问题就是这么简单,可是你无法抗拒~如果是单端信号,产生多少,就是多少,这就是噪声你毫无办法。但是如果是差分信号,你就可以考虑拉,为啥呢,两根导线是平行传输的每根导线上产生的感应电动势不是一样吗,两个一减,他不久没了吗~确实,同样的情况下,传输距离较长时,差分信号具有更强的驱动能力、更强的抗干扰能力,同样的,当你传输的信号会对其他设备有干扰时,差分信号也比单端信号产生的信号相对小,也就是常说的EMI 特性。(EMI是Electro Magnetic Interference的缩写,即电磁干扰, 有传导干扰和辐射干扰两种。EMC是Electro magnetic compatibility的缩写,即电磁兼容性。意指设备所产生的电磁能量既不对其它设备产生干扰,也不受其他设备的电磁能量干扰的能力。) 三、使用时需要注意的 由于差分比单端有不少好处,在模拟信号传输中很多人愿意使用差分信号比如桥式应变片式力传感器,其输出信号满量程时有的也只有2mV 。如果使用单端信号传输,那么这个信号只要电源的纹波就能把他吃光。所以实际上,都是用仪表运方进行放大后,再进行处理。而仪表运方正是处理差分信号最有力的几个工具之一。但是,使用差分信号时,一定要注意一个问题,共模电压范围。也就是说,这两根线上的电压,相对于系统的地,还是不能太大。你传输0.1V的信号没问题,但是如果一根是1000.0 另外一根是1000.1,那就不好玩了问题在于,在很多场合下使用差分信号都是为了不让两个系统的地简单的共在一起更不能把差分信号中的一根直接接在本地系统的地上,那不白费尽吗?又成单端了,那么如何抑制共模电压呢?其实也挺简单的,将两根线都通过一个足够大的电阻,连接到系统的地上。这就像一

五款信号完整性仿真分析工具

SI 五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB 设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,An soft公司的仿真工具能够从三维场求解的角度出发,对PCB 设计的信号完整性问题进行动态仿真。 Ansoft 的信号完整性工具采用一个仿真可解决全部设计问题: Slwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何 数量的过孔和信号引线条构成。仿真结果采用先进的3D 图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿 (二)SPECCTRAQuest Cade nee的工具采用Sun的电源层分析模块: Cade nee Design System 的SpeeetraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI 。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer 可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

共模与差模完美解释

共模与差模 虽然我们在学习模电时经常提到关于共模和差模两个知识点,但是有时候总无法与实际电路结合起来,搞不清楚为什么要去抑制共模,为什么电平输入时一定会带入共模信号。特此在摘录网上大侠们的知识论点,争取把这个问题弄清楚。 共模信号与差模信号 最简单理解,共模信号和差模信号是指差动放大器双端输入时的输入信号。 共模信号:双端输入时,两个信号相同。 差模信号:双端输入时,两个信号的相位相差180度。 任何两个信号都可以分解为共模信号和差模信号。 设两路的输入信号分别为: A,B. m,n分别为输入信号A,B的共模信号成分和差模信号成分。 输入信号A,B可分别表示为:A=m+n;B=m-n 则输入信号A,B可以看成一个共模信号 m 和差模信号 n 的合成。 其中m=(A+B)/2;n=(A-B)/2。 我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。 就像初中时平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”……而共模、差模正是“输入信号”整体的属性,差分输入可以表示为 vi = (vi+, vi-) 也可以表示为 vi = (vic, vid) c 表示共模, d 表示差模。两种描述是完全等价的。只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。 运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比 CMRR)条件下允许的共模信号的范围。 显然,不存在“某一端”上的共模电压的问题。 但“某一端”也一样存在输入电压范围问题。而且这个范围等于共模输入电压范围。 道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。 对其它放大器,共模输入电压跟单端输入电压范围就有区别了。 例如对于仪放,差分输入不是0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。 牛人的形象比喻:两只船,分别站着一个MM和一个GG. MM和GG手拉着手. 当船上下波动时,MM才能感觉到GG变化的拉力。这两个船之间的高度差就是差模信号。 当水位升高或者降低时,MM并不能感觉到这个拉力. 这两个船离水底的绝对高度就是共模信号。

差分信号和单端信号概述.

差分信号与单端信号概述 差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。 b.能有效抑制EMI(电磁干扰),同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。 c. 时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。 1、共模电压和差模电压 我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。就像初中时平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”…… 而共模、差模正是“输入信号”整体的属性,差分输入可以表示为 vi = (vi+, vi-)也可以表示为vi = (vic, vid)。c 表示共模,d 表示差模。两种描述是完全等价的。只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。 运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比 CMRR)条件下允许的共模信号的范围。 显然,不存在“某一端”上的共模电压的问题。但“某一端”也一样存在输入电压范围问题。而且这个范围等于共模输入电压范围。 道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。对其它放大器,共模输入电压跟单端输入电压范围就有区别了。例如对于仪放,差分输入不是 0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。 可以通俗的理解为: 两只船静止在水面上,分别站着两个人,A和B。 A和B相互拉着手。当船上下波动时,A才能感觉到B变化的拉力。这两个船之间的高度差就是差模信号。当水位上升或者下降时,A并不能感觉到这个拉力。这两个船离水底的绝对高度就是共模信号。 于是,我们说A和B只对差模信号响应,而对共模信号不响应。当然,也有一定的共模范围了,太低会沉到水底,这样船都无法再波动了。太高,会使会水溢出而形成水流导致船没法在水面上停留。理论上,A 和B应该只是对差模有响应。 但实际上,由于船上下颠簸,A和B都晕了,明明只有共模,却产生了幻觉:似乎对方相对自己在动。这就说明,A和B内力较弱,共模抑制比不行啊。说笑了啊,不过大致也就是这个意思。 当然,差模电压也不可以太大,否则会导致把A和B拉开。

DDR3信号完整性与电源完整性设计

DesignCon 2011 Signal and Power Integrity for a 1600 Mbps DDR3 PHY in Wirebond Package June Feng, Rambus Inc. [Email: jfeng@https://www.doczj.com/doc/c59138318.html,] Ralf Schmitt, Rambus Inc. Hai Lan, Rambus Inc. Yi Lu, Rambus Inc.

Abstract A DDR3 interface for a data rate of 1600MHz using a wirebond package and a low-cost system environment typical for consumer electronics products was implemented. In this environment crosstalk and supply noise are serious challenges and have to be carefully optimized to meet the data rate target. We are presenting the signal and power integrity analysis used to optimize the interface design and guarantee reliable system operation at the performance target under high-volume manufacturing conditions. The resulting DDR3 PHY was implemented in a test chip and achieves reliable memory operations at 1600MHz and beyond. Authors Biography June Feng received her MS from University of California at Davis, and BS from Beijing University in China. From 1998 to 2000, she was with Amkor Technology, Chandler, AZ. She was responsible for BGA package substrate modeling and design and PCB characterization. In 2000, she joined Rambus Inc and is currently a senior member of technical staff. She is in charge of performing detailed analysis, modeling, design and characterization in a variety of areas including high-speed, low cost PCB layout and device packaging. Her interests include high-speed interconnects modeling, channel VT budget simulation, power delivery network modeling and high-frequency measurements. Ralf Schmitt received his Ph.D. in Electrical Engineering from the Technical University of Berlin, Germany. Since 2002, he is with Rambus Inc, Los Altos, California, where he is a Senior Manager leading the SI/PI group, responsible for designing, modeling, and implementing Rambus multi-gigahertz signaling technologies. His professional interests include signal integrity, power integrity, clock distribution, and high-speed signaling technologies. Hai Lan is a Senior Member of Technical Staff at Rambus Inc., where he has been working on on-chip power integrity and jitter analysis for multi-gigabit interfaces. He received his Ph.D. in Electrical Engineering from Stanford University, M.S. in Electrical and Computer Engineering from Oregon State University, and B.S. in Electronic Engineering from Tsinghua University in 2006, 2001, and 1999, respectively. His professional interests include design, modeling, and simulation for mixed-signal integrated circuits, substrate noise coupling, power and signal integrity, and high-speed interconnects. Yi Lu is a senior systems engineer at Rambus Inc. He received the B.S. degree in electrical engineer and computer science from U.C. Berkeley in 2002 with honors. In 2004, he received the M.S. degree in electrical engineering from UCLA, where he designed and fabricated a 3D MEMS microdisk optical switch. Since joining Rambus in 2006, he has been a systems engineer designing various memory interfaces including XDR1/2 and DDR2/3.

差分信号与单端信号

差分信号与单端信号(转) 一、基本区别 不说理论上的定义,说实际的 单端信号指的是用一个线传输的信号,一根线没参考点怎么会有信号呢?easy,参考点就是地啊。也就是说,单端信号是在一跟导线上传输的与地之间的电平差 那么当你把信号从A点传递到B点的时候,有一个前提就是A点和B点的地电势应该 差不多是一样的,为啥说差不多呢,后面再详细说。 差分信号指的是用两根线传输的信号,传输的是两根信号之间的电平差。 当你把信号从A点传递到B点的时候,A点和B点的地电势可以一样也可以不一样 但是A点和B点的地电势差有一个范围,超过这个范围就会出问题了。 二、传输上的差别 单端信号的优点是,省钱~方便~ 大部分的低频电平信号都是使用单端信号进行传输的。一个信号一根线,最后把两边的地用一根线一连,完事。 缺点在不同应用领域暴露的不一样 归结起来,最主要的一个方面就是,抗干扰能力差。 首先说最大的一个问题,地电势差以及地一致性。 大家都认为地是0V,实际上,真正的应用中地是千奇百怪变化莫测的一个东西 我想我会专门写一些地方面的趣事。 比如A点到B点之间,有那么一根线,用来连接两个系统之间的地 那么如果这根线上的电流很大时,两点间的地电势可能就不可忽略了,这样一个信号 从A的角度看起来是1V,从B的角度看起来可能只有0.8V了,这可不是一个什么好事情 这就是地电势差对单端信号的影响。 接着说地一致性。实际上很多时候这个地上由于电流忽大忽小,布局结构远远近近 地上会产生一定的电压波动,这也会影响单端信号的质量。 差分信号在这一点有优势,由于两个信号都是相对于地的 当地电势发生变化时,两个信号同时上下浮动(当然是理想状态下) 差分两根线之间的电压差却很少发生变化,这样信号质量不久高了吗? 其次就是传输过程中的干扰,当一根导线穿过某个线圈时,且这根线圈上通着交流电 时,这根导线上会产生感应电动势~~好简单的道理,实际上工业现场遇到的大部分 问题就是这么简单,可是你无法抗拒~ 如果是单端信号,产生多少,就是多少,这就是噪声你毫无办法。 但是如果是差分信号,你就可以考虑拉,为啥呢,两根导线是平行传输的 每根导线上产生的感应电动势不是一样吗,两个一减,他不久没了吗~ 确实,同样的情况下,传输距离较长时,差分信号具有更强的驱动能力、更强

详解差模电压和共模电压-简单易懂

差模电压与共模电压 我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。 就像平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”…… 而共模、差模正是“输入信号”整体的属性,差分输入可以表示为 vi = (vi+, vi-) 也可以表示为 vi = (vic, vid) c 表示共模, d 表示差模。两种描述是完全等价的。只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。 运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比 CMRR)条件下允许的共模信号的范围。 显然,不存在“某一端”上的共模电压的问题。但“某一端”也一样存在输入电压范围问题。而且这个范围等于共模输入电压范围。 道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。 对其它放大器,共模输入电压跟单端输入电压范围就有区别了。例如对于仪放,差分输入不是 0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。

可以通俗的理解为: 两只船静止在水面上,分别站着两个人,A和B。 A和B相互拉着手。当船上下波动时,A才能感觉到B变化的拉力。这两个船之间的高度差就是差模信号。 当水位上升或者下降时,A并不能感觉到这个拉力。 这两个船离水底的绝对高度就是共模信号。 于是,我们说A和B只对差模信号响应,而对共模信号不响应。当然,也有一定的共模范围了,太低会沉到水底,这样船都无法再波动了。太高,会使会水溢出而形成水流导致船没法在水面上停留 理论上,A和B应该只是对差模有响应 但实际上,由于船上下颠簸,A和B都晕了,明明只有共模,却产生了幻觉:似乎对方相对自己在动。这就说明,A和B内力较弱,共模抑制比不行啊。 当然,差模电压也不可以太大,否则会导致把A和B拉开。 主要是 “共模是两输入端的算术平均值,差模是直接的同相端与反相端的差值”。 共模电压应当是从源端看进来时,加到放大电路输入端的共同值,差模则是加到放大电路两个输入端的差值。 共模电压有直流的,也有交流的。直流的称为直流共模抑制(比),交流的称为交流共模抑制(比),统称共模抑制(比)。一般

差分信号在通信系统设计中有什么优势

差分信号在通信系统设计中有什么优势 上网日期: 2010年11月01日已有[ 2 ]个评论打印版发送查询订阅 关键字:差分信号通信系统RF 通信系统设计的主要挑战之一是如何成功捕获高保真度信号。为了避免强干扰效应、信号失真和灵敏度降低,蜂窝通信系统必须满足蜂窝标准的严格要求,比如具有高动态范围、高输入线性度和低噪声的码分多址(CDMA)和宽带CDMA(W-CDMA)。 过去,一些实践性问题常导致完全差分信号链的性能优势被单端信号链所掩盖,但随着集成射频电路技术和高性能差分射频构建模块的不断发展,如今差分架构已能应用于高性能接收机设计中。本文将讨论差分信号链在3G和4G无线应用中的性能和优点。 接收机信号链 图1是传统超外差接收机的拓扑结构,它很好地描述了差分信号链相对单端信号链的优势。不管采用什么拓扑,我们的目标就是将所需信号成功发送到ADC端进行数字转化。信号路径由以下几个射频模块组成:天线、滤波器、低噪声放大器(LNA)、混频器、ADC驱动放大器和ADC。 图1:接收机在不断发展,越来越多的接收机将使用差分元件。这个趋势开始于ADC,并将逐渐向信

号链上游移动。先进的集成射频电路技术和差分射频构建模块的扩充允许差分架构应用于高性能接收机设计。 LNA是天线之后的第一个模块,用于放大热噪声之上的信号。这级电路中的噪声非常重要,因为它将决定系统灵敏度,而放大可以确保随后的混频器和放大器不会增加显著的噪声。沿信号路径往后是带通滤波器,用于抑制带外信号,减少由其它电路级引起的失真和噪声。 跟随LNA之后,混频器频率转换感兴趣的信号,将高频射频信号下变频至频率更低、更易于管理的中频信号(IF)。ADC驱动放大器和抗混滤波器(AAF)对将要数字化的信号进行预处理。驱动器提供增益,AAF抑制第一奈奎斯特区外的信号,包括将会发送给ADC的噪声和带外杂散分量。在模拟信号路径末端,由ADC完成基带信息的数字转换。 理想情况下,只有感兴趣的信号(图1左边的蓝色图形)才会被传送到数字域。需要使用一个鲁棒系统来处理这个可能很小的目标信号,同时抑制可能较大的干扰信号。鲁棒系统的设计,需要具有高灵敏度、输入线性、选择性和抗噪声性能。根据具体的应用和架构,性能指标可能有所变化,但在大多数通信系统中,像失真、本底噪声和动态范围等都是通常要考虑的要素。输入三阶截取点(IP3)和1dB 压缩点(P1dB)必须高。其它需要考虑的因素还包括低成本、低功耗和小尺寸。 差分优势 图2比较了单端信号和差分信号之间的基本区别。这里使用了一个通用增益模块,但相同的概念可应用于信号链中的混频器和其它器件。在比较单端和差分信号时,要将系统级性能评估标准牢记在心,以实现良好的总体接收机设计。

《信号完整性与电源完整性的仿真分析与设计》

信号完整性与电源完整性的仿真分析与设计 1简介 信号完整性是指信号在通过一定距离的传输路径后在特定接收端口相对指定发送端口信号的还原程度。在讨论信号完整性设计性能时,如指定不同的收发参考端口,则对信号还原程度会用不同的指标来描述。通常指定的收发参考端口是发送芯片输出处及接收芯片输入处的波形可测点,此时对信号还原程度主要依靠上升/下降及保持时间等指标来进行描述。而如果指定的参考收发端口是在信道编码器输入端及解码器输出端时,对信号还原程度的描述将会依靠误码率来描述。 电源完整性是指系统供电电源在经过一定的传输网络后在指定器件端口相对该器件对工作电源要求的符合程度。同样,对于同一系统中同一个器件的正常工作条件而言,如果指定的端口不同,其工作电源要求也不同(在随后的例子中将会直观地看到这一点)。通常指定的器件参考端口是芯片电源及地连接引脚处的可测点,此时该芯片的产品手册应给出该端口处的相应指标,常用纹波大小或者电压最大偏离范围来表征。 图一是一个典型背板信号传输的系统示意图。本文中“系统”一词包含信号传输所需的所有相关硬件及软件,包括芯片、封装与PCB板的物理结构,电源及电源传输网络,所有相关电路实现以及信号通信所需的协议等。从设计目的而言,需要硬件提供可制作的支撑及电信号有源/无源互联结构;需要软件提供信号传递的传输协议以及数据内容。

图1 背板信号传输的系统示意图 在本文的以下内容中,将会看到由于这些支撑与互联结构对电信号的传输呈现出一定的频率选择性衰减,从而会使设计者产生对信号完整性及电源完整性的担忧。而不同传输协议及不同数据内容的表达方式对相同传输环境具备不同适应能力,使得设计者需要进一步根据实际的传输环境来选择或优化可行的传输协议及数据内容表达方式。 为描述方便起见以下用“完整性设计与分析”来指代“信号完整性与电源完整性设计与分析”。 2 版图完整性问题、分析与设计 上述背板系统中的硬件支撑及无源互联结构基本上都在一种层叠平板结构上实现。这种层叠平板结构可以由三类元素组成:正片结构、负片结构及通孔。正片结构是指该层上的走线大多为不同逻辑连接的信号线或离散的电源线,由于在制版光刻中所有的走线都会以相同图形的方式出现,所以被称为正片结构,有时也被称为信号层;负片结构则是指该层上基本上是相同逻辑连接的一个或少数几个连接(通常是电源连接或地连接),通常会以大面积敷铜的方式来实现,此时光刻工艺中用相反图形来表征更加容易,所以被称为负片结构,有时也称为平面层(细分为电源平面层和地平面层);而通孔用来进行不同层之间的物理连接。目前的制造工艺中,无论是芯片、封装以及PCB 板大多都是在类似结构上实现。 1001010… -0.50.00.51.01.5 -1.0 2.0V c o r e , V

差模滤波器和共模滤波器

共模和差模信号与滤波器 山东莱芜钢铁集团动力部周志敏(莱芜271104) 1概述 随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。抑制电磁干扰采用的技术主要包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。而干扰源的传播途径分为传导干扰和辐射干扰。传导噪声的频率范围很宽,从10kHz~30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。 2差模信号和共模信号 差模信号又称为常模、串模、线间感应和对称信号等,在两线电缆传输回路,每一线对地电压用符号V1和V2来表示。差模信号分量是VDIFF。纯差模信号是:V1=-V2;其大小相等,相位差180°;VDIFF=V1-V2,因为V1和V2对地是对称的,所以地线上没有电流流过,差模信号的电路如图1所示。所有的差模电流(IDIFF)全流过负载。差模干扰侵入往返两条信号线,方向与信号电流方向一致,其一种是由信号源产生,另一种是传输过程中由电磁感应产生,它和信号串在一起且同相位,这种干扰一般比较难以抑制。 共模信号又称为对地感应信号或不对称信号,共模信号分量是VCOM,纯共模信号是:VCOM=V1=V2;大小相等,相位差为0°;V3=0。共模信号的电路如图2所示。干扰信号侵入线路和接地之间,干扰电流在两条线上各流过二分之一,以地为公共回路;原则上讲,这种干扰是比较容易消除的。在实际电路中由于线路阻抗不平衡,使共模信号干扰会转化为不易消除的串扰干扰。 3滤波器 滤波器可以抑制交流电源线上输入的干扰信号及信号传输线上感应的各种干扰。滤波器可分为交流电源滤波器、信号传输线滤波器和去耦滤波器。交流电源滤波器大量应用在开关电源的系统中,既可以抑制外来的高频干扰,还可以抑制开关电源向外发送干扰。来自工频电源或雷击等瞬变干扰,经电源线侵入电子设备,这种干扰以共模和差模方式传播,可用电源滤波器滤除。在滤波电路中,有很多专用的滤波元件(如铁氧体磁环),它们能够改善电路的滤波特性,恰当地设计和使用滤波器是抗干扰技术的重要手段。例如开关电源通过传导和辐射出的噪声有差模和共模之分,差模噪声采用π型滤波器抑制,如图3(a)所示。图3(a)中,LD为滤波扼流圈。若要对共模噪声有抑制能力,应采用如图3(b)所示的滤波电路。图3(b)中,LC为滤波扼流圈。由于LC的两个线圈绕向一致,当电源输入电流流过LC时,所产生的磁场可以互相抵消,相当于没有电感效应,因此,它使用磁导率高的磁芯。LC对共模噪声来说,相当于一个大电感,能有效地抑制共模传导噪声。开关电源输入端分别对地并接的电容CY对共模噪声起旁路作用。共模扼流圈两端并联的电容CX对共模噪声起抑制作用。R为CX 的放电电阻,它是VDE 0806和IEC 380安全技术标准所推荐的。图3(b)中各元件参数范围为:CX=0.1μF~2μF; CY=2.0nF~33nF;LC=几~几十mH,随工作电流不同而取不同的参数值,如电流为25A时LC=1.8mH;电流为0 3A时,LC=47mH。另外在滤波器元件选择中,一定要保证输入滤波器的谐振频率低于开关电源的工作频率。

选用单端探头还是差分探头

选用单端探头还是差分探头 作者:Mike McTigue 新的有源探头体系结构使GHz级以上的千兆信号的完整性测量变得更加容易、精度也更高,但这只对于了解探头的工作原理和探头的两种拓扑结构之间优劣的用户而言的。  宽带宽示波器和有源探头的用户历来可以在单端探头和差分探头之间作出选择。测量单端信号(对地参考电压),你使用的是单端探头,而测量差分信号(正电压对负电压),你使用的是差分探头。那么,为什么你不能只买差分探头来测量差分信号和单端信号呢?实际情况是,你可以这样做,但又存在实实在在的理由使你不能这么做。与单端探头相比,差分探头价格较贵,使用不大方便,带宽也较窄。  新的探头体系结构,如Agilent 113X 系列的体系结构可以探测差分信号,也可以探测单端信号,而且基本上使人们不反对使用差分探头。这些探头是通过可互换的端头来提供这种能力的,而各种可互换的头经过优化,可以点测、插入插座和焊入探头。这种结构给有源探头的用户提出了新问题:测量单端信号,到底该用差分探头还是该用单端探头?答案是应由性能和可用性两个方面的权衡结果来定夺。  只要使用Agilent 1134A型7 GHz 探头放大器的简化模型(图1) 和已测数据以及焊入的差分和单端探头端头(图2),你就可以比较它们的带宽、保真度、可用性、共模抑制特性、可重复性和尺寸大小等方面的差别。这些探头端头的物理连线几何形状相同,所以它们之间的主要性能差别是由差分拓扑结构和单端拓扑结构引起的。探头性能测量是采用Agilent E2655A 纠偏/性能验证夹具和Agilent 8720A 20 GHz 向量网络分析仪或者Agilent Infiniium DCA (数字通信分析仪)采样示波器进行的。 图1 差分探头和单端探头的简化模型的主要区别在于,差分探头的地线电感是与放大器输入端串联的,而不

相关主题
文本预览
相关文档 最新文档