当前位置:文档之家› 有机电致发光器件(OLED)材料的发展(精)

有机电致发光器件(OLED)材料的发展(精)

有机电致发光器件(OLED)材料的发展

MG0424065 颜黎均

一、引言

1987年,美国柯达公司的C. T. Wang等人以8-羟基喹啉铝(Alq3)作为发光层,得到了有实用工业化价值的高亮度有机电致发光器件。在过去的15年中,有机电致发光显示技术得到了长足的发展。各种发光材料也陆续研制出来,包括了有机小分子,比如Tang等将有机小分子DCM掺杂到Alq3中首次实现了红色有机电致发光;有机金属配合物,最典型的就是Alq3;高分子聚合物,1993年,Friend等合成CN-PPV。

O

NC CN

N

DCM

N

O

Al

N

O

N

O

Alq3

NC

*

C6H13O

OC6H13

OC6H13

C6H13O

CN

*

n

CN-PPV

Scheme 1

二、基本结构及发光原理

由于有机材料多数都是绝缘的,造成只能有极小的电流能够通过。这个电流量可以用空间电荷的限制(space-charge-limited,SCL)电流来表征。

有机电致发光器件的最简单的结构就是将有机发光体夹在两个能射入电流的电极中间;为了能够在较低的电压下得到足够大的SCL电流,就需要器件结构尽量的薄,一般使用真空蒸镀法将有机材料在真空环境下蒸镀成厚度为10-0.1微米的有机薄膜。

最常见的有机电致发光器件是由柯达公司最先提出的基本的二层结构

(Device-A ),这里镁银合金作为整个器件的负极,金属氧化物(ITO )作为正极,中间夹有电子传输层和空穴传输层;发光体能够输送电子,可以将发光体蒸镀到电子传输层中。这样,器件从上到下依次为玻璃/ITO/空穴传输层/电子传输层(发光体)/Mg-Ag 。电子从镁银合金处进入电子传输层,同时正电荷从ITO 进入空穴传输层,电子传输层与空穴传输层的交界处偏向电子传输层的界面(图中虚线范围内)上结合为激子,激子的能量转移到发光体分子,使得发光体分子中的电子被激发到激发态,电子往低能级跃迁时就可以发光。这里空穴传输层由于不能传输电子,对于阻碍电子也起到了一定作用。相反,对于不能有效传输电子、但是可以传输正电荷的发光体可以使用Device-B 这样的器件结构。与Device-A 中电激发光局限在一定的环带内不同的是,Device-B 中当电子与正电荷在有机接触层附近结合时所产生的激发光可以扩散到整个空穴传输层,表现为整个空穴传输层均在发光。

Scheme 2

OLED 的基本发光机理其实就是上面所形成的激子的能量转移到发光分子中,使得发光分子的电子被激发至不稳定激发态,在电子的去激过程中就能发出可见光。但是根据电子自旋规则的要求,在电子从激发态跃迁至基态的过程中,只有单重态到单重态的跃迁(S 1→S 0、S 2→S 0)才是允许的;只有有机分子的单重态部分能够通过辐射跃迁发射荧光,而这部分能量只是空穴与电子合成的激子传给有机分子的能量的一小部分,大部分的能量通过振动驰豫、热效应等形式耗

ITO 玻璃Mg/Ag 电子传输层空穴传输层发光体

Device-B

ITO 玻璃Mg/Ag 电子传输层空穴传输层发光体Device-A

散了;根据理论计算,发光分子所放出的荧光只有25%的最大量子效率。这也就造成的早期的有机电致发光器件的发光效率普遍不高。

Scheme 3

随着对金属有机配合物作为OLED材料的性能、机理的研究,发现金属有机配合物材料分子的电子受到激子能量而激发至激发态后的跃迁辐射能够释放出大部分能量,放出磷光,理论上能够达到100%的量子效率。进一步的研究发现,由于金属有机配合物分子中存在重金属元素,它所具有强的自旋轨道耦合效应导致单重态和三重态的交叉,发生了系间窜跃(如S1→T1),以致激发态能量均能转移到分子的三重态上,三重态至基态(T1→S0)的跃迁几率增大,磷光效应增强。这就说明了金属有机配合物能够高效的利用激发态的三重态能量,大幅度的提高器件的发光效率。目前,开发金属有机配合物材料成为了OLED研究中的一个热点。

三、有机金属配合物作为OLED材料的发展现状

有机金属配合物材料相比于OLED的其他发光材料来说不仅具有高效的发光效率的优点,而且它的发光波长更是覆盖了整个可见光领域,尤其在目前发展相对滞后的三原色之一的高效红光材料方面,有机金属配合物材料的较长的发光波长使得它成为了该方面具有更大的优势。

1.8-羟基喹啉铝及其衍生物

8-羟基喹啉铝及其衍生物形成的金属螯合物,是最早用于有机EL的金属配合物,也是目前最有效的OLED 材料之一。采用Alq 3作为发光层的OLED 器件发射绿色光。谱峰在520nm 左右。它的类似物很多,大多在其配体上作修饰以希改进性能。比如引入的修饰取代基包括甲基(Almq 3)、卤素(如Alq 3_Cl )、硝基、氰基等。引入取代基的目的一般是为了提高材料的成膜性、热稳定性以延长器件的寿命,而它们的发光波长由于是由铝原子的跃迁波长决定的,所以一般没有太大的改变。

N

O Al

N O

N

O Alq 3_Cl

N

O

Al

N O

N

O Almq 3

CH 3

H 3C

CH 3

Cl Cl

Cl

Scheme 4

2. Schiff 碱类金属配合物

这两类Schiff 碱类金属配合物,它们的发光波长都在蓝光区域,谱峰在458—470nm 之间。实验证明,该类发光材料具有较好的电子传输性能。

O

HC N

O

CH

N Zn

R

O

HC N

R 1

O

CH N R 2Zn

Scheme 5

3. 金属铂和铱的配合物

这一类材料就是前面所述的具有高效磷光发射的典型有机金属配合物材料。其发光源于重金属离子到配体的电荷转移过程(metal-to-ligand charge transport ,MLCT),存在单重态与三重态的交叉,单重态的能量能够转移到三重态上,以致单重态的发光很弱,而三重态的跃迁几率增大,磷光效应增强,器件具有高效的发光效率;同时,由于铱的配合物的磷光寿命均很短,可以显著的减小由于随着三重态激子的增加而导致的三重态激子之间的湮灭现象;而且铱配合

物的发光波长大多位于可见光的红光范围内,是目前设计红色有机发光器件的主要材料。

Cheng 等设计合成的铱配合物系列器件的发射均分布在610—612nm ,其中最大亮度是73870cd/m 2(12.8V ),最大EQE 为12.4%,是目前报道的红色磷光器件中亮度和效率均最高的器件,充分证明了铱配合物在设计红色磷光器件中的优良性能。

N

N

R Ir

O

Scheme 6

其它的常用金属配合物还有稀土铕(Eu )、钌(Ru )、锇(Os )等,也能得到很有应用前景的OLED 材料。一般来说,金属有机配合物由于有无机金属离子的存在,使得配合物具有了无机物的优点,比如良好的稳定性、结构稳定、易分离提纯;尤其是热稳定性这一点,克服了有机小分子物质用作OLED 材料时在蒸镀这一步骤中容易被热分解的缺点。

四、参考文献

1.Tang C W ,Vanslyke S A ,Appl Phys Lett ,1987,51,913

2.陈金鑫 石建民 邓青云,The Chinese CHEM. SOC. TAIPEI ,1996,54,125 3.陈金鑫 郑荣安,The Chinese CHEM. SOC. TAIPEI ,2002,60,135 4.孙晓波 刘云圻 于贵 赵哲辉 朱本道,科学通报,2003,48,2402

5.Jiun-Pey Duan ,Pei-Pei Sun ,Chien-Hong Cheng ,Adv. Mater ,2003,15,224 6.Tang C W ,Vanslyke S A ,Chen C H ,J Appl Phys ,1989,65,3610 7.Chen X ,Liao J L ,Liang Y M ,et al.,J Am Chem Soc ,2003,125,636 8.Pomestcheako I E ,Luman C R ,Hissler M , et al., Inorg Chem ,2003,42,1394

9.Baldo M A ,Thompson M E ,Forrest S R ,et al.,Nature ,1998,395,151 10.姚华文 汪光裕,激光与光电子学进展,2003,40,31

有机电致发光材料与器件

有机电致发光材料与器件 有机电致发光器件发展及展望综述 有机电致发光器件发展及展望综述 中文摘要 有机电致发光器件(organic light-emitting device, OLED)目前已成为平板信息显示领域的一个研究热点。OLED具有平板化、自发光、色彩丰富、响应快、视野宽及易于实现超薄轻便等优点,被认为是未来最有可能替代液晶显示器和等离子显示器的一种新技术,同时可以用做照明和背光源。但是,其制作成本高、良品率低等不足有待解决。OLED显示技术与传统的LCD显示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且OLED显示屏幕可以做得更轻更薄,可视角度更大,并且能够显著节省电能。 为了形像说明OLED构造,可以将每个OLED单元比做一块汉堡包,发光材料就是夹在中间的蔬菜。每个OLED的显示单元都能受控制地产生三种不同颜色的光。OLED与LCD一样,也有主动式和被动式之分。被动方式下由行列地址选中的单元被点亮。主动方式下,OLED单元后有一个薄膜晶体管(TFT),发光单元在TFT驱动下点亮。主动式的OLED比较省电,但被动式的OLED显示性能更佳。 关键词有机电致发光器件器件性能结构优化空穴阻挡 - I -

Organic Light-Emitting Devices Performance Overview tianjia (Class0413 Grade2006 in College of Information&Technology,Jilin Normal University, Jilin Siping 136000) Directive Teacher: jiang wen long(professor) Abstract Electroluminescent devices (organic light-emitting device, OLED) flat panel information display has become a hot topic in the field. OLED technology has a flat, self-luminous, rich colors, fast response, wide horizons and easy to implement the advantages of ultra-thin light, is considered the next best possible alternative to liquid crystal displays and plasma displays, a new technology while can be used as lighting and backlight. However, its high production cost, low rate of less than good product to be resolved. OLED display technology with the traditional LCD display in different ways, no backlight, with a very thin coating of organic materials and glass substrate, when a current is passed, these organic materials will be light. OLED display screen can be done but lighter and thinner, larger viewing angle, and can significantly save power. To image shows OLED structure, each OLED element can be likened to a hamburger, light-emitting material is sandwiched in between

有机电致发光显示器件基本原理与进展

有机电致发光显示器件基本原理与进展 副标题:有机电致发光显示器件基本原理与进展 发表日期: 2006-2-14 21:33:35 作者:佚名点击数5224 摘要: 本文对有机电致发光显示器件的发展历史,器件结构、工作特征、获得彩色显示的方法以及所具有的优缺点、发展现状和趋势等都做了简要的概括。详细比较了小分子OLED与聚合物PLED、OLED与LCD性质上的比较,对OLED显示的发光机理进行了详细的综述。此外,对获得彩色显示的无源驱动电路和有源驱动电路的结构进行了总结,认为有源驱动将是最终发展趋势。最后总结了国内外OLED技术的发展状况。 关键词:小分子有机电致发光有机聚合物电致发光无源驱动有源驱动 (作者:姚华文,上海华嘉光电技术有限公司,上海市嘉定区招贤路928号,201821) 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 1.发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的He eger探索了合成金属[1]。1987年Kodak公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OL ED器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示

电致发光及原理

电致发光及原理 电致发光ElectroluminescenceEL是物质在一定的电场作用下被相应的电能所激发而产生的发光现象。电致发光EL是一种直接将电能转化为光能的现象。早在20世纪初虞瑟福就发现了SiC晶体在电场作用下的发光。电致发光作为一种平面光源引起了人们的极大爱好。人们企图实现照明光源从点光源、线光源到面光源的革命。自从无机发光板硫化锌和磷砷化镓化合物发明以来电致发光已被广泛应用在很多领域取得了令人瞩目的成就。尽管粉末电致发光现象早在1937年就被发现但直到50年代将硫化锌和有机介质涂敷在透明导电玻璃上再做上第二电极加上交流电压才实现稳定的电致发光。人们逐渐把目光投向了性能更为优良的新一代平板显示器件工艺更简单的新型有机电致发光器件OLED。 1.电致发光材料从发光材料角度可将电致发光分为无机电致发光和有机电致发光。无机电致发光材料一般为等半导体材料。有机电致发光材料依占有机发光材料的分子量的不同可以区分为小分子和高分子两大类。小分子OLED材料以有机染料或颜料为发光材料高分子OLED材料以共轭或者非共轭高分子聚合物为发光材料典型的高分子发光材料为PPV及其衍生物。有机电致发光材料依据在OLED器件中的功能及器件结构的不同又可以区分为空穴注进层HIL、空穴传输层HTL、发光层EML、电子传输层ETL、电子注进层EIL等材料。其中有些发光材料本身具有空穴传输层或者电子传输层的功能这样的发光材料也通常被称为主发光体发光材料层中少量掺杂的有机荧光或者磷光染料可以接受来自主发光体的能量转移和经过载流子捕捉carriertrap的机制而发出不同颜色的光这样的掺杂发光材料通常也称为客发光体或者掺杂发光体英文用Dopant表示。从发光原理角度电致发光可以分为高场电致发光和低场电致发光。 2.电致发光的原理和器件结构从发光原理电致发光可以分为高场电致发光和低场电致发光。高场电致发光是一种体内发光效应。发光材料是一种半导体化合物掺杂适当的杂质引进发光中心或形成某种介电状

有机电致发光器件OLED的结构和发光机理

摘要 OLED 具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、低电压直流驱动、工作温度范围宽、易于实现柔性显示和3D 显示等诸多优点,将成为未来20 年最具“钱景”的新型显示技术。同时,由于OLED 具有可大面积成膜、功耗低以及其它优良特性,因此还是一种理想的平面光源,在未来的节能环保型照明领域也具有广泛的应用前景。本文将系统介绍OLED的发展背景、发展史、制备及应用,介绍了有机电致发光器件(OLED) 的结构和发光机理。 典型的传统OLED是生长在透明的阳极例如ITO玻璃上的,发射出来的光是由最底层衬底透出,这使得它与其他电子元件如硅基显示驱动器的集成变得非常复杂。因此,理想的做法是研发一种OLED,其光的发射由器件顶部的透明电极透出。重点介绍一种具有阴极作为底层接触层,阳极ITO薄膜作为顶部电极的表面发射型或者说有机“反转”的LED(OILED)。介绍了该器件的制备工艺,对该OILED的I 一V特性及EL谱进行了测试,发现与传统的OLED相类似,而工作电压有所升高,效率一定程度上降低。为了进一步改善器件性能,我们对器件增加了保护层(PL),研究了PL对OILED器件性能的影响。最后概述了器件的技术进展和应用前景, 并展望了未来OLED 发展的方向。 关键词: 有机电致发光器件,有机反转电致发光器件,发光机理,保护层(PL),阳极ITO 薄膜

Abstract OLED has a solid state, self-luminous, high contrast, ultra-thin, low power consumption, viewing angle, fast response, low-voltage DC drive, the operating temperature range, easy to implement many of the advantages of flexible displays and 3D displays will become the future20 years of the most "money scene" of the new display because OLED has a large-area film, low power consumption, and other fine features, so an ideal plane light source, also has broad application prospects in the future of energy saving lighting in the area. In this paper, the systematic introduction of OLED development background, history of the development, preparation and application, the structure of the organic electroluminescent devices (OLED) and the luminescence mechanism. Typical traditional OLED is growth in transparent anode ITO glass, for example, the light is emitted by bottom gives fully substrate, this makes it and other electronic components such as that the integration of the silica based drive become very complex. Therefore, the ideal way is developing a OLED, its light emission from the top of the device gives fully transparent electrodes. Focuses on a cathode as the bottom contact layer, the anode of ITO films as the top electrode surface emission or organic LED of the "reverse" (OILED). Of the device preparation process, the OILED I-V characteristics and EL spectra of the test, found that similar to the conventional OLED, the working voltage was increased efficiency to a certain extent on the lower. To further improve the device performance of the device to increase the protective layer (PL), PL OILED device performance. Finally an overview of the technical progress and prospects of the device, and looked to the future OLED, the direction of development. Keywords: Organic Electroluminescent Devices,Organic reverse electroluminescent devices,Luminescence mechanism,Protective layer (PL), the anode of ITO

有机电致发光材料的新进展

有机电致发光材料的新进展 唐杰 (湖南工程学院化学化工学院,湘潭,411101) 摘要:介绍了有机电致发光材料的最新进展,对有机电致发光材料进行分类和评述,重点介绍载流子传输材料和发光材料(小分子发光材料,金属配合物发光材料和聚合物发光材料)的国内外研究现状,并对有机电致发光材料的应用前景进行评述。 关键词:有机电致发光;发光材料;有机小分子;金属配合物;聚合物 Abstract:The recent progress of organic electroluminescent materials was introduced. Various kinds of organic molecular materials and polymer materials used for organic electroluminescence at present were mainly described. The future application of the materials was described. Key words:organic electroluminescence;luminescent material;small organic molecule;organometallic complex;polymer 前言 有机电致发光(organic electro-luminescence ),也叫有机发光二极管(organic light-emitting diode),简称为OLED[1],是指有机物在电场作用下,受到电流电压的激发而发光的现象,是一种直接将电能转化光能的过程。该类材料具有低成本、制作简单、驱动电压低、体积小、响应时间短、重量轻、高导电性、良好的成膜性、视角宽、可大面积使用、柔韧性及可塑性好、自身可发光等显著优点,能够满足照明和显示技术高的需求,已经吸引了科学界和商业界的高度关注。目前国内外对OLED的研究主要集中在发光材料的研究,器件的制作和产品研发上。 在20世纪30年代的时候,人类就开始对有机电致发光材料进行研究了。最初的是1936年Destriau发现的,他将化合物不集中在聚合物中制备了薄膜。1963年,Pope、Lohmann、Helfrich和Willams等人都接连研究了稠环芳香族的蒽、萘等化合物,但大都由于诸多因素而使其发展受到限制。1982年,美国柯达集团的Vincett[2]等人,用真空沉积有机薄膜的这样方法得到有机电致发光材料。从此,对有机发光材料研究的帷幕拉开了。1987年,C.W.Tang[2,3]利用超薄薄膜技术,得到了有机电致发光的材料这一进展对有机发光材料研究的影响很大,全世界都

顶发射有机电致发光器件 3

顶发射有机电致发光器件 摘要 有机电致发光器件(OLED)由于其自身具有能耗低、自发光、视角宽、成本低、温度范围宽、响应速度快、发光颜色连续可调、可实现柔性显示、工艺比较简单等优点而吸引了全世界信息显示技术研究领域的专家学者们的目光,它成为了最有可能取代液晶显示器件的希望之星。有机电致发光器件的研究始于1963年,近年内,越来越多的研究人员从事到有机电致发光器件的研究中来,关于利用新材料、新结构制作有机电致发光器件的报道层出不穷,有机电致发光技术也得到了飞速的发展。 有机电致发光器件按照光从器件出射方向的不同,可以分为两种结构:一种是底发射型器件(BEOLED),另一种是顶发射型器件(OLED)。由于顶发射型器件所发出的光是从器件的顶部出射,这就不受器件底部驱动面板的影响从而能有效的提高开口率,有利于器件与底部驱动电路的集成。同时顶发射型器件还具有提高器件效率、窄化光谱和提高色纯度等诸多方面的优点,因此顶发射型器件具有非常良好的发展前景。而对于顶发射型器件来说,它的有机层结构与底发射型器件的结构基本一致,所以对于顶发射型器件电极的研究具有非常重要的意义。 关键词:电致发光顶发射 Abstract Organic light-emitting diode (OLED), due to its low energy consumption, self-luminous, wide viewing angle, low cost, wide temperature range, fast response, continuously adjustable, luminous colors, flexible display, the process is relatively simple, to attract the attention of experts and scholars in display researching field all over the world. It became the star of hope which most likely to replace liquid crystal display. Researching of the organic light-emitting diode began in 1963, and in recent years, more and more researchers come to research the organic light-emitting diode. New materials, new structures of organic light-emitting diode reported in an endless stream. OLED technology has been rapid development. According to the different directions of the light emitting from the device, we can divide the OLED into two kinds. The one is bottom-emitting type device (BEOLED) and the other is top-emitting device (TEOLED). As the light emitting from the top of the TEOLED, it can ignore the effect of the bottom driving panel, so that it can effectively improve the opening rate, conducive to the integration of the device with the driving circuit. Top-emitting device can also improve the efficiency of the device, narrowing the spectrum and improve the color purity, so it has a good prospect for development. For top-emitting device, the organic layer structure and is basically the same with the bottom-emitting type device, so it has very important significance to study the electrodes of the top-emitting device.

有机电致发光材料与技术试题

选择 1、有机电致发光材料应具备哪些性质(ABCD) A 在固态或溶液中,在可见光区要有较高效率的光发射现象 B 具有较高的导电率,呈现良好的半导体特性 C 具有良好的成膜特性,在几纳米甚至几十纳米的薄膜内基本无针孔 D 稳定性强,一般具有良好的机械加工性能 2、1963年Pope等人报道了哪种材料的电致发光现象(D) A 苯 B 菲 C Alq3 D 蒽 3、下面哪些发光现象是OLED中经常出现的(ABD) A 磷光 B 荧光 C 上转换发光 D 激基复合物发光 4、1987年C.W.Tang等人利用Alq3成功制备出(B)OLED器件 A 单层 B 双层 C 三层 D 四层 5、高分子材料可以利用以下哪种方式制备薄膜(BC) A 热蒸镀法 B 溶液旋涂法 C 喷墨打印法 D 真空升华法 填空 6、OLED内量子效率是指器件中产生的所有(光子)的总数与注入(电子空穴对)数量之比 7、可以利用LiF等无机绝缘材料作为OLED的()层,是利用了电子的()效应 8、在有机电致发光材料中,噁二唑基团有(电子传输)性质,而咔唑基团具有(空穴)传输性质 9、如何实施()的有效注入,降低器件()是实现高效聚合物电致发光的关键 10、配合物发光材料主要有()发光()发光和电荷转移跃迁发光三种发光机制 判断 11、(错)发光是电子从高能态向低能态产生跃迁释放能量的过程 12、()有光辐射必然有热辐射 13、()一个发光物质有几种发光中心,他们的激发光谱都一致 14、(错)红光的发光波长比蓝光的发光波长长,所以红光光的辐射能量高 15、()有机电致发光器件必须具有多层结构或者是掺杂结构 简答 16、OLED用ITO基片最常用的清洗方法 先用普通或专用清洁剂和中等硬度的刷子或百洁布刷洗,并用清水冲洗干净;将ITO基片置于丙酮中超声清洗,再换用清洁的丙酮,反复超声多次,再把丙酮换成乙醇.也反复超声清洗多次.再用去离子水反复超声清洗多次:然后用高速喷出的N2吹干基片上的去离子水。 17、还有一个或者多个乙稀基或者乙炔基不饱和基团的可交联硅氧烷作为刚性封装材料有哪些优点? (1) 允许封装剂覆盖发光部分,聚硅氧烷及硅氧烷衍生物对OLED的寿命和行为没有损害作用; (2)封装剂直接接触器件,可以阻隔性.隔绝水、溶剂、灰尘等外部污染; (3)封装剂不与OLED在高热条件下反应,有很好的强度; (4) 直接接触OLED,没有空气、溶剂和水封在器件中。 18、理想的小分子空穴传输材料应当具有哪些性质 (1)具有高的热稳定性; (2)与阳极形成小的势垒; (3)能真空蒸镀形成无针孔的薄膜

有机电致发光综述

有机电致发光综述 本文对有机电致发光显示器件的发展历史,器件结构、工作特征、获得彩色显示的方法以及所具有的优缺点、发展现状和趋势等都做了简要的概括。详细比较了小分子OLED与聚合物PLED、OLED与LCD性质上的比较,对OLED显示的发光机理进行了详细的综述。此外,对获得彩色显示的无源驱动电路和有源驱动电路的结构进行了总结,认为有源驱动将是最终发展趋势。最后总结了国内外OLED技术的发展状况。 关键词:小分子有机电致发光有机聚合物电致发光无源驱动有源驱动 (作者:姚华文,上海华嘉光电技术有限公司,上海市嘉定区招贤路928号,201821) 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 1.发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。 20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger 探索了合成金属[1]。1987年Kodak公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示技术又将面临新的革命[4]。 2.器件分类 按照组件所使用的载流子传输层和发光层有机薄膜材料的不同,OLED可区分为两种不同的技术类型。 一是以有机染料和颜料等为发光材料的小分子基OLED,典型的小分子发光材料为Alq(8-羟基喹啉铝);另一种是以共轭高分子为发光材料的高分子基OLED,简称为PLED,典型的高分子发光材料为PPV(聚苯撑乙烯及其衍生物[5]。 3.基本结构和发光机理 OLED是基于有机材料的一种电流型半导体发光器件。其典型结构是在ITO玻璃上制作一层几十纳米厚的有机发光材料作发光层,发光层上方有一层低功函数的金属电极。当电极上

有机电致发光材料研究现状

<有机化学进展>结课论文 题目:有机电致发光材料的研究现状 院系: 专业: 班级: 学号: 姓名:

有机电致发光材料的研究现状 摘要:本文对有机电致发光显示器件的发展历史,器件结构、工作特征、发光器件(OLED)的优点、发展现状和趋势等都做了简要的概括。详细介绍了有机发光材料的研究状况,包括小分子发光材料、高分子(聚合物)发光材料,以及新材料的开发。最后总结了国内外OLED 技术的发展状况。 关键词:小分子有机电致发光有机高分子聚合物电致发光 Research and development of organic electroluminescent materials Abstract Organic light-emitting diodes (OLEDs), having excellent properties of low driving voltage and brightemission, have been extensively studied due to their possible applications for flat panel color displays.At the same time, or-ganic electroluminescent materials have been made with an outstanding progress.And thestatus of organic electrolumi-nescent materials(including evaporated molecules and polymers)were reported in this paper. Key words OLED, organic luminescent materials, evaporated molecules and polymers 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 一、发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger探索了合成金属[1]。1987年Kodak 公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED 器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个

粉末电致发光材料晶体生长和发光特性(精)

粉末电致发光材料晶体生长和发光特性 本论文研究了Cu~+对ZnS:Cu电致发光材料发光特性的影响;讨论了晶体生长过程中灼烧温度、助熔剂的作用及对发光材料结构、粒度、发光特性的影响;采取相变技术和采用掺入两种激活剂的方法较大地提高了粉末电致发光材料的发光性能。研究表明,随着Cu+掺入量的增加,材料发光亮度随之增加,Cu+掺入浓度为0.15%时,发光材料的亮度达到最大,但发光亮度并不会随着Cu+掺杂浓度的增加一直增大。同时借助光致发光光谱进一步研究了ZnS:Cu的发光机理及发光特性,Cu+浓度小于0.15%时,光致发光光谱的峰值随Cu+浓度增加而逐渐增大,当Cu+浓度为0.15%时,光致发光光谱的峰值达到最大, Cu+浓度大于0.15%时,光致发光光谱的峰值开始迅速下降。通过改变灼烧温度及灼烧气氛达到改变晶体粒度的大小,随着焙烧温度的提高,ZnS:Cu的平均粒度增大,在800℃到1250℃之间可以获得平均粒度在5/μm-22/μm的发光材料,发光材料的亮度也呈增大的趋势。虽然助熔剂Br-、Cl-的加入对发光材料的粒度影响较小,但Br-、C1-起电荷补偿作用,可增加Cu+在晶体中的溶解度。我们采用晶体相变技术,获得了以立方相结构为主、结晶好、亮度高的绿色发光材料。本文提出在ZnS基质材料中同时掺入Cu+、Au+两种激活剂,通过改变掺杂比例来探索提高粉末电致发光材料发光性能的方法,在ZnS晶体中它们以一价阳离子形式进入ZnS晶格中,形成更多的发光中心。通过在基质ZnS材料中掺入Cu+和Au+两种不同浓度的激活剂,在不影响材料颜色的前提下,较大地提高了电致发光材料的亮度。论文的完成对改善绿色交流粉末电致发光材料ZnS:Cu的发光特性,获得优质的ZnS:Cu绿色发光材料及拓宽材料的应用领域有着重要的经济和现实意义。 同主题文章 [1]. Aron ,Vecht ,朱自熙. 八十年代粉末电致发光(EL)技术' [J]. 发光学报. 1981.(03) [2]. 近期外文资料索引' [J]. 液晶与显示. 1986.(06) [3]. 周连祥. 一种研究粉末电致发光(EL)器件频率特性的新方法' [J]. 发光学报. 1992.(01) [4]. 王金忠,杜国同,王新强,闫玮,马燕,姜秀英,杨树人,高鼎 三,Chang ,R ,P ,H. 退火对ZnO薄膜结构及发光特性的影响' [J]. 光学学报. 2002.(02) [5]. 谢伦军,陈光德,竹有章,汪,屿. ZnO薄膜表面和边缘的发光特性(英文)' [J]. 发光学报. 2006.(06)

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机 EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即 OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即 PLED。不过,通常人们将两者笼统的简称为有机电致发光材料 OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、

太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。 2.吸收和发射

有机电致发光器件OLED的结构

有机电致发光器件OLED的结构、材料及制作工艺 关键词:有机发光;有机小分子;聚合物;有机发光器件 随着信息技术的发展,显示器件在信息科学的各个方面得到广泛的应用。显示器件的研究涉及多学科交叉的综合技术,是生命力非常强的一门学科。信息显示主要方式有两大类,即CRT显示和FPD 显示。二十一世纪将是显示器件进入百花齐放的时期,但总趋势是CRT缓慢下降,而平板显示器件(FPD)产量上升较快。平面显示器发光技术是现阶段的一个研究热门,有机发光器件或称有机发光二极管(OLED)是一种低电压、低功耗、高亮度、高光效、宽视角、全固化、全彩显、重量轻、价格低的电致发光器件。OLED已成为当今显示器件研究的热门中的热点。 有机电致发光现象的研究始于二十世纪六十年代,在有机物蒽的单晶上首次发现有机物的电致发光现象。1987年美国E.Kodak 公司的,有机小分子AlQ3既是电子传输层又作发光层,TPD作为空穴传输层,镁银合金作为阴极注入电子的有机发光器件。该器件的发光亮度达到1000cd/m2,发光效率达1.51m/w,驱动电压为10V。这是研究OLED的一个重要里程碑,使OLED进入划时代的发展期,随后日本C.Adachi等人又提出发光效率高的夹层式多层结构有机发光器件。1989年,使发光内量子效率(发射光子数/注入电子数)达到2.5%。

1977年首次报道了聚合物掺杂具有导电性,从此导电聚合物的研究得到飞速发展。1990年英国剑桥大学的,用旋涂方法制备出聚合物电致发光器件。提高了OLED的寿命,从而使OLED的研究向纵深发展,并成为世界的研究热点。 目前世界各国的科学家在不断地研究OLED的发光机理,从而合成了大量性能优良的有机发光材料,制备出各种结构合理、高光效的有机发光器件。目前这一领域的研究主要集中在如何提高器件的发光效率、增加器件的稳定性,延长器件的使用寿命、实现全色显示等方面。本文对OLED的结构、材料、发光机理及性能的目前研究状况进行了评述。 1 、OLED的结构及材料 1.1 结构 有机发光器件的结构一般属于夹层式结构。即发光层被两侧电极夹着并且至少一侧为透明电极以便获得面发光。已制备出的OLED 有多种形式,最简单的是单层结构,发光层ELL两侧加阴阳极,如图l(a)所示;最典型的是三层结构,即空穴传输层HTL、发光层ELL、电子传输层ETL各行其职,如图l(b)所示。有的器件中ELL可兼作HTL或EFL;为提高OLED发光效率和寿命,有的器件采取了多层结构,即在电极内侧加缓冲层。目前出现许多多成分分散复合膜,即把低分子分散到高分子的单层膜中,制备多功能单层膜的OLED。特别是以聚合物为基质掺杂的有机发光器件,兼备了小分子效率高,高分子制

有机电致发光发展历程及TADF材料的发展进展

有机电致发光发展历程及TADF材料的发展进展 1.1引言 有机光电材料(Organic Optoelectronic Materials),是具有光子和电子的产生、转换和传输等特性的有机材料。目前,有机光电材料可控的光电性能已应用于有机发光二极管(Organic Light-Emitting Diode,OLED)[1,2,3],有机太阳能电池(Organic Photovoltage,OPV)[4,5,6],有机场效应晶体管(Organic Field Effect Transistor,OFET)[7,8,9],生物/化学/光传感器[10,11,12],储存器[13,14,15],甚至是有机激光器[16,17]。和传统的无机导体和半导体不同,有机小分子和聚合物可以由不同的有机和高分子化学方法合成,从而可制备出大量多样的有机半导体材料,这对于提高有机电子器件的性能有十分重要的意义。 其中,有机电致发光近十几年来受到了人们极大的关注。有机电致发光主要有两个应用:一是信息显示,二是固体照明。在信息显示方面,目前市面上主流的显示产品是液晶显示器(Liquid Crystal Display,LCD),它基本在这个世纪初取代了阴极射线管显示,被广泛应用于各种信息显示,如电脑屏幕,电视,手机,以及数码照相机等。但是,液晶显示器也有其特有的缺点,比如响应速度慢,需要背光源,能耗高,视角小,工作温度范围窄等。所以人们也迫切需要寻求一种新的显示技术来改变这种局面。有机发光二级管显示器(OLED)被认为极有可能成为下一代显示器。因为其是主动发光,相对于液晶显示器有着能耗低,响应速度快,可视角广,器件结构可以做的更薄,低温特性出众,甚至可以做成柔性显示屏等优势。但是,有机发光显示技术目前还有许多瓶颈需要解决,尤其是在蓝光显示上,还需要面对蓝光显示的色度不纯,效率不高,材料寿命短的挑战。目前,有机发光二极管显示的发展显示出研究,开发和产业化起头并进的局面。 本论文的主要工作是合成新型有机发光材料并研究其光电性能,本章将介绍有机电致发光的发展历程,以及有机材料的发光机制,最后提出本论文的设计思路。 1.2 有机电致发光发展历程 Destriau于1936年首次观察到了电致发光现象[18],而有机电致发光现象要追溯到

有机电致发光器件工作原理

有机电致发光器件工作原理 1.1 有机材料的电子跃迁过程 有机电致发光的发光机理:在外电场作用下,空穴和电子分别注入到有机材料中,在有机层中相遇复合形成激子,释放出能量,同时将能量传递给有机发光材料的分子,使其从基态跃迁到激发态,由于激发态很不稳定,受激分子发生辐射跃迁从激发态回到基态产生发光现象。 一般将有机物质分子的状态分为基态与激发态。基态是指分子的稳定态,即能量最低状态,其分子中的电子的排布完全遵从能量最低原理,泡利不相容原理和洪特规则。激发态是指物质分子受到光或其他的辐射使其能量达到一个更高的值时,变为一个不稳定的状态,被激发后称分子处于激发态。通常将分子的不稳定的存在状态用单重态S表示,基态单重态用S0表示,三重激发态用T1表示。当有机分子被激发时,分子处于激发单重态,依据它们能量的高低表示为S1、S2、S3。在电致发光的过程中,单重态激子和三重态激子被认为是同时产生的。其中荧光是电子从最低单重激发态到基态的跃迁发光,这种现象又称为电致荧光。电子从最低三重态回到基态的跃迁产生的发光称为磷光。但在室温下,从最低三重激发态回到基态的电子跃迁产生的发光是极微弱的,其能量绝大部分以热的形式损失掉了,所以这个过程被认为是无辐射过程。 图1.1为有机材料分子内部电子的主要跃迁过程: a过程:从S0—S1、S2是在外界激励下发生跃迁; f过程:从S1—S0是以辐射的形式发射了光子产生了荧光; P过程:从T1—S0是一个辐射跃迁的磷光发光; 从S2—S1是通过内转换过程(IC); 从S1—T1是通过系间内转换过程(ISC),且S1发生了自旋反转; 从S2—S0是辐射跃迁的荧光发光。

相关主题
文本预览
相关文档 最新文档