当前位置:文档之家› 二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法
二阶线性常微分方程的幂级数解法

二阶线性常微分方程的

幂级数解法

Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

二阶线性常微分方程的幂级数解法

从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢 例1、求方程

''0y xy -=的通解

解:设2012n n y a a x a x a x =+++++……

为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到

x -∞<<∞2210

a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-=

或一般的可推得

32356(31)3k a a k k =

?????-?,

1

3134673(31)

k a a k k +=

??????+,

其中1a ,2a 是任意的,因而代入设的解中可得:

这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。

解 设级数2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值条件,可以得到

00a =, 11a =,

因而

将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到

因而 最后得

21111(1)!!

k a k k k +=

?=- , 20k a =, 对一切正整数k 成立。

将i a (0,1,2,)i =的值代回2012n n y a a x a x a x =+++++……就得到 这就是方程的满足所给初值条件的解。

是否所有方程都能按以上方式求出其幂级数解或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢级数的形式怎样其收敛区间又如何这些问题,在微分方程解析理论中有完满的解答,但因讨论时需要涉及解析函数等较专门的知识,在此我们仅叙述有关结果而不加证明,若要了解定理的证明过程,可参考有关书籍。

考虑二阶齐次线性微分方程 及初值条件00()y x y =及'

'00()y x y =的情况。

不失一般性,可设 00x =,否则,我们引进新变量0t x x =-,经此变换,方程的形状不变,在这时对应于0x x =的就是00t =了,因此,今后我们总认为00x =。

定理10 若方程22()()0d y dy

p x q x y dx dx

++=中系数()p x 和()q x 都能展成x 的幂

级数,且收敛区间为||x R <,则方程22()()0d y dy

p x q x y dx dx

++=有形如 的特解,也以||x R <为级数的收敛区间。

在上两例中方程显然满足定理的条件,系数x -,2x -和4-可看作是在全数轴上收敛的幂级数,故方程的解也在全数轴上收敛。但有些方程,例如n 阶贝赛尔方程

这里n 为非负常数,不一定是正整数,(22()()0d y dy

p x q x y dx dx ++=)在此

1

()p x x

=,22()1n q x x =-,显然它不满足定理10 的条件,因而不能肯定有形如

n n n y a x ∞

==∑的特解。但它满足下述定理11的条件,从而具有别种形状的

幂级数解。

定理11 若方程22()()0d y dy

p x q x y dx dx

++=中系数()p x ,()q x 具有这样的性质,即()xp x 和2()x q x 均能展成x 的幂级数,且收敛区间为||x R <,若

00a ≠,则方程22()()0d y dy p x q x y dx dx ++=有形如0

n n

n y x a x α∞==∑ 即

的特解,α是一个特定的常数,级数

0n n n y a x α

+==∑也以||x R <为收敛区间。若00a =,或更一般的,0(0,1,2,1)i i m α==-,但0m a ≠,则引入

记号m β

α=+,k m k b a +=,则

n

m

k

k

n m k k n m

k k y x

a x x

a x x

b x α

αβ

++======∑∑∑, 这里00m b a =≠,而β仍为待定常数。

例7 求解n 阶贝赛尔方程22

22

2

()0d y dy x x x n y dx dx

++-=。

解 将方程改写成

222

2210d y dy x n y dx x dx x

-++=, 易见,它满足定理11的条件(()xp x 和2()x q x 均能展成x 的幂级数,且收敛区间为||x R <),且()()2221,xp x x q x x n ==-,按展成的幂级数收敛区间为

x -∞<<∞,由定理11,方程有形如

的解,这里0

0a ≠,而k a 和α是待定常数,将

a k

k k y a x ∞

+==∑代入:22

22

2

()0d y dy x x x n y dx dx

++-=中,得 2

20()0a k k k x n a x ∞

+=+-=∑,

x 同幂次项归在一起,上式变为

令各项的系数等于0,得一系列的代数方程

因为00a ≠,故从22

[]0a n α-=解得α的两个值 n α=和n α=-

先考虑n α

=时方程2

2222

()0d y dy x x x n y dx dx

++-=的一个特解,这时我们总可以从以上方程组中逐个地确定所有的系数k a 。把n α=代入以上

方程组,得到

2

(2)

k k a a k n k -=-+,2,3k =

或按下标为奇数或偶数,我们分别有 从而求得

一般地

将k a 各代入

0a k

k k y a x ∞

+==∑得到方程22

222()0d y dy

x x x n y dx dx

++-=的一个解

既然是求22

22

2

()0d y dy x x x n y dx dx

++-=的特解,我们不妨令 其中函数()s Γ定义如下:

当s >0时,()10s x s x e dx +∞

--Γ=?;当s <0且非整数时,由递推公

式()1

()1s s s

Γ=Γ+定义。

()s Γ具有性质

()()1s s s Γ+=Γ; ()1!n n Γ+=

n 为正整数

()()()()02102112

!12k

n

k n k k a y a x

x k n n n k ∞

+=-=+?+++∑变为

注意到Γ函数的性质,即有

()n J x 是由贝塞尔方程22

22

2()0d y dy x x x n y dx dx

++-=定义的特殊函数,称为

n 阶贝赛尔函数。

因此,对于

n 阶贝塞尔方程,它总有一个特解()n J x 。为了求得另

一个与()n

J x 线性无关的特解,我们自然想到,求a

n =-时方程

22

22

2

()0d y dy x x x n y dx dx

++-=的形如

的解,我们注意到只要

n 不为非负整数,像以上对于n α=时的求解

过程一样,我们总可以求得

使之满足220221222[]0[(1)]0[()]02,3,k

k a n a n a k n a k ααα-?-=?+-=??+-+=??=

?

中的一系列方程,因而 是22

222

()0d y dy x x x n y dx dx

++-=的一个特解。此时,若令 则

()()()()02202112

!12k

n

k n k k a y a x

x k n n n k ∞

--=-=+?-+-+-+∑变为

称()n

J x -为阶贝赛尔函数。

利用达朗贝尔判别法不难验证级数

()()()()

02102112!12k

n

k n k

k a y a x x k n n n k ∞

+=-=+?+++∑和

()()()()02202112

!12k

n

k n k k a y a x x k n n n k ∞

--=-=+?-+-+-+∑(在()()()()02202112

!12k

n

k n k k a y a x

x k n n n k ∞

--=-=+?-+-+-+∑中0x ≠)都是收敛的,因此,当n 不为非负整数时,()n J x 和()n

J x -都是方程

22

22

2

()0d y dy x x x n y dx dx

++-=的解,而且是线性无关的,因为它们可展为

由x 的不同幂次开始的级数,从而它们的比不可能是常数。于是方程

22222()0d y dy

x x x n y dx dx

++-=的通解可写为()()12n n y c J x c J x -=+ 这里1c ,2c 是任意常数。此情形的()n

J x 和()n J x -称为第一类贝塞尔

函数。

例8 求方程2'''

294025x y xy x y ??++-= ???的通解。

解 引入新变量2t

x =,我们有

222224d y d dy dt d y

dx dt dt dx dt

??=?= ???,

将上述关系代入院方程,得到

2222

9025d y dy t t t y dt dt ??++-= ???

, 这是,3

5

n =的贝塞尔方程,由例7可知,方程

2222

9025d y dy t t t y dt dt ??++-= ???

的通解可表为 ()()1323

5

5

y c J t c J

t -=+,

代回原来变量,就得到原方程的通解 其中12,c c 是任意常数。

第二宇宙速度计算

作为这一节的应用,我们计算发射人造卫星的最小速度,即所谓第二宇宙速度。在这个速度你下,物体将摆脱地球的引力,向地球一样绕着太阳运行,成为人造卫星.

让我们首先建立物体垂直上抛运动的微分方程.以M 和m 分别表示地球和物体的质量.按牛顿万有引力定律,作用于物体的引力F (空气阻力忽略不计)为

这里r 表示地球的中心和物理体重心之间的距离,k 为万有引力常数。因为,物体运动规律应满足下面的微分方程 或

这里的负号表示物体的加速度是负的。

设地球半径为5(6310)R R m =?,物理发射速度为0v ,因此,当物体刚刚离开地球表面时,我们有0,

dr

r R v dt

==,即应取初值条件为 方程222d r M

k dt r

=-不显含自变量t 解得

注意到这时初值条件为 因而

因为物体运动速度必须始终保持是正的,即2

02v >,而随着r 的不断增大,

量kM

r

变得任意小。因此,由220()22v v kM kM r R =

+-看到,条件202v >要对所有的r 都成立,只有不等式

202v kM

R

-

≥,

0v ≥

成立。因而最小的发射速度由下面式子决定:

在地球的表面,即r R =时,重力加速度为2(9.81/)g g m s =,由此根据

2mM F k

r =,就有2M

g k R

=,于是2kM gR =

。以此代入0v =

我们通常所说的第二宇宙速度指的就是011.2v km s =这个速度。

二阶微分方程解法知识讲解

二阶微分方程解法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程: 方程 y ''+py '+qy =0 称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数. 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解. 我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程 y ''+py '+qy =0 得 (r 2+pr +q )e rx =0. 由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,

函数x r e y 11=、x r e y 22=是方程的解, 又x r r x r x r e e e y y )(21212 1-==不是常数. 因此方程的通解为 x r x r e C e C y 2121+=. (2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, x r e y 11=是方程的解, 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r , 所以x r xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=. (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得 y 1=e (α+i β)x =e αx (cos βx +i sin βx ), y 2=e (α-i β)x =e αx (cos βx -i sin βx ), y 1+y 2=2e αx cos βx , )(2 1cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y i x e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解. 可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解. 因此方程的通解为

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?++-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-? , 1 3134673(31) k a a k k += ??????+ , 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36347 01[1][] 2323562356(31)33434673(31) n x x x x x y a a x n n n n =+++++++++?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级 2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值 条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?++-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0,,,1 n n a a a a a n -==== - 因而 567891111 ,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i = 的值代回2012n n y a a x a x a x =+++++……就得到 521 3 2!! k x x y x x k +=+++++ 2 422 (1),2!! k x x x x x xe k =++++ += 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

高阶方程的降阶法幂级数解法

1 / 3 4.4 高阶微分方程降阶法、二阶线性微分方程幂级数解法 (Power series solution to second order linear ODE ) [教学内容] 1. 介绍高阶方程降阶法. 2. 介绍单摆方程及其椭圆积分函数.3. 介绍刘维尔公式求解二阶线性方程. [教学重难点] 重点是知道振幅反应(Amplitude Response ); 难点是知道常见函数的拉普拉斯变换和逆变换. [教学方法] 预习1、2;讲授1、2 [考核目标] 1. 知道共振现象. 2. 知道拉普拉斯变换的概念和性质. 3. 知道常见函数的拉普拉斯变换和逆变换. 1. 高阶方程降阶法 例68. 数学摆方程及其求解 解:(1)模型描述:一根长度为l 的线一端是质量为m 的质点,另一端系于固定点O ,质点在垂直于地面的平面上作圆周运动。取逆时针运动方向作为摆与铅垂线所成角?的正方向, 质点运动加速度为22dt d m l ?,所受的力为?sin mg -. 于是单摆方程为??sin 22l g dt d -=. 下面考察如下柯西问题:??sin 22l g dt d -=,0)0(',)0(0==???. (2)令dt d v ?=,下面导出? d dv ,由??d dt dt dv d dv ?=知,dt d d dv dt dv dt d ???? ==22. 于是原方程化为 ??sin l g v d dv -=,这是一个一阶可分离变量型方程。 解得 C l g v +=?cos 212,再由初始条件0)0(',)0(0==???得到 )cos (cos 20??-± =l g v ,其中±号由摆运动位置确定. (3)将v 返回原变量得到 )cos (cos 20???-±=l g dt d ,这也是一个一阶可分离变量型方程。先考察摆从最大正角0?到0?-之间运动情形: )cos (cos 20???--=l g dt d l g t dt l g d t 22cos cos 000 -=-=-??? ? ???,特别地令?---=000 0cos cos 2????? d g l T ,

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

二阶常微分方程的几种解法

二阶常系数非齐次线性微分方程的几种解法 一 公式解法 目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]: '''()y ay by f x ++=通解的一般方法是将其转化为对应的齐次方程的通阶与它本 身的特解之和。微分方程阶数越高, 相对于低阶的解法越难。那么二阶常系数齐 次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系 数非齐次微分方程降为一阶微分方程求解。而由此产生的通解公式给出了该方程 通解的更一般的形式。 设二阶常系数线性非齐次方程为 '''()y ay by f x ++= (1) 这里b a 、都是常数。为了使上述方程能降阶, 考察相应的特征方程 20k ak b ++= (2) 对特征方程的根分三种情况来讨论。 1 若特征方程有两个相异实根12k 、k 。则方程(1) 可以写成 '''1212()()y k k y k k y f x --+= 即 '''212()()()y k y k y k y f x ---= 记'2z y k y =- , 则(1) 可降为一阶方程 '1()z k z f x -=由一阶线性方程的通解公 ()()[()]p x dx p x dx y e Q x e dx c -? ?=+?[5] (3) 知其通解为 1130[()]x k x k t z e f t e dt c -=+?这里0()x h t dt ?表示积分之后的函数是以x 为自变量的。再由11230[()]x k x k t dy k y z e f t e dt c dx --==+? 解得

12212()()340012 [(())]k k x x u k x k k u e y e e f t dt du c c k k --=++-?? 应用分部积分法, 上式即为 1212212()()3400121212 1[()()]k k x k k x x x k x k t k t e e y e f t e dt f t e dt c c k k k k k k ----=-++---?? 1122121200 121[()()]x x k x k t k x k t k k x e f t e dt e f t e dt c e c e k k --=-++-?? (4) 2 若特征方程有重根k , 这时方程为 '''22()y ky k y f x -+=或'''()()()y ky k y ky f x ---= 由公式(3) 得到 '10[()]x kx kt y ky e e f t dt c --=+? 再改写为 '10()x kx kx kt e y ke y e f t dt c ----=+? 即10()()x kx kt d e y e f t dt c dx --=+? 故120()()x kx kt kx kx y e x t e f t dt c xe c e -=-++? (5) 例1 求解方程'''256x y y y xe -+= 解 这里2560k k -+= 的两个实根是2 , 3 2()x f x xe =.由公式(4) 得到方程的解是 33222232 1200x x x t t x t t x x y e e te dt e e te dt c e c e --=-++?? 32321200x x x t x x x e te dt e tdt c e c e -=-++?? 2 232132x x x x x e c e c e ??=--++???? 这里321c c =-. 例2 求解方程'''2ln x y y y e x -+=

二阶常微分方程的降阶解法

郑州航空工业管理学院 毕业论文(设计) 2015届数学与应用数学专业1111062班级 题目二阶常微分方程的降阶解法 姓名贾静静学号111106213 指导教师程春蕊职称讲师 2015年4月5号

二阶常微分方程的降阶解法 摘要 常微分方程是数学领域的一个非常重要的课题,并在实践中广泛于解决问题,分析模型。常微分方程在微分理论中占据首要位置,普遍应用在工程应用、科学研究以及物理学方面,不少应用范例都归结为二阶线性常微分方程的求解问题。而正常情况下,常系数微分方程依据线性常微分方程的日常理论是可以求解的.不过对于变系数二阶线性常微分方程的求解却有一定程度的困难,迄今为止还没有一个行之有效的普遍方法。 本文主要考虑了二阶常系数线性微分方程的降阶法。关于二阶常系数线性微分方程的求解问题,首先,我们给出二阶齐次常系数线性微分方程的特征方程,并求解出特征方程的两个特征根;其次,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解。关于二阶变系数齐次线性微分方程的求解问题,化为恰当方程通过降阶法求解二阶齐次变系数微分方程的通解。对于非齐次线性微分方程,只需再运用常数变易法求出它的一个特解,问题也就相应地解决了。 关键词 二阶常微分方程;降阶法;特征根;常数变易法;一阶微分形式

Order reduction method of second order ordinary differential equations Jingjing Jia Chunrui Cheng 111106213 Abstract Ordinary differential equation is a very important topic in the field of mathematics, it has been widely used in solving the problem and analyzing model in practice . Ordinary differential equations in the theory of differential occupied first place, it has been widely used in engineering application and scientific research as well as physics, many application examples are attributed to second order linear ordinary differential equation solving problem. And under normal circumstances,ordinary coefficient differential equation on the basis of the linear often daily theory of differential equations is can be solved. But for the solution for variable coefficient second order linear ordinary differential equations have a certain degree of difficulty, so far we haven't a well-established general method. This paper mainly introduces the method of reduction of order two order linear differential equation with constant coefficients.On the problem of solving the linear differential equation with two order constant coefficients,first, we give homogeneous ordinary coefficient linear differential equation of the characteristic equation and solve the two characteristic roots of characteristic equation;secondly,we should use the integral factor times differential equation and derivative operation and turn two order constant

常系数二阶微分方程的齐次通解

常系数二阶微分方程的齐次通解

————————————————————————————————作者:————————————————————————————————日期:

附录2 常系数二阶微分方程的齐次通解 常系数二阶齐次微分方程 0=+2+2022y dt dy dt y d ωα 设其中α、ω0都是正实数。 要使二阶微分方程有确定的解,必须知道两个初始条件:初始值y (0)和一阶导数的初始值0 =t dt dy 。 这里只讨论齐次通解在一些典型的系数值下的特点,不求出解中的待定常数。目的在于避免过多的数学式子,突出对有普遍意义的特征的认识。 尝试St e y =(S 为实的或复的常数)是否能为方程的解。 代入方程可得恒等式: 0=)+2+(202S S S e St ωα 由此得到决定常数S 的特征方程: 0=+2+202ωαS S 该一元二次代数方程的根为: 202-±-=ωααS 因常数项的值不同,解的形式不同: 1.自由振荡情况(无阻尼情况)(0=α) 此时,S 是一对共轭虚数: 01j =ωS 02-j =ωS 齐次通解为: t t e K e K t y 00-j 2j 1+=)(ωω 变为常用的三角函数式 )+sin(=)(0θωt K t y 这是一个等幅正弦振荡,ω0 是自由振荡角频率或谐振角频率。K 和θ 是由初始条件决定的常数。 2.欠阻尼情况( 0<<0ωα ) 此时,S 是一对共轭复数: d 1j +-=ωαS d 2j --=ωαS 齐次通解为: )+sin(=)(d -θωαt Ke t y t 这是一个衰减振荡。其中,220-=αωωd (正实数)是衰减振荡角频率。 振幅按指数函数t e α-衰减,故称α为衰减系数。 K 和θ 是由初始条件决定的常数。 这种情况下,系统开始会有正弦振荡,但随时间而衰减,过一段时间后就消失。 3.过阻尼情况(0>ωα)

微分方程的幂级数解法

微分方程的幂级数解法 函数是客观事物的内部联系在数量方面的反映,利用函数关系又可以对客观事物的规律性进行研究,因此如何寻求函数关系,在实践中具有重要意义。在许多问题中,不能直接找到所需的函数关系,但是根据问题所提供的情况,有时可以列出含有要找的函数及其导数的关系式,这样的关系式称为:微分方程。对其进行研究,找寻未知函数,称为解微分方程。本章主要介绍微分方程的一些基本概念和几种常用解法 微分方程的幂级数解法 当微分方程的解不能用初等函数或其积分式表达时,我们就要寻求其它解法。常用的有幂级数解法和数值解法。本节我们简单地介绍一下微分方程的幂级数解法。

求一阶微分方程(1)满 足初始条件的特解,其中函数 f (x , y)是、的多项式: . 这时我们可以设所特解可展开为 的幂级数 (2) 其中是待定的系数,把(2)代入(1)中,便得一恒等式,比较这恒等式 两端的同次幂的系数,就可定出常数 , 以这些常数为系数的级数(2)在其收敛区间内就是方程(1)满足初始条件 的特解。 例1求方程满足的特

解。 解这时,故设 , 把及的幂级数展开式代入原方程,得 由此,比较恒等式两端x 的同次幂的系数,得 于是所求解的幂级数展开式的开始几项为 。 关于二阶齐次线性方程用幂级数求解的问题,我们先叙述一个定理: 定理如果方程(3)中的系数P(x)与Q(x)可在-R<x<R 内展开为x的幂级数那么

在-R<x<R内方程(3)必有形如 的解。 例 2 求微分方程的满足初始条件 , 的特解。 解这里在整个数轴上满足定理的条件。因此所求的解可在整个数轴上殿开成x的幂级 数(4) 由条件得。对级数(4)逐项求导,有 , 由条件得.于是我们所求方程的级数解及的形式已成为 (5) (6) 对级数(6)逐项求导,得

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++=L (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ?

注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --? ??=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1)的解等于 一阶线性齐次常微分方程( A.2)的通解()d p x x Ce -?加上函数()d ()d *()()d p x x p x x y x e e f x x -??=?。容易验证,*()y x 是方程(A.1)的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程 解 此时()2()1p x f x =-=,,由(A.5)式,解为 其中C 是任意常数。 A.2 二阶线性常微分方程 将具有以下形式的方程 "()'()()y p x y q x y f x x I ++=∈,, (A.6) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。称 "()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程. A .2.1 二阶线性微分方程解的结构 首先讨论齐次方程(A.7)解的结构。

相关主题
文本预览
相关文档 最新文档