当前位置:文档之家› 常微分方程幂级数解法1

常微分方程幂级数解法1

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?++-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-? , 1 3134673(31) k a a k k += ??????+ , 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36347 01[1][] 2323562356(31)33434673(31) n x x x x x y a a x n n n n =+++++++++?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级 2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值 条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?++-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0,,,1 n n a a a a a n -==== - 因而 567891111 ,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i = 的值代回2012n n y a a x a x a x =+++++……就得到 521 3 2!! k x x y x x k +=+++++ 2 422 (1),2!! k x x x x x xe k =++++ += 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

【精品完整版】解析函数展开成幂级数的方法分析

解析函数展开成幂级数的方法分析 姓名:媛媛 学号:201100171431 专业:物理教育 指导教师:莉莉

解析函数展开成幂级数的方法分析 姓名 某某大学物理与电气信息工程学院 摘要:将解析函数展开成幂级数的方法不一,且比较复杂。本论文着重介绍了将解析函数展开成幂级数的几种方法以及分析。 关键词:解析函数,幂级数,展开,奇点等。 一前言 解析函数的应用及现状:解析函数边值问题和广义解析函数边值问题在奇异积分方程方面有广泛的应用,它们在弹性力学、流体力学方面也有重要的应用。这些方面的理论及其应用,主要是由苏联学者建立和发展起来的。自20世纪60年代以来,中国的数学工作者在这些方面也做了不少工作。 关于解析函数的不同定义在20世纪初被证明是等价的。基于魏尔斯特拉斯的定义,区域上的解析函数可以看作是其内任一小圆邻域上幂级数的解析开拓,关于解析开拓的一般定义是,f(z)与g(z)分别是D与D*上的解析函数,若DÉD*,且在D*上f(z)=g(z)。则称f(z)是g(z)由D*到D的解析开拓。解析开拓的概念可以推广到这样的情形:f(z)与g(z)分别是两个圆盘D1与D2上的幂级数,在D1∩D2上f(z)=g(z)则也称f与g互为解析开拓,把可以互为解析开拓的(f(z),Δ)的解析圆盘Δ全连起来,作成一个链。它们的并记作Ω,得到了Ω上的一个解析函数,称它为魏尔斯特拉斯的完全解析函数,这里可能出现这样的情形,在连成一个链的圆盘中,有一些圆盘重叠在一起,但在这些重叠圆盘的每一个上的解析函数都是不一样的,它们的每一个都称为完全解析函数的分支。这样的完全解析函数实际是一个多值函数。黎曼提出将多值解析函数中的那些重叠的圆盘看作是不同的“叶”,不使他们在求并的过程中只留下一个代表,于是形成了一种称为黎曼面的几何模型。将多值函数看作是定义于其黎曼曲面上的解析函数,这样多值解析函数变成了单值解析函数。解析函数的基本性质:解析函数的导函数仍然是解析函数;单连通域内解析

高阶方程的降阶法幂级数解法

1 / 3 4.4 高阶微分方程降阶法、二阶线性微分方程幂级数解法 (Power series solution to second order linear ODE ) [教学内容] 1. 介绍高阶方程降阶法. 2. 介绍单摆方程及其椭圆积分函数.3. 介绍刘维尔公式求解二阶线性方程. [教学重难点] 重点是知道振幅反应(Amplitude Response ); 难点是知道常见函数的拉普拉斯变换和逆变换. [教学方法] 预习1、2;讲授1、2 [考核目标] 1. 知道共振现象. 2. 知道拉普拉斯变换的概念和性质. 3. 知道常见函数的拉普拉斯变换和逆变换. 1. 高阶方程降阶法 例68. 数学摆方程及其求解 解:(1)模型描述:一根长度为l 的线一端是质量为m 的质点,另一端系于固定点O ,质点在垂直于地面的平面上作圆周运动。取逆时针运动方向作为摆与铅垂线所成角?的正方向, 质点运动加速度为22dt d m l ?,所受的力为?sin mg -. 于是单摆方程为??sin 22l g dt d -=. 下面考察如下柯西问题:??sin 22l g dt d -=,0)0(',)0(0==???. (2)令dt d v ?=,下面导出? d dv ,由??d dt dt dv d dv ?=知,dt d d dv dt dv dt d ???? ==22. 于是原方程化为 ??sin l g v d dv -=,这是一个一阶可分离变量型方程。 解得 C l g v +=?cos 212,再由初始条件0)0(',)0(0==???得到 )cos (cos 20??-± =l g v ,其中±号由摆运动位置确定. (3)将v 返回原变量得到 )cos (cos 20???-±=l g dt d ,这也是一个一阶可分离变量型方程。先考察摆从最大正角0?到0?-之间运动情形: )cos (cos 20???--=l g dt d l g t dt l g d t 22cos cos 000 -=-=-??? ? ???,特别地令?---=000 0cos cos 2????? d g l T ,

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate. Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method 1. 引言 一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解. 2. 一般变量分离 2.1 变量可分离方程 形如 ()()dy f x g y dx = (1.1) 或 1122()()()()M x N y dx M x N y dy = (1.2) 的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和 微分形式变量可分离方程[1] . (1) 显式变量可分离方程的解法 在方程(1.1)中, 若()0g y ≠,(1.1)变形为 ()() dy f x dx g y =

06-函数展开成泰勒级数的方法--间接展开法PPT

函数展开成幂级数的间接展开法

一、基本初等函数的间接展开法根据唯一性,利用常见展开式,通过变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分等 方法,求展开式。 ?基本公式:).,( ,)!12()1(sin ). ,( , !).1,1( 1101 200 +∞-∞∈+-=+∞-∞∈=-∈=-∑∑∑∞=+∞=∞ =x n x x x n x e x x x n n n n n x n n ,

二、典型例题例1. )( 的幂级数展开成将x a x f x =由于令注意到解 . ln , ln a x u e a a x x ==).,( ,! 1!2112+∞-∞∈+++++=u u n u u e n u ),(!ln !2ln ln 122+∞-∞∈+++++=x x n a x a a x a n n x 代入上式得 将 ln a x u =

++-+-+-=+)! 12()1(!51!31sin 1253n x x x x x n n , ),( 时解:当+∞-∞∈x 例2、. cos )( 的幂级数展开成将x x x f =对上式逐项求导得 +-+-+-=)! 2()1(!41!211cos 242n x x x x n n

.11)( )1(:x x f +='解例3、. 的幂级数展开成将下列函数x ∑?? ∞ =-=+=+000)1(1)1ln( n x n n x dt t t dt x 则). 1,1( ,1 )1(10-∈+-=+∞=∑x x n n n n ).1,1( ,)1()(1111 0 -∈-=--=+∑∞=x x x x n n n 又.arctan )()2( ; )1ln()( (1)x x f x x f =+=板书

微分方程的幂级数解法

微分方程的幂级数解法 函数是客观事物的内部联系在数量方面的反映,利用函数关系又可以对客观事物的规律性进行研究,因此如何寻求函数关系,在实践中具有重要意义。在许多问题中,不能直接找到所需的函数关系,但是根据问题所提供的情况,有时可以列出含有要找的函数及其导数的关系式,这样的关系式称为:微分方程。对其进行研究,找寻未知函数,称为解微分方程。本章主要介绍微分方程的一些基本概念和几种常用解法 微分方程的幂级数解法 当微分方程的解不能用初等函数或其积分式表达时,我们就要寻求其它解法。常用的有幂级数解法和数值解法。本节我们简单地介绍一下微分方程的幂级数解法。

求一阶微分方程(1)满 足初始条件的特解,其中函数 f (x , y)是、的多项式: . 这时我们可以设所特解可展开为 的幂级数 (2) 其中是待定的系数,把(2)代入(1)中,便得一恒等式,比较这恒等式 两端的同次幂的系数,就可定出常数 , 以这些常数为系数的级数(2)在其收敛区间内就是方程(1)满足初始条件 的特解。 例1求方程满足的特

解。 解这时,故设 , 把及的幂级数展开式代入原方程,得 由此,比较恒等式两端x 的同次幂的系数,得 于是所求解的幂级数展开式的开始几项为 。 关于二阶齐次线性方程用幂级数求解的问题,我们先叙述一个定理: 定理如果方程(3)中的系数P(x)与Q(x)可在-R<x<R 内展开为x的幂级数那么

在-R<x<R内方程(3)必有形如 的解。 例 2 求微分方程的满足初始条件 , 的特解。 解这里在整个数轴上满足定理的条件。因此所求的解可在整个数轴上殿开成x的幂级 数(4) 由条件得。对级数(4)逐项求导,有 , 由条件得.于是我们所求方程的级数解及的形式已成为 (5) (6) 对级数(6)逐项求导,得

一阶常微分方程解法归纳

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy =

解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:01、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 02、 022 1 1≠b a b a ,???=++=++00 222111 c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( xy v xy f dx dy x ==),(2 22),(x y w x y xf dx dy == θθsin ,cos ,0))(,())(,(r y r x ydx xdy y x N ydy xdx y x M ===-++ 以上都可以化为变量可分离方程。 例2.1、 2 5 --+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 7 1+= - ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy

函数的幂级数展开

教案 函 数 的 幂 级 数 展 开 复 旦 大 学 陈纪修 金路 1. 教学内容 函数的幂级数(Taylor 级数)展开是数学分析课程中最重要的内容之一,也是整个分析学中最有力的工具之一。通过讲解将函数展开成幂级数的各种方法,比较它们的优缺点,使学生在充分认识函数的幂级数展开的重要性的基础上,掌握如何针对不同的函数选择最简单快捷的方法来展开幂级数,提高学生的计算与运算能力。 2.指导思想 (1)函数的幂级数(Taylor 级数)展开作为一个强有力的数学工具,在分析学中占有举足轻重的地位。通常的数学分析教科书往往注重于讲解幂级数的理论,而忽视了讲解将函数展开成幂级数的方法,这样容易造成学生虽然掌握了幂级数的基本理论,但在实际计算中,即使对于一个很简单的函数,在求它的幂级数展开时也会感到很困难,这种状况必须加以改变。 (2)求函数的幂级数展开是每个数学工作者时时会碰到的问题,虽然我们有函数的幂级数展,但一般来说,直接利用(*)式来求函数的幂级数展开往往很不因此有必要向学生介绍一些方便而实用的幂级数展开方法,提高学生的实际计算能力, 3. f (x )在 x 0 的某个邻域O (x 0, r )中能级数: (*).,(0r x O (1) x ∈(-∞, +∞)。 (2) =+0 !)12(n n )!12() 1(!5!31253+-+-+-=+n x x x x n n + …, x ∈(-∞, + ∞)。 (3) f (x ) = cos x = ∑∞ =-02! )2()1(n n n x n )! 2()1(!4!21242n x x x n n -+-+-= + …, x ∈(-∞, + ∞)。

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

二阶常微分方程的降阶解法

郑州航空工业管理学院 毕业论文(设计) 2015届数学与应用数学专业1111062班级 题目二阶常微分方程的降阶解法 姓名贾静静学号111106213 指导教师程春蕊职称讲师 2015年4月5号

二阶常微分方程的降阶解法 摘要 常微分方程是数学领域的一个非常重要的课题,并在实践中广泛于解决问题,分析模型。常微分方程在微分理论中占据首要位置,普遍应用在工程应用、科学研究以及物理学方面,不少应用范例都归结为二阶线性常微分方程的求解问题。而正常情况下,常系数微分方程依据线性常微分方程的日常理论是可以求解的.不过对于变系数二阶线性常微分方程的求解却有一定程度的困难,迄今为止还没有一个行之有效的普遍方法。 本文主要考虑了二阶常系数线性微分方程的降阶法。关于二阶常系数线性微分方程的求解问题,首先,我们给出二阶齐次常系数线性微分方程的特征方程,并求解出特征方程的两个特征根;其次,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解。关于二阶变系数齐次线性微分方程的求解问题,化为恰当方程通过降阶法求解二阶齐次变系数微分方程的通解。对于非齐次线性微分方程,只需再运用常数变易法求出它的一个特解,问题也就相应地解决了。 关键词 二阶常微分方程;降阶法;特征根;常数变易法;一阶微分形式

Order reduction method of second order ordinary differential equations Jingjing Jia Chunrui Cheng 111106213 Abstract Ordinary differential equation is a very important topic in the field of mathematics, it has been widely used in solving the problem and analyzing model in practice . Ordinary differential equations in the theory of differential occupied first place, it has been widely used in engineering application and scientific research as well as physics, many application examples are attributed to second order linear ordinary differential equation solving problem. And under normal circumstances,ordinary coefficient differential equation on the basis of the linear often daily theory of differential equations is can be solved. But for the solution for variable coefficient second order linear ordinary differential equations have a certain degree of difficulty, so far we haven't a well-established general method. This paper mainly introduces the method of reduction of order two order linear differential equation with constant coefficients.On the problem of solving the linear differential equation with two order constant coefficients,first, we give homogeneous ordinary coefficient linear differential equation of the characteristic equation and solve the two characteristic roots of characteristic equation;secondly,we should use the integral factor times differential equation and derivative operation and turn two order constant

阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210 a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-=L 或一般的可推得 32356(31)3k a a k k = ?????-?L , 1 3134673(31) k a a k k += ??????+L , 其中1a ,2a 是任意的,因而代入设的解中可得: 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。 例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级数2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值条件,可以得到 00a =, 11a =, 因而 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 因而 最后得

21111(1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i =L 的值代回2012n n y a a x a x a x =+++++……就得到 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的形式怎样?其收敛区间又如何?这些问题,在微分方程解析理论中有完满的解答,但因讨论时需要涉及解析函数等较专门的知识,在此我们仅叙述有关结果而不加证明,若要了解定理的证明过程,可参考有关书籍。 考虑二阶齐次线性微分方程 及初值条件00()y x y =及' '00()y x y =的情况。 不失一般性,可设 00x =,否则,我们引进新变量0t x x =-,经此变换,方程的形状不变,在这时对应于0x x =的就是00t =了,因此,今后我们总认为00x =。 定理10 若方程22()()0d y dy p x q x y dx dx ++=中系数()p x 和()q x 都能展成x 的幂级数, 且收敛区间为||x R <,则方程22()()0d y dy p x q x y dx dx ++=有形如 的特解,也以||x R <为级数的收敛区间。 在上两例中方程显然满足定理的条件,系数x -,2x -和4-可看作是在全数轴上收敛的幂级数,故方程的解也在全数轴上收敛。但有些方程,例如n 阶贝赛尔方程 这里n 为非负常数,不一定是正整数,(22()()0d y dy p x q x y dx dx ++=)在此1 ()p x x =, 2 2 ()1n q x x =- ,显然它不满足定理10 的条件,因而不能肯定有形如 0n n n y a x ∞ ==∑的特解。但它满足下述定理11的条件,从而具有别种形状的幂级数解。

二阶常微分方程的解法及其应用

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

二阶常系数线性微分方程的解法word版

创作编号: BG7531400019813488897SX 创作者: 别如克* 第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理 1 如果函数1y 与2y 是式(2)的两个解, 则 2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y

将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 , ,,,21n k k k 使得当在该区间内有 02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关, 否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法

4-25 -高阶方程的降阶法、幂级数解法

4.4 高阶微分方程降阶法、二阶线性微分方程幂级数解法 (Power series solution to second order linear ODE ) [教学内容] 1. 介绍高阶方程降阶法. 2. 介绍单摆方程及其椭圆积分函数.3. 介绍刘维尔公式求解二阶线性方程. [教学重难点] 重点是知道振幅反应(Amplitude Response ); 难点是知道常见函数的拉普拉斯变换和逆变换. [教学方法] 预习1、2;讲授1、2 [考核目标] 1. 知道共振现象. 2. 知道拉普拉斯变换的概念和性质. 3. 知道常见函数的拉普拉斯变换和逆变换. 1. 高阶方程降阶法 例68. 数学摆方程及其求解 解:(1)模型描述:一根长度为l 的线一端是质量为m 的质点,另一端系于固定点O ,质点在垂直于地面的平面上作圆周运动。取逆时针运动方向作为摆与铅垂线所成角?的正方向, 质点运动加速度为22dt d ml ?,所受的力为?sin mg -. 于是单摆方程为??sin 2 2l g dt d -=. 下面考察如下柯西问题:??sin 22l g dt d -=,0)0(',)0(0==???. (2)令dt d v ?=,下面导出? d dv ,由??d dt dt dv d dv ? =知,dt d d dv dt dv dt d ????==22. 于是原方程化为 ??sin l g v d dv -=,这是一个一阶可分离变量型方程。 解得 C l g v +=?cos 212,再由初始条件0)0(',)0(0==???得到 )cos (cos 20??-± =l g v ,其中±号由摆运动位置确定. (3)将v 返回原变量得到 )cos (cos 20???-±=l g dt d ,这也是一个一阶可分离变量型方程。先考察摆从最大正角0?到0?-之间运动情形: )cos (cos 20???--=l g dt d l g t dt l g d t 22cos cos 000 -=-=-??? ? ???,特别地令?---=000 0cos cos 2????? d g l T ,

相关主题
文本预览
相关文档 最新文档