当前位置:文档之家› 大型氮氢气往复式压缩机常见故障讲解

大型氮氢气往复式压缩机常见故障讲解

大型氮氢气往复式压缩机常见故障讲解
大型氮氢气往复式压缩机常见故障讲解

题目:氮氢气往复式压缩机常见故障分析

学校:济源职业技术学院

专业:化工工艺

班级:

学号:

姓名:刘文岭

指导教师:

目录

摘要 (2)

关键词 (2)

正文 (2)

一、气阀泄漏 (3)

二、活塞组件故障 (6)

(一)活塞破裂 (6)

(二)活塞环串气 (7)

(三)活塞杆断裂 (8)

三、轴瓦故障 (8)

四、管路振动 (9)

五、结尾 (10)

六、参考文献 (11)

大型氮氢气往复式压缩机常见故障分析

摘要:氮氢气往复式压缩机是氮肥企业合成氨生产的重要设备。其主要任务是对原料气进行升压压缩,并输送气体到净化、合成等工序,以满足各工序对工艺操作压力的不同要求。它运行的好坏直接影响合成氨系统的产量,实际生产中各氨肥企业都采用几台压缩机运行代表当班生产负荷的大小,往复式压缩机具有效率高、压力稳定、压力范围广等特点。但结构复杂,易损部件多。随着科技的进步和发展,新建氮肥企业所采用的压缩机普遍趋向大型化,与中小型相比,具有无可比拟的优越性,但同时随着设备尺寸的增大,发生事故时的破坏和影响也变得更大。本文就是针对往复式压缩机常见故障、如:气阀泄露、活塞破裂、活塞串气、活塞杆断裂、轴瓦故障等、进行了深入透彻的分析,做出正确判断处理,对维护压缩机正常安全运行,提高经济性非常重要,极具使用价值。

关键词:压缩机、故障分析、判断排除、安全、经济性。

正文:在氮肥企业合成氨生产系统中,原料气的净化和氨的合成都需要在一定的压力下进行,同时还要在各工序之间完成原料气的输送,因此,对气体进行压缩、升压及输送在合成氨生产中占有极其重要的地位。氮氢气压缩机就是担任这一重任的大型运转设备,它生产能力的好坏直接影响合成氨产量。氮肥企业一般都用几台压缩机运行代表当班生产负荷的大小。合成氨生产的主要电力消耗,也在这些设备上。往复式压缩机具有效率高,压力稳定、压力范围广等优点,但外型尺寸和重量大,气流有脉动、结构复杂、易损部件多。随着科技的进步和单套系统生产规模的扩大,新建合成氨企业采用的压缩机普遍趋向大型化,其输气量都在每分钟100立方米以上,与中小型相比,具有无可比拟的优越性,不但运行平稳可靠,吨氨消耗低,而且节约人力资源,但同时由于设备和零部件尺寸的增大,发生事故时的破坏和影响也变的更大,因此,掌握对压缩机一些常见故障的深入透彻分析、正确做出判断和排除、是保证压缩机长期安全运行,避免重复检修、提高经济性的关键。

大型氮氢气往复式压缩机其结构形式均为对称平衡型,气缸分布在曲轴两侧,相对两列气缸曲拐错角为180°。这种结构是50年代才出现的,由于优点显著,发展迅速。其工作原理为:有同步电机带动主轴做圆周运动,并通过曲柄、连杆、把圆周运动变为十字头、活塞杆的往复运动,活塞杆带动活塞在汽缸内往复运动,依靠汽缸内容积成周期性变化来压缩气体。合成氨生产多采用六级以上压缩,汽缸列数多,运动部件与填料的数量也相应较多;机

身和曲轴的结构比较复杂;由于转速高,气阀、填料的工作条件不好;运转震动大,发生故障的可能性增加。

四列以上的对称平衡型压缩机,根据驱动电机位置的不同、可分为D型、M型和H型三种,如广泛用与中型合成氨生产的氮氢气压缩机6D32-250/32O型、6M32-274/32O型、和H22-165/320型等。压缩机的结构形式虽然很多,但主要组成部分基本相同。一台完整的压缩机组包括主机和辅机,主机有机身、中体、工作机构(汽缸、连杆、十字头等)。辅机包括润滑系统、冷却系统、气路系统。下面由主到辅、有由点到面对实际生产中的部分常见故障逐一进行分析。

—、气阀泄漏

气阀又叫活门,是压缩机主要部件之一,也是日常生产中最易损部件,同时也是压缩机数量最多的部件,如6D32型压缩机,单机气阀数量就有54个,其工作的好坏直接影响压缩机的生产能力、经济性和可靠性。常用气阀按结构形式分为环状阀和网状阀、前者多用于低压段,后者多用与高压段。气阀的组成主要包括阀座、阀片、弹簧和升程限制器四部分。

在装配时、依靠弹簧的弹力使阀片贴合在阀门座上,阀座和升程限制器用紧固螺栓连接起来,并用开口销固定。

气阀的作用原理是用来控制气体及时地吸入或排出汽缸,依靠气阀两边的压力差和弹簧力作用自动实现启闭,压缩机运行时、气阀随气缸吸排气频繁启闭,极易损坏,是生产中最常见的故障,日常压缩机停车检修,70%以上为更换气阀所致,因此、对气阀故障的准确分析和判断,为检修提供准确导向,提高设备运行周期非常重要。

气阀的损坏主要表现为泄漏,即部分失去止逆作用、阀片贴合的气道有少量处于常开状态、使阀片不能完成控制气体及时吸入或排出气缸。当气缸处于从膨胀过程到吸气过程,此时、出口气阀应完全关闭、排出的气体无法倒流回气缸,入口气阀开启、受缸内外压盖作用,入口气体被吸入气缸,完成过程。而出口气阀出现泄漏后,出口气阀不能完全关闭,部分加压后高温出口气体,其压力一般为入口气体的3倍左右,重新倒回气缸内,占据气缸部分容积,使气缸实际吸气容积的减少,降低输气系数,造成本段打气量的减少和功耗的浪费。同理,当入口气阀泄漏时,从压宿到排气过程,入口气阀无法做到严密不漏,被吸入气缸的气体会由于压力升高,部分气体又通过泄漏气阀重回到气缸入口管线。无论是出口还是入口气阀泄漏,造成的损失和危害都是同样的。即打气量的减少和功耗的增加,在实际生产中具体表现为:

(1)本段(气缸内漏段)及后段压力下降,前段压力上升。这是因为本段吸吸气量减少,前段供气量不变、,造成供需不平均所致。

(2)个别气阀(泄漏气阀)温度升高。气体在气缸内经压宿后,压力升高,温度上升。正

常情况高温气体应全部排汽缸后,进入中间、冷却装置,而汽缸泄露后,部分高温气

体会漏入汽缸,重复进行压宿升温,造成出口温度升高。与正常气阀单向输气相比,

泄露气阀双向往返,使泄露气阀受热多而出现温升。

(3)个别气阀(泄漏气阀)声音杂乱无节奏,出现噪音或气流声。气阀工作状态改变,

阀片或弹簧损坏,关闭时仍有气流通过而声音杂乱。

造成气流泄漏的原因主要是:长时间使用磨损严重或质量差造成断裂,气阀片被异物卡住,如油焦、灰尘、碳粒;弹簧弹性下降或断裂;气阀与汽缸间密封圈坏。

气阀泄漏较小时,可通过回路阀调整和控制压力,暂时坚持生产,如气体泄漏大或多个气阀泄漏,出现超温或超压现象时,就必须停机进行泄漏气阀的更换。否则将会导致气缸润滑油在高温条件下迅速碳化,失去润滑作用和辅助密封作用,活塞磨损加大而造成损坏,活塞环由于串气而加剧超压和超温,使活塞工作状态严重恶化,甚至出现抱缸的重大事故,同时压缩比失调,压力超工艺指标,给设备、管道安全构成很大的威胁。

但气阀的更换要做到有针对性,就必须采用一系列手段,将泄漏气阀从众多气阀中判断出来,确定后全部更换,为检修人员的检修提供准确指导。泄漏气阀要利用停车机会全部更换,确保检修质量。尽量避免由于判断不准,造成损坏气阀的泄漏和正常气阀的多余更换,出现重复检修和检修工时的延长,给生产带来损失。

对泄漏气阀的正确判断并非易事。压缩机低压段气缸一般都有多个进出口气阀,如6D32型压缩机,一、二段气缸各有12个,其中进出口均为6个,而且气阀间距较小,泄露阀门的异响,有时会互串,使声音响成一片,难以准确定位,另外气阀由于损坏部件和程度不同,响声也多种多样,干扰判断的准确性,所以操作人员在生产中要多听多练,积累丰富经验,精通气阀的工作原理,综合多种因素,确定气阀的泄漏与否。一般采用`“看、听、摸”的方法进行判断。

“看”压力和温度有无变化,如某段温度下降,前段上升,温度异常上升,则可判断本段气阀有泄露现象。此方法起导向作用,只能判断泄漏气阀所在汽缸,无法确定某一气阀,

还需进一步判断。

“听”;气阀正常工作时,其吸排气过程中发出的声音是均匀而有节奏,,一般也不会有杂乱气流声。这是因为当气缸内气体压力加气阀弹簧力略低于进气压力时,入口气阀才开启吸气,当缸内气体略大于出口压力加气阀弹簧力时,出口才打开排气。这两个过程缸内外压差小,所以听不到气流声。当气阀泄漏后,吸气时,大于缸内3倍压力以上压力的出口气体漏回气缸,或排气时,缸内加压气体漏回入口管线,都有较大压差,产生不正常气流声,发出噪音。依据上述理论,用听的方法判断泄漏气阀时,一般吸气时有杂音,是出口气阀损坏,排气时有杂音,是进口气阀损坏。进一步确定是那一个损坏,就要借助听棒对每一个气阀分别探听,气流声大,噪音发实者为损坏气阀,同时结合阀盖温度的变化,综合多种因素,认真分析,确定漏气阀。

有时气阀会间断的发出尖叫声,这是气阀座和阀片之间被微小软金属垫位,此时压力表几乎没有显示,或尖叫时压力下降,间断时恢复正常,可暂不急于处理,此间因注意听其声音变化和压力变化。多数情况下是软金属被气流带走,恢复正常操作,少数情况严重致使气阀损坏,只能停机更换。

此外,由于气阀压筒垫片压扁或脱出,致使整个气阀在气室内来回窜动,发出清脆的撞击声(类似撞缸)。气阀顶丝松动,促使整个阀体上、下跳动,发出较大的响声。这些故障一般采用紧阀盖或顶丝的方法即可解决,但原则上是低压段可带压紧固,而高压段(≥4。0MPa)必须卸压后方可紧固,以防止意外危害事故的发生。

“摸”是指用手摸气阀盖感觉温度,它只局限于入口气阀,因入口气阀温度较低,一般在40℃左右,用手摸的方法最易发现入口气阀的故障和损坏,气阀盖温度明显高于其它气阀的,即使不用听声音,也可判断该气阀一定损坏。而出口气阀温度都在110℃以上、不能采用手摸的方法,可用便携式远红外测温计,逐个测试,温度较高者为泄漏气阀。但要注意有时个别口气阀弹簧变松,阻力减小,较其它气阀开启早,关门晚。相对通气量大,温度回略高。一般认为高于20℃以上为泄漏气阀。

正因为气阀在压缩机安全运转中所占的重要地位,对气阀的性能也提出了较高的要求,要求气阀:启闭及时,工作平稳可靠;关闭时严密不漏,阻力要小,余隙容积小,噪音低;有足够的强度和韧性,耐磨损,寿命长;结构简单,易于检修和更换、价格低。使用厂家也要给气阀创造一个良好的工作环境,及时排净入缸前油水分离器内油水,严防气体带水带液;严格控制工艺指标,杜绝超温超压;增加气体入缸前除尘设施,保持气体纯净无杂质等。可

有效延长气阀的使用寿命。

随着科技的不断进步,近几年新型气阀也不断推出,有的从结构上进行了改进、如:气垫阀、蘑菇阀、流线型气道阀。也有从材料上进行了替代,如;工程塑料气阀等。这些新型气阀用于生产,经过试验对比,各有优劣,适用于不同的机型和位置,但相对价格较高,各氮肥企业应根据自己的工艺特点和机型的不同,选择最适合、最经济耐用的气阀。

二活塞组件故障

压缩机的活塞组件包括活塞、活塞环和活塞杆,它是压缩机最主要的部件之一。它的结构取决于压缩机的排气量、排气压力、被压缩气体的特性,活塞组件与气缸构成了压缩容积,有活塞杆带动活塞在气缸内往复运动来压缩气体,其工作的好坏直接影响本段的安全运行和打气量。

(一)活塞破裂。

大型往复式压缩机采用的活塞形式主要有盘式和级差式,一般用铸铁制造。盘式活塞多用于有十字头的中压和低压气缸,为减轻重量,一般铸成中空结构,两端面用3~8条加强筋连接以增加钢性。下步接触面承受活塞组重量,为了减少气缸与活塞的磨损,一般用轴承合金做出承压表面。

压缩机活塞常见故障是被打坏,甚至出现破碎。在实际生产中具体表现为:气缸内出现无规则的撞击声,时有时无,声音时大时小;本段压力会出现下降和波动;严重时会产生剧烈撞缸。出现以上情况应立即注意观察压力和温度的变化,认真分析,做出正确判断,做到及时处理,防止事故的扩大。主要原因有:

(1)气缸发生液击,由于入缸前油水分离器积油水过多,或净化工序气体中带液,被气体带入气缸,因为液体具有不可压宿性,高速运动的活塞,

在无任何缓冲的情况下,迅速把32吨的推力撞向液体,使活塞瞬间受

到液体的反击力,对活塞造成严重的损害。在生产中液击一般会有两种,

一种是压缩机在运行中,缸前分离器油水排放不及时,逐渐增多的油水

会有少量随气体带入气缸,此时会出现本段出口温度有不正常下降,气

缸有轻微撞击声,这种液击因带液较少,可挤入余隙容积,对活塞的损

坏也是轻微的,或者是发展较慢的损害,及时发现后,打开前分离器排

污阀,排净油水即可消除。若不及时排放,带液量会逐渐增加,损坏也

就会加大,另一种是危害很大的液击,一般出现在压缩机启动瞬间,由

于开车前较多油水未排出,或分离器内件内漏较大,缸体有裂缝使夹套

冷却水漏入气缸。等压缩机在启动时会出现严重液击,将会对活塞造成

损坏性的破坏,使活塞破坏,同时会对气缸、气阀和整个压缩机造成无

法挽回的破坏。因此生产中要杜绝液击现象的发生,特别是开车时,要

按规定进行盘车,挤出缸内液体,排净分离器油水,确保活塞的安全。

(2)气阀破碎落入气缸。气阀破碎有两种原因,一种是液击将气阀打碎;另一种是气阀顶丝松动,使气阀与气缸不断撞击而破碎。无论是那一种,

破碎气阀都容易随气流掉入气缸,因气缸余隙只占气缸容积的3%~8%,

较大的气阀碎片,会受到活塞与气缸盖的夹击,造成活塞的损坏。

(3)活塞质量差,制造工艺差。在实际生产中,曾发生过为了减轻活塞重量,在制造中有意减薄了活塞受力面与壳部,由于两端面刚性下降,在运转

中多次出现了,活塞体与壳部脱开的事故,给设备安全运行造成了很大

影响。转速较高的压宿机,可采用组合式铝制活塞,两端面为铝合金,

活塞体为磷青铜。直径较大的活塞采用焊接结构,可有效减轻活塞重量,

提高强度和刚性。

(4)活塞紧固螺母松动。会使活塞在轴向往复撞击,时间过久而损坏。此外,活塞杆受到载荷后,有时被拉长,而活塞确被压宿,在这种情况下,活塞与活塞杆之间可能产生轴向间隙。另外,由于活塞和活塞杆线膨胀系数不同,也会造成两者之间的轴向间隙,这会造成活塞与活塞杆之间连接松动,在运转过程中产生撞击而损坏。

活塞被打坏后,要认真查找原因分析故障,视情况进行处理。对生产中气缸内出现异常响,在停车时要注意对活塞的检查。生产中若气缸中产生剧烈撞击,压力迅速下降,要立即紧急停车,拆缸检查,查清故障所在,不可活塞损坏就简单更换了事,还要消除引起活塞打坏的隐患,避免同类事故的再次发生。

对活塞的要求是: 必须有良好的密封性,并且具有足够的强度和刚性;活塞与活塞杆连接定位可靠;重量轻,制造工艺性好。

(二)活塞环串气

活塞环是密封气缸内表面和活塞间缝隙用的零件,同时还起到布油和导热作用,是压缩

机易损坏部件之一。它是靠自身弹力、背压力、通道阻力、油膜阻力综合作用而密封的,一般用铸铁或锡青铜制造。运行中气体经过第一道环后,压力约降26%,第二道后降低至10%,第三道后降低到7、6%,因此前三道就可满足生产密封的要求,除高压级磨损大外,其它不易采用过多道树而增大功耗。

在生产中,有时会发现某段压力下降,出口温度出现超温,很像是气阀泄漏,而对气阀进行判断,却无明显损坏。在压缩机开车加强时,稍有倒气,气缸就发出气流摩擦声,甚至会发出不规则的金属声响,这些现象就是活塞环常见故障串气的典型表现。

压缩机低压段气缸多为双作用,活塞的一面处于排气过程时,另一面却正处在吸气阶段,活塞环密封不严时,排气一面的部分加压气体会串入另一面低压气体中,因加压后气体温度较高,串入低温气体后,会升高常温气体温度,当再被压缩时,温度将升高更大。正因为部分加压高温气体在活塞两边互串,反复压缩,使出口气体出现异常超温。另外串过的这部分气体占据吸气容积,造成本段打气量减少,压力下降。引起活塞环串气的主要原因有:(1)气缸供油中断。在气缸内表面形不成油膜,无法配合活塞的密封,而出现串气;

(2)气缸冷却不好,气缸内壁温度高,润滑油注入缸内迅速氧化分解;

(3)活塞环质量差,达不到技术要求;

(4)使用周期过长,未按设计寿命更换,出现断裂。

活塞环出现串气后,应立即检查气缸注油是否正常,测试气缸回水有无超温,若加大注油量和冷却水量,仍无改善,应停车更换损坏的活塞环,更换过程要注意彻底清除缸内活塞环碎片,安装新环时开口要错开180℃,保证检修质量,再开车后达到最佳技术状态。

(三)活塞杆断裂。

活塞杆是连接活塞和十字头的重要部件,在运动中把十字头的往复他推动拉力转给活塞,其工作中受力较大。活塞杆由优质碳钢锻造加工而成,表面进行氮化处理,在实际生产中易出现突然断裂,这是一种较为严重的突发事故,若不能迅速正确地处理,将造成前段压力急剧上升,甚至出现严重超压而爆炸,这是因为本段活塞杆断裂后,活塞在气缸内停止运动,也就停止了本段的压宿输气,并且由于本段已无运动负荷,打破了压缩机主轴的受力平衡,使相对列传动机构运动严重失衡,产生剧烈撞击声,引发不可预测的设备事故。造成断裂的主要原因有:

(1)余隙容积过小,活塞杆受热伸长而撞缸;

(2)出现严重液击,使活塞杆负荷急剧增大而断裂;

(3)本段压力长期超压,或改造增设负缸,使负荷过大;

(4)装配质量不好,活塞装偏,中心没有对准,活塞杆与气缸填料不同心;

(5)过期使用,活塞杆疲劳,造成强度下降而断裂。

活塞杆断裂一般较为突出,事前大多也无征兆,此多为活塞杆疲劳和负荷过大所致。但也有时传动部件出现松动,使活塞杆处于变动负荷中,不断受到撞击,特别是十字头连接器处的松动,长期下去,最易造成活塞杆断裂。因此对传动机构和十字头处的松动响声,要及时停车检查消除,尽量避免设备的疲劳运行,减少活塞杆断裂事故的发生。

活塞杆断裂时会发出剧烈的撞击声,要迅速判断准方位,果断紧急停车,在盘车检查中,那列活塞杆不再运动既为断裂。

三、轴瓦故障

轴瓦是压缩机传动机构的重要部件之一,包括主轴瓦、曲轴瓦、十字头,其中曲轴瓦在实际生产中,由于摩擦负荷大,受力复杂,发生故障的几率较高。下面主要介绍去轴瓦常见故障分析。大型压缩机多采用滑动摩擦,曲轴瓦可有效减少曲轴与连杆大头等磨损,而且易于更换。轴瓦分为厚壁瓦和薄壁瓦,适用于不同的机型,轴瓦的耐磨材料是巴氏合金,它具有减磨性的锡基和铅基轴承合金,巴氏合金摩擦系数小,又优良的减磨性能和良好的韧性、导热性、低热膨胀系数、耐蚀性、但熔点低。因其质地软、强度低,常将其丝或粉喷涂在钢基体上制成轴瓦。

曲轴瓦的主要故障是非正常磨损和烧瓦,非正常磨损是指轴瓦在使用过程中,在远没有达到设计寿命时,短期内巴氏合金损坏脱落,造成曲轴损伤,摩擦增大,运动间隙变大,引起的设备事故。烧瓦是指压缩机在运行中几分钟内。由于轴瓦工作条件急剧恶化,引起轴瓦温度迅速上升至巴氏合金熔点以上,造成轴瓦耐磨材料熔化烧坏现象,轴瓦磨损的主要原因有:

(1)缺油和断油。润滑油脏,含杂质多,油路堵塞,使供油不畅,造成轴瓦供油不足或断油,引起轴瓦与曲轴出现油膜强度低或干磨而损坏。

(2)润滑油不合格。油中胶性物质会造成润滑油在摩擦面上分布不均;含有水分会破坏油膜;粘度太低不易形成油膜;粘度太高不能均匀分布。

(3)轴瓦润滑部分有蛈屑杂质。铁屑等高硬度杂质,进入摩擦面,会划伤轴瓦耐磨层,造成磨损加大,是轴瓦在短期损坏。

(4)检修安装质量差。轴瓦间隙不合适,太紧使摩擦增大;安装偏斜,造成轴瓦面

局部受力,单位面积上的比压过大;未固定好,会引起轴向移动和径向移动,

造成部分巴氏合金脱落。

(5)轴瓦质量差。

烧瓦的原因在生产中多为油路堵塞而断油,曲轴磨偏或轴面拉伤严重,造成短时间轴瓦温度升高而烧坏。

轴瓦磨损后,会表现出在曲轴箱内有敲击声,一般会有从小到大的过程,多为3~5天,巴氏合金脱落后,轴瓦运动间隙将会增大。磨损也相应增加,如不停车检查更换,对轴面危害将会越来越大,烧瓦一般发生较快,开始时,会发现曲轴箱呼吸器出现冒烟现象,若不及时发现,不但冒烟不断增大,到一定程度就会出现敲击声,这已经到了严重烧瓦的程度。

在生产中发现轴瓦温度升高,或出现敲击声,应立即查找原因进行处理,可先调高油压,降低油温,处理无效后应停车检查。发生烧瓦应立即停车检修,避免由于处理不及时,使曲轴面拉伤或磨偏。生产中曾发生过因忽视曲轴箱敲击声,未及时停车检查处理,而造成曲轴面严重拉伤,最后只有将大轴送回厂家修理,给生产造成了无法估量的损失,因此,要高度重视曲轴对故障分析,及时判断排除,保证设备的安全生产。

四、管路振动

管路是指气路系统管路。由于往复式压缩机的活塞运动速率是不断变化的,并且各级瞬间的气量供需不平衡,吸排气有间歇性,造成气体压力,流量的周期性变化,呈脉动状态,影响压缩机的打气量,增加功耗,并引起设备、管线振动。

管路振动会影响管道连接的强度和密封性,导致管道及支架的疲劳破坏,又是会使相邻交叉管道相互磨损,因其漏气和着火,甚至造成厂房、基础的振动。

振动的原因主要是管路机械共振,因为管路本身是一个弹性系统,只要在管道上有激振力作用,就会引起管道机构振动,但气流脉动时,由于压力的脉动变化,在管道拐弯处就会有周期性的激振力作用,造成管路系统的振动。管路系统根据配置情况,支承类型和位置,以及边界条件也有自己的一系列固有频率。如果激发主频率等于管路的基本固有频率,则发生机械共振,此时管路振动会很厉害,管道内产生很大的应力。造成管道疲动破坏。

减小管路振动的措施主要有以下几点:

(1设备缓冲罐,就象一支柔性弹簧,起隔离振源的作用,使脉动的气体进入缓冲罐后,速

度降低,变平稳的气体输出,从而减轻管道的振动。

(2)避免管路的机械振动。在设计管路时最好算出管路系统机械振动固有频率,应使管路的基本固有频率低于激发主频率30%。

(3)管道拐弯处是激振动作用的地方,为了减小管道振动。英尽量减少弯头,特别要避免急转弯,在必须转弯的地方,曲率半径要打一些。

(4)加强管路的支承。管道中央要安装中间支座或将振动段挂在弹性支座上,在振动段,管道与支座要加装石棉胶版,石棉、木质或其它材料制成的减振垫圈,以及阻止振动发展的制动器,以防止管道应振动出现过大的磨损。

在实际生产中,压缩机发生故障的原因常常是非常复杂的,有的是一种原因所引起,有的是多种因素综合作用所造成。在座故障分析时,要尽量考虑的全面和深入些,还要经过细心的观察研究,甚至要经过多方面的实验,对此,并依靠丰富的经验,才能做出正确的判断排除,确保压缩机长周期安全运行。

参考文献

1、《化工机器》化学工业出版社主编:张涵

2《合成氨工艺》化学工业出版社主编:赵玉祥

3《中小型合成氨厂生产操作问答》化学工业出版社主编:杨春生、韩福顺

4《化工基础》化学工业出版社主编:王西玉、刘建中

5《化工机械基础》化学工业出版社主编:罗世烈

压缩机故障过热分析

压缩机故障分析-―过热 排气温度过高和电机高温表明压缩机存在过热问题。电机高温源于冷却不足、负载过大和电源问题;而排气温度过高的原因在于制冷剂的性质、回气温度、冷却方式、冷凝压力、压缩比等,此外COP对排汽温度有明显影响。过热对压缩机具有很大危害,它不仅会缩短电机寿命、降低润滑油的润滑性能、加速润滑油变质,还会增加能耗,最终会损坏压缩机。 压缩机过热、排气温度 1.引言 压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷却措施。然而在实际使用中,由于超范围使用、电源不正常、电机过载、制冷剂泄漏、冷凝压力太高等问题引起的电机高温、排气温度过高、润滑油焦糊等过热现象比较常见,并已成为压缩机常见故障之一。 气缸排气温度是判断压缩机是否过热的重要指标之一。由于测量上的困难,实际应用中是通过测量排气管表面的温度(即排气管温度)来判断是否过热。由于润滑油到150°C时会变得很稀薄,在175°C左右将开始分解变质,因此气缸排气温度应该控制在150°C以内,而排气管温度通常比排气温度低10~40°C。因此,如果排气管温度超过135°C,一般认为压缩机已经处于严重过热状态;而如果排气温度低于120°C,压缩机温度正常。空调压缩机和冰箱压缩机的排气温度通常还要低一些。 2.危害 高温对压缩机电机和润滑油具有很大的危害。长时间过热,不仅会降低电机绝缘性能和可*性,缩短电机寿命,而且还会降低润滑油的润滑能力,甚至引起润滑油碳化和酸解。 润滑油碳化后润滑能力大大降低,将引起曲轴、连杆、活塞、活塞环等严重磨损,甚至会出现抱轴、卡缸等堵转现象以及由堵转而引起的连杆折断事故。碳化油还会在阀片和阀板上结碳,引起阀片泄漏和阀片断裂。润滑油中的酸性物质会腐蚀绕组漆包线、降低绕组的绝缘性能。酸化润滑油还会引起镀铜现象。 实际中,润滑油碳化总是伴随着酸解,因而磨损和腐蚀总是行影相随。磨损产生的细小金属屑夹杂于润滑油中,一方面削弱了润滑油的润滑作用;另一方面,细小的金属屑由于磁性而聚集于电机绕组中,构成导电回路。漆包线绝缘层被腐蚀后就可能出现一些微小的裸露点,很容易引起局部放电。如果金属粒形成导电回路,立即会短路或击穿,烧毁电机。 活塞环和活塞磨损后还容易引起回油困难和油压保护器动作。许多半封闭压缩机是*负压回油的,即曲轴箱压力低于电机腔压力时回油单向阀会打开,润滑油就能回到曲轴箱。活塞和活塞环磨损后,高压气体会泄漏到曲轴箱,曲轴箱负压状态受到破环,造成回油困难。这一问题常表现为:压缩机油位不断降低,最后油压保护器动作,压缩机停机,停机后油位会慢慢恢复。再次启动压缩机后,一切正常,但一段时间后上述现象再次出现。 此外,润滑油中混杂着细小的铁屑还会由于抽吸作用而聚集在油泵吸油管的油网外面,造成油网脏堵。 3. 电机过热 电机过热是相对于电机的正常工作温度而言的。电机正常工作温度不能超过其绝缘等级所对应的最高允许温度(见下表)。

压缩机常见故障及解决方法

压缩机常见故障及解决方法 摘要:在科学技术日益发展的今天,压缩机在各个行业受到广泛应用,尤其是在大型的煤化行业、机械行业等行业中。压缩机状态的好坏直接决定着装置的安全运行。活塞式压缩机在运转过程中会出现烧瓦,注油器不上油及压力偏低气量不足等常见故障。如何迅速准确地判断并及时处理故障,直接影响压缩机的开工率和产品产量。本文主要分析压缩机的基本原理、常见故障及解决方法。 关键词:压缩机,故障,烧瓦,注油,压力偏低 1压缩机分类与简介 随着工业技术的发展。空压机的类别与型号不断更新,按原理和结构不同可以分为:活塞式、回转式,离心式与轴流式四种。 而根据应用不同又可分为不同的类型,如用于制冷的压缩机通常可分为[1]:一、封闭式压缩机:此类型压缩机由于功率小,主要用于冰箱、家用空调等电器中,它由电机(绕组、转子等)与机械(曲轴、活塞等)部分组成一体,置于密封的缸体中。一旦出现故障修复起来比较困难。二、半封闭和开启式压缩机:此类型压缩机由于功率大,广泛用于中央空调、冷库等大型制冷、空调净化等部门,由于电机与机械分为两部分,一经出现故障可便于拆装修理。 2压缩机的常见故障及解决方案 从气流的角度来讲,可能出现的故障是:风压过高或压缩空气温度过高;风量不足或风量过低。前者当保护装置失灵时,有可能引起积炭自燃、压力容器爆炸,而后者直接影响生产。图1为压缩机常见故障树。从压风机结构来看,造成压缩机故障主要有润

滑系统故障、冷却水路故障,压缩空气气路故障和机械故障四类[2]。 下面主要分析以下几点常见故障[3]: 2.1烧瓦 活塞式压缩机运转中出现烧瓦、主轴瓦或连杆大头瓦巴氏合金层烧伤或脱落,使轴瓦温度升高。产生高温并冒烟,巴氏合金熔化。 2.1.1 油温过低引起烧瓦 以往我们注意曲轴箱油温,都是担心油温过高引起烧瓦。比如说明书中注明油温不能超过60℃或7O℃,但确投有油温下限.忽略了油温过低也引起烧瓦。冬季停机之后压缩机曲轴箱油温降低,所以油非常粘稠,开机后发生烧瓦。因此,冬季采用稠度低的机油为好。 图l 压缩机常见故障树 2.1.2 曲轴箱油位过低引起烧瓦 油标下孔堵塞,油位低时不能发现油位下降,曲轴箱油位过低时.油泵断续吸入空

螺杆机组常见故障及补救方法

螺杆机组: 1、 启动负荷大,不能启动或启动后立即停车的故障原因及补救方法:  1、 能量调节未至零位,减载至零位。 2、 压缩机与电极同轴度过大,重新校正同轴度。 3、 压缩机内充满油或液体制冷剂,盘动压缩机联轴节,将机腔内积液排 出。 4、 压缩机内磨损烧伤,拆卸检修。 5、 电源断电或电压过低,(低于额定值10%),排除电路故障,按产品要求 供电。 6、 压力控制器或温度控制器调节不当,使触头常开,按要求调整触头位 置。 7、 压差控制器或热继电器断开后未复位,按下复位键。 8、 电机绕组烧毁或短路,检修。 9、 变压器、接触器、中间继电器线圈烧毁或触头接触不良,拆检、修复。 10、 温度控制器调整不当或出故障不能打开电磁阀,调整温度控制器的调定 值或更换温控器。 11、 电控柜或仪表箱电路接线有误,检查、改正。 12、 机组内部压力太高,连接均压阀。 2、 压缩机在运转中突然停车怎么办?  1、 吸气压力低于规定压力,应查明原因排除故障。 2、 排气压力过高,使高压继电器动作。 3、 温度控制器调的过小或失灵,调大控制范围,更换温控器。 4、 电机超载使压差控制器或保险丝烧毁,排除故障更换保险丝。 5、 油压过低使压差控制器动作,查明原因,排除故障。 6、 控制电路故障,查明原因,排除故障。 7、 仪表箱接线端松动,接触不良,查明后上紧。 8、 油温过高,油温继电器动作,增加油冷却器冷却水量。 3、 机组震动过大的故障原因及补救方法:

1、 机组地脚未紧固,塞紧调整垫铁,拧紧地脚螺栓。 2、 压缩机与电机同轴度过大,重新校正同轴度。 3、 机组与管道固有震动频率相近而共振,改变管道支撑点位置。 4、 吸如过量的润滑油或液体制冷剂,停机,盘动联轴节联将液体排出。 4、 运行中有异常声音的故障原因及补救方法:  1、 压缩机内有异物,检修压缩机及吸气过滤器。 2、 止推轴承磨损破裂,更换。 3、 滑动轴承磨损,转子与机壳磨擦,更换滑动轴承检修。 4、 联轴节的键松动,紧固螺栓或更换键。 5、 排气温度过高的故障原因及补救方法:  1、 冷凝器冷却水量不足,增加冷却水量。 2、 冷却水温过高,开启冷却塔。 3、 制冷剂充灌量过多,适量放出制冷剂。 4、 膨胀阀开启过小,适当调节。 5、 系统中存有空气(压力表指示明显跳动),排放空气。 6、 冷凝器内传热管上有水垢,清除水垢。 7、 冷凝器内传热管上有油膜,回收冷冻机油。 8、 机内喷油量不足,调整喷油量。 9、 蒸发器配用过小,更换。 10、 热负荷过大,减少热负荷。 11、 油温过高,增加油冷却器冷却水量(液氨量),降低油温。 12、 吸气过热度过大,适当开大供液阀,增加供热量。 6、 压缩机本体温度过高的故障原因及补救方法:  1、 吸气温度过高,适当调大截流阀。 2、 部件磨损造成摩擦部位发热,停车检查。 3、 压力比过大,降低排气压力。 4、 油冷却器能力不足,增加冷却水量(液氨量),降低油温。 5、 喷油量不足,增加喷油量。 6、 由于杂质等原因造成压缩机烧伤,停车检查。 7、 蒸发气温度过低的故障原因及补救方法:  1、 制冷剂不足,添加制冷剂到规定值。 2、 截流阀开启过小,适当调节。

往复压缩机常见故障分析及对策

2016届机械制造与自动化专业 毕业生毕业作业 课题名称:往复压缩机常见故障分析及对策学生姓名:张燕鸣 指导教师:卢学玉 江南大学网络教育学院 2016年7月

江南大学网络教育学院 毕业论文(设计)

目录 论文摘要 (4) 关键词 (4) 一.概述 (4) 二.液击过程分析 (4) 三.液击的判断方法 (5) 1.通过声音判断 (5) 2.通过观察进行判断 (5) 四.液击故障的现象 (5) 1.吸气阀片断裂 (5) 2.连杆断裂 (6) 3.电机烧毁 (6) 五.液击的原因分析 (6) 1. 回液 (6) 2.带液启动 (7) 3.冷冻机油太多 (7) 4. 设计时参数选择不当或使用不当 (7) 5.制冷剂充注方式方法不确 (7) 六.预防与处理对策 (7) 1.改善压缩机冷冻机油的回油途径 (8) 2.增加设备,使制冷剂气体和液体分离 (8) 3.设计合理的过度 (8) 4.安装曲轴箱加热器 (8) 5.抽空停机 (8) 七.结束语 (8) 感谢词 (9) 参考文献 (9)

往复压缩机常见故障分析及对策 摘要:往复式压缩机在制冷设备中比较常见,作为制冷系统中核心动力组成,因其所做机械运动是往复运动,在往复运动中压缩机运动部件会因摩擦时间长了而损坏;此外外部因素导致的压缩机发生故障和出现事故也屡见不鲜,主要针对往复式压缩机中的活塞式制冷压缩机最容易发生的故障之一液击进行详细的分析,液击现象出现后应该咋样判断,对液击形成的原因进行了说明,液击发生后应该咋样处理,防范和减少往复式压缩机出现的故障,对往复式压缩机长期的稳定的运行有所借鉴。 关键词:压缩机;制冷;液击;故障原因分析;排除措施 一.概述 往复式压缩机是把一定量的气体压缩后吸入和排出的一种容积式压缩机。它主要由机体、传动机构、压缩机构、润滑机构、冷却系统以及操作控制系统等构成。机体是往复式压缩机的基础部分,主要由机身、中体和曲轴构成;传动机构由离合器、联轴器或带轮以及连杆、曲轴等运动部件组成;压缩机构由气缸、活塞、进气阀门和出气阀门构成;润滑机构由油泵、油过滤器、油冷却器等构成;冷却系统主要有风冷和水冷两种,风冷由散热风扇和中间冷却器组成;水冷由冷凝器、管道阀门等组成;操作控制系统包括各种调节装置。仪器仪表、安全法以及各种保护装置。经过几十年的发展,往复式压缩机制造工艺已经很成熟、制造成本也越来越低,因此在冰箱、空调、冷库等还大量使用各种规格型号的往复式压缩机。因为其制造工艺比较成熟,结构相比螺杆、离心压缩机简单,而且对加工材料和压缩机的加工工艺要求比较低,费用节省,在各个领域得到广泛应用,能适应的压力范围和制冷量比较广,维修方便。但是,往复式压缩机在设备的使用过程中也存在着各种各样问题,如压缩机电机烧毁、压缩机的不正常震动和噪音、发生液击现象使零部件损坏、压缩机排气温度过高、压缩机密封故障导致的漏气、连杆活塞不正常的磨损等故障。这当中液击现象是往复式压缩机中最大的一种故障之一,严重时压缩机可能会受到伤害而损坏。 二.液击过程分析 在压缩机制冷系统中要是冷冻机油或制冷剂添加过多,系统蒸发器的热负荷就会不稳定,膨胀阀的调节的不合理,压缩机的吸气阀如果较快开启,制冷系统在设计的时候及设备安装调试的时候不合理等,都有可能会使压缩机产生液击现象。

压缩机常见三种详细故障分析报告

压缩机常见三种详细故障分析 压缩机常见故障分析(1)——电机烧毁 电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转; (2)金属屑引起的绕组短路;(3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6) 用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1.异常负荷和堵转 电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加,以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大,是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸(活塞卡在气缸内),连杆断裂等严重损坏。 堵转时的电流(堵转电流)大约是正常运行电流的4-8倍。电机启动瞬间,电流的峰值可接近或达到堵转电流。由于电阻放热量与电流的平方成正比,启动和堵转时的电流会使绕组迅速升温。热保护可以在堵转时保护电极,但一般不会有很快的响应,不能阻止频繁启动等引起的绕组温度变化。频繁启动和异常负荷,使绕组经受高温考验,会降低漆包线的绝缘性能。

压缩机常见故障及维修办法

压缩机常见故障及维修方法 2007年05月29日星期二19:25 压缩机是空调器制冷系统最重要的部件,由于压缩机不同于冷凝器、蒸发器之类的非运动部件,在系统工作中要高速运转,又是一种机电一体化的高精度装置,所以在实际使用中经常会发生故障。 故障现象: 1、绕组短路、断路和绕组碰机壳接地:这类故障都是由压缩机的电机部分引起的,其故障现象断路时为电源 正常,压缩机不工作;短路和碰壳时通电后保护器动作,或烧保险丝;要注意的是如果绕组匝间轻微短路时,压缩机还是能够工作的,但工作电流很大,压缩机的温度很高,过不了多久,热保护器就会动作。绕组短路和绕组碰机壳接地一般用万用表即可检查;绕组短路特别是轻微短路,由于绕组的电阻本身就很小,所以不容易 判定,应根据测量电流来判定。 2、压缩机抱轴、卡缸:压缩机如果失油或有杂质进入往往会引起抱轴或卡缸,其故障现象为,通电后压缩机 不运转,保护器动作。 3、压缩机吸、排气阀关闭不严:如果压缩机的吸、排气阀门损坏,即使制冷剂充足系统也不能建立高低压或 难以建立合格的高低压,系统不制冷或制冷效果很差。 4、压缩机的震动和噪音:这类问题在维修工作中经常发生,一般对制冷性能并没有多大影响,但会使用户感 觉不正常,引起的原因往往是管道和机壳相碰、压缩机的固定螺栓松动和减震块脱落等。 5、热保护器损坏:热保护器是压缩机的附件,故障一般为断路或动作温度点变小。断路会引起压缩机不工作;动作温度点变小会引起压缩机工作一段时间后就停机并反复如此,该问题往往容易和绕组匝间轻微短路相混淆,区别是热保护器损坏时工作电流是正常的,绕组短路时电流偏大。 维修方法: 压缩机电机部分出现问题、压缩机吸、排气阀关闭不严和热保护器故障应采取更换的办法。 压缩机抱轴、卡缸故障可以先尝试维修,具体方法为以下几种: (1)敲击法: 开机后用木锤敲压缩机下半部,使压缩机内部被卡部件受到震动而运转起来。 (2)电容起动法: 可以用一个电容量比原来更大的电容接入电路启动。 (3)高压启动法: 可以用调压器将电源电压调高后启动。 (4)卸压法: 将系统的制冷剂全部放空后启动。 如果上述方法都不能奏效,就只有更换了。 压缩机的震动和噪音问题处理时,应检查并分开相互碰击的部件;检查并紧固压缩机地脚螺栓,要注意压缩机的地脚螺栓是不能完全拧到底的,设计要求必须保持1mm左右的间隙,维修过程中就有将压缩机地脚螺栓拧死 而引起压缩机剧烈震动的事例;要检查减震块是否脱落、粘帖是否牢*,也可以试着增加减震块,具体位置用尝试法,帖在那里效果好就帖那里。 压缩机故障的判断及处理: 1.如何识别全封闭式压缩机机壳上的3只接线柱?

最新螺杆压缩机故障原因分析及处理

· 新疆工业高等专科学校 毕业论文 论文题目:螺杆空气压缩机故障原因分析及处理 系别:机械工程系 专业班级:机电06-7(1) 学生姓名: 指导教师:????? 2009 年 5 月 29 日

摘要:螺杆式压缩机广泛的应用于各个行业,其中在矿山、化工、机械等行业中尤为重要。本文结合螺杆式压缩机的工作原理和工作空气流程比较全面的分析了喷油式压缩机的常见故障及故障产生的原因。 对螺杆空气压缩机在使用过程口出的问题,从螺杆空气压缩机的工作原理分析,如机头温度过高. 常常时冷却油运行过程中出现问题如油过滤器的滤网、断油阀被杂质堵塞使油量减少;温控阀温控材料老化或被堵塞使油温升高,油冷器的水垢厚到一定程度影响冷却效果等等。应采取定时清洗滤网,将温控阀放入80℃的水中判断其老化与否,使用酸液循环除垢后,观察油过滤器的压差参数,一高于标准,及时更换油过滤器,确保空压机机头在不出现冷凝水的温度下运行等等。 关键词:螺杆压缩机工作原理机头温度温控阀维护

Abstract:Screw compressor widely used in various industries, including mining, chemical industry, machinery industry is particularly important. In this paper, the work of screw compressor air flow principles and the work of a more comprehensive analysis of the fuel injection compressor fault common causes. Screw air compressor on the course in the use of the mouth of the problem, screw air compressors from the working principle of analysis, such as the nose temperature is too high. Often run when the process of cooling the oil problems such as oil filters filter, broken Oil valve plug so that the oil was to reduce the impurities; material aging or temperature control valve plug so that higher oil temperature, oil cooler of the scale thickness to a certain extent affect the cooling effect and so on. Should be taken to regularly clean filters, the valves 80 ℃ Add the water to determine whether or not the aging, the use of acid descaling cycle, the observation of the pressure oil filter parameters, a higher than standard, the timely replacement of oil filter to ensure that the air compressor head does not appear in the condensation temperature of water running and so on. Keywords: screw compressor working principle Head emperature Valve Maintenance

螺杆压缩机常见故障解决

螺杆压缩机常见故障解决

单螺杆空气压缩机常见故障分析及诊断方法 单螺杆式空气压缩机因其结构简单、体积小、振动小、易损件少、性能可靠、寿命长、运行管理费用较低等优点而广泛用于国防科技、冶金、化工、纺织等行业。当螺杆式空气压缩机因故障停机时,直接影响工厂的生产,温升过高是螺杆空

气压缩机运行中常见故障。现以OG340W螺杆式压缩机温升过高故障发生原因提出快速诊断的方法。 1 故障分析 单螺杆式空气压缩机运行最佳温度设定为75~85,开机10min 后机器温升应保持稳定。螺杆式空气压缩机长期在高温下运行,会严重影响机器的排气量及使用寿命。当温升过高时,主要有以下原因: (1)环境温度单螺杆式空气压缩机要求安装环境温度不超过40,机器吸入温度过高,油温及排气温度也会相应过高,特别是安装在井下或其它空气不流通的环境都会引起温度过高。 环境温度低于0时,开机前也会高温报警无法启动,因为油凝结一时无法供给主机,所以主机缺油引起高温,北方地区还应注意润滑油牌号的选择; (2)水质我矿购进OG340W 螺杆压缩机为水冷式,机器所产生的热量在水冷却塔内由水带走。由于直接使用井下循环水所以冷却水水质较差即泥尘多又是硬水所以冷却管很容易积垢积碳,气体热传递不好,造成温升过高; (3)温度调节自动控制器故障温度调节自动控制器是控制高温油进入冷却塔油的流量,温度调节自动控制器磨损或制造精度不高、调节不好使油大量不经过冷却塔高温油直接循环,造成主机温升过高; (4)机油滤清器故障机油滤清器是将油路中的灰尘杂质等过滤的部分,一定时间后会堵塞须更换,是空压机易损件之一,当其堵塞后引起主机少油温度也会上升,另外其阀座的塑料塞子容易脱落,塑料塞子堵了油管也会引起主机少油造成温度上升; (5)断油阀故障断油阀是通过储气罐气压控制其往复运动喷油,有杂物堵塞油路或气路,造成关闭不喷油会引起主机缺油不散热温度上升; (6)温度控制器故障温度控制传感器断线损坏,会引起./0 误报温升过高。 2 诊断及故障排除 发生故障停机后,维修的主要问题是诊断。只有诊断出故障原因,找出故障点才能解决问题,经上述故障分析和经验,总结出快速诊断及排除螺杆空气压缩机温升的方法。如表1、表2 所示。 3 结语 在空气压缩机的故障分析中除了理论分析外,更多的是靠实践,只有将理论与实践结合起不断总结,修理技术人员才能在维修过程中得心应手. 故障排除

制冷压缩机常见故障-电机烧毁

制冷压缩机常见故障-电机烧毁 【摘要】绕组烧毁是压缩机常见故障。绕组烧毁前的迹象不容易发现,而烧毁后一些导致烧毁的直接原因又被掩盖,给事后分析增加了难度。本文就电机负荷过大,电压异常,散热不足和绕组绝缘破坏几方面进行了分析,揭示了这些因素与电机损坏之间的关系。 【关键词】电机烧毁,绕组烧毁,压缩机故障, 电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。 电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转;(2)金属屑引起的绕组短路; (3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6)用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1. 异常负荷和堵转 电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加,以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大,是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸

往复式压缩机的基本知识及原理

.活塞式压缩机的基本知识及原理 活塞式压缩机的分类: (1)按气缸中心线位置分类 立式压缩机:气缸中心线与地面垂直。 卧式压缩机:气缸中心线与地面平行,气缸只布置在机身一侧。 对置式压缩机:气缸中心线与地面平行,气缸布置在机身两侧。(如果相对列活塞相向运动又称对称平衡式) 角度式压缩机:气缸中心线成一定角度,按气缸排列的所呈现的形状。有分L型、V型、W型和S型。 (2)按气缸达到最终压力所需压级数分类 单级压缩机:气体经过一次压缩到终压。 两级压缩机:气体经过二次压缩到终压。 多级压缩机:气缸经三次以上压缩到终压。 (3)按活塞在气缸内所实现气体循环分类 单作用压缩机:气缸内仅一端进行压缩循环。 双作用压缩机:气缸内两端进行同一级次的压缩循环。 级差式压缩机:气缸内一端或两端进行两个或两个以上的不同级次的压缩循环。 (4)按压缩机具有的列数分类 单列压缩机:气缸配置在机身的一中心线上。 双列压缩机:气缸配置在机身一侧或两侧的两条中心线上。 多列压缩机:气缸配置在机身一侧或两侧的两条以上中线上。 活塞式压缩机工作原理: 当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸内的工作容积则会发生周期性变化。活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。 活塞式压缩机的基本结构 活塞式压缩机基本原理大致相同,具有十字头的活塞式压缩机,主要有机体、曲轴、连杆、十字头、气缸、活塞、填料、气阀等组成。 1、机身:主要由中体、曲轴箱、主轴瓦(主轴承)、轴承压盖及连接和密封件等组成。曲轴箱可以是整体铸造加工而成,也可以是分体铸造加工后组装而成。主轴承采用滑动轴承,安装时应注意上下轴承的正确位置,轴承盖设有吊装螺孔和安装测温元件的光孔。 2、曲轴:曲轴是活塞式压缩机的主要部件之一,传递着压缩机的功率。其主要作用是将电动机的旋转运动通过连杆改变为活塞的往复直线运动。 3、连杆:连杆是曲轴与活塞间的连接件,它将曲轴的回转运动转化为活塞的往复运动,并把动力传递给活塞对气体做功。连杆包括连杆体、连杆小头衬套、连杆大头轴瓦和连杆螺栓。 4、十字头:十字头是连接活塞与连杆的零件,它具有导向作用。十字头与活塞杆的连接型式分为螺纹连接、联接器连接、法兰连接等。大中型压缩机多用联接器和法兰连接结构,使用可靠,调整方便,使活塞杆与十字头容易对中,但结构复杂。 5、气缸:气缸主要由缸座、缸体、缸盖三部分组成,低压级多为铸铁气缸,设有冷却水夹层;高压级气缸采用钢件锻制,由缸体两侧中空盖板及缸体上的孔道形成泠却水腔。气缸采用缸套结构,安装在缸体上的缸套座孔中,便于当缸套磨损时维修或更换。气缸设有支承,用于支撑气缸重量和调整气缸水平。 6、活塞:活塞部件是由活塞体、活塞杆、活塞螺母、活塞环、支承环等零件组成,每级活塞体上装有不同数量的活塞环和支承环,用于密封压缩介质和支承活塞重量。活塞环采用铸铁环或填充聚四氟乙烯塑料环;当压力较高时也可以采用铜合金活塞环;支承环采用四氟或直接在活塞体上浇铸轴承合金。 活塞与活塞杆采用螺纹连接,紧固方式有直接紧固法,液压拉伸法,加热活塞杆尾部法等,加热活塞杆尾部使其热胀产生弹性伸长变形,将紧固螺母旋转一定角度拧至规定位置后停止加热,待杆冷却后恢复变形,即实现紧固所需的预紧力。活塞杆为钢件锻制成,经调质处理及表面进行硬化处理,有较高的综合机械性能和耐磨性。活塞体的材料一般为铝合金或铸铁。

压缩机过热故障分析

压缩机过热故障分析 育龙网 WWW.CHINA-B.C0M 2009年06月15日来源:互联网 育龙网核心提示: 1.引言压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷 1.引言 压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷却措施。然而在实际使用中,由于超范围使用、电源不正常、电机过载、制冷剂泄漏、冷凝压力太高等问题引起的电机高温、排气温度过高、润滑油焦糊等过热现象比较常见,并已成为压缩机常见故障之一。 气缸排气温度是判断压缩机是否过热的重要指标之一。由于测量上的困难,实际应用中是通过测量排气管表面的温度(即排气管温度)来判断是否过热。由于润滑油到150°C 时会变得很稀薄,在175°C左右将开始分解变质,因此气缸排气温度应该控制在150°C 以内,而排气管温度通常比排气温度低10~40°C。因此,如果排气管温度超过135°C,一般认为压缩机已经处于严重过热状态;而如果排气温度低于120°C,压缩机温度正常。空调压缩机和冰箱压缩机的排气温度通常还要低一些。 2.危害 高温对压缩机电机和润滑油具有很大的危害。长时间过热,不仅会降低电机绝缘性能和可靠性,缩短电机寿命,而且还会降低润滑油的润滑能力,甚至引起润滑油碳化和酸解。 润滑油碳化后润滑能力大大降低,将引起曲轴、连杆、活塞、活塞环等严重磨损,甚至会出现抱轴、卡缸等堵转现象以及由堵转而引起的连杆折断事故。碳化油还会在阀片和阀板上结碳,引起阀片泄漏和阀片断裂。润滑油中的酸性物质会腐蚀绕组漆包线、降低绕组的绝缘性能。酸化润滑油还会引起镀铜现象。 实际中,润滑油碳化总是伴随着酸解,因而磨损和腐蚀总是行影相随。磨损产生的细小金属屑夹杂于润滑油中,一方面削弱了润滑油的润滑作用;另一方面,细小的金属屑由于磁性而聚集于电机绕组中,构成导电回路。漆包线绝缘层被腐蚀后就可能出现一些微小的裸露点,很容易引起局部放电。如果金属粒形成导电回路,立即会短路或击穿,烧毁电机。

压缩机常见故障分析及处理方案

一、对于活塞式压缩机,什么事余隙容积?由哪几部分组成? 二、活塞式压缩机排气量不足的原因有哪些 (1)气缸、活塞、活塞环磨损严重、超差、使有关间隙增大,泄漏量增大,影响到了排气量。属于正常磨时,需及时更换易损件,如活塞环等。 (2)填料函不严产生漏气使气量降低。其原因首先是填料函 本身制造时不合要求;其次可能是由于在安装时,活塞杆与填料函中心对中不好,产生磨损、拉伤等造成漏气。一般在填料函处加注润滑油,它起润滑、密封、冷却作用。 (3)压缩机吸排气阀的故障对排气量的影响。阀座与阀片间 掉入金属碎片或其它杂物,关闭不严,形成漏气。这不仅影响排气量,而且还影响间级压力和温度的变化。阀座与阀片接触不严形成漏气而影响了排气量,一是制造质量问题,如阀片翘曲等,二是由于阀座与阀片磨损严重而形成漏气。 (4)气阀弹簧力匹配不好。弹力过强会使阀片开启迟缓,弹

力太弱则阀片关闭不及时,这些不仅影响了气量,而且会影响到 功率的增加,以及气阀阀片和弹簧的寿命。同时,也会影响到气 体压力和温度的变化。 (5)压紧气阀的压紧力不当。压紧力小,则要漏气,当然太紧 也不行,会使阀罩变形损坏。一般压紧力p=kD2P2π/4,D 为阀腔直径,P2 为最大气体压力,k>1,一般取1.5~2.5,低压时k=1.5~2,高压时k=1.5~2.5。这样取k 值,实践证明是好的。气阀有故障,阀盖必然发热,同时压力也不正常。 三、活塞式压缩机排气温度高的原因有哪些?处理措施有哪些? 造成活塞压缩机机排气温度过高的原因如下: 1、一级吸气温度高。 2、级间冷却器冷却效率低,致使后一级的吸气温度高。 3、气阀有漏气现象,使排出的高温气体又漏回气缸,重新压缩后,排出温度就更高。 4、由于后一级漏气,本级的压缩比升高,致使排气温度升高。 5、活塞环磨损或质量不好,活塞两侧吸、排气之间相互窜气。 6、气缸水套及冷却水管上有水垢、水污,影响冷却效率。 故障解决方法: 1、在滤清器处搭阴棚或用淋水法降低一级吸气温度,夏天尤其就注意。当吸气温度超过额定值时,不能运转。 2、修理中间冷却器。

螺杆压缩机常见故障

螺杆压缩机常见故障 (1)机组电流大;电压太低,接线松动,机组压力超过额定压力,油分离芯堵塞,接触器故障,主机故障,主电机故障。 (2)机组无法启动;保险短,温度开关和坏,接线松动,主电机热继电器动作,风扇电机热继电器动作,变压器坏,PLC等无电源,故障没有消出,控制器故障,主电机故障。 (3)机组排气温度高;机组冷却剂油位低,有冷却器脏,有过滤器堵塞,温控阀故障,断油电磁阀没给电或线圈坏,断油电磁阀膜片破裂或老化,风扇电机故障,冷却风扇坏,排气管道不畅通或排风阻力大,环境温度超过所规定38℃;46℃。温度传感器故障(intellisys 控制机组),压力表故障(继电器控制机组)。 (4)机组油耗大或压缩机含油量大;冷却剂量太多,正确的油位应在机组加载时观察,此时油位高于一半以上,回油管堵塞,回油管的安装不符合要求,机组运行时排气压力太低,油分离芯破裂,分离筒内部隔板损坏,机组有漏油现象冷却剂超期使用。 (5)机组排气压力过高;进气阀坏,液压钢坏,负载电磁阀坏,压力设置太高,压力传感器坏,压力表坏,压力开关坏。

(6)机组压力低;实际用气量大于机组输出量,放气阀故障(加载时无法关闭),进气阀坏,液压钢坏,负载电磁阀坏,最小压力阀卡死,用户管网有泄漏,压力设置太低,压力传感器坏,压力表坏(继电器控制机组),压力开关坏,(继电器控制机组),压力传感器或压力表输入软管漏气,主电机坏。 (7)机组启动时电流大或跳闸;用户空气开关坏,输入电压太低,星※三角转换时间太短(应为10—12秒),液压钢故障,(没有复位)进气阀故障(开启度太大或卡死),主机故障,接线松动。 (8)风扇电机过载;排风阻力大,冷却器堵塞,接线松动,风扇电机热继电器坏,风扇电机坏,风扇变形,时间继电器坏,进气阀故障(开启度太大或卡死),主机故障,接线松动故障,主电机故障。

往复式压缩机常见故障与排除

往复式压缩机常见故障原因及处理 往复式压缩相对于其他形式的压缩机来说运转部件较多,摩擦易损件也多,特别是多级压缩机,介质流程长,介质过流部件多,所以压缩机故障非常频繁,故障产生的原因常常是复杂多样,有些甚至是相互关联。因此必须经过细心的观察研究,甚至要经过多方面的试验,并依靠丰富的实践经验积累,才能判断出产生故障的真正原因所在。正是因为故障原因复杂多样,所以大致应从四个方面进行综合分析: 一、从监测仪表显示的故障例如温度、压力、振动、位移、功率方面显示的故障,首先要先检查仪器仪表监测系统,确保显示准确可靠; 二、由于工艺操作方面的原因造成的故障,例如共振引起的异常振动,介质纯度不够,杂质较多引起的系统堵塞故障等,找到故障根源,才能高效排除设备故障; 三、从设备本身部件的形状、位置、特征发生变化引起的自身故障,通常采用从简单到复杂、从局部到整体的排除方法逐一排除; 四、另外综合以上三点,还要注重平时设备运行时的巡回检查,收集相关设备运行记录信息,进行综合分析。 综合能力:作为设备检修人员来说,应该理解和掌握以下通用和常用的技能点: 一、材料线膨胀系数:(用于计算轴承、联轴器等盘状零部件冷热装配计算;相对运动部件配合间隙计算;) 二、零部件形位公差:(用于零部件装配的检测和控制标准) 三、零部件装配配合公差:(间隙配合、过渡配合、过盈配合,用于零部件装配的检测和控制标准) 四、润滑剂:(用于冷却、清洗、降低摩擦,避免或减少磨损) 精品

五、材料性能:(用于选用材料时考虑其承受温度、压力、耐腐蚀等的性能) 六、具备一定的制图,识图能力。 往复式压缩机常见故障产生的原因及处理措施如下: 精品

螺杆式空压机9种常见故障及处理方法

螺杆式空压机9种常见故障及处理方法 1 、故障现象:机组排气温度高(超过100℃) ·机组润滑油液位太低(应该从油窥镜中能看到,但不要超过一半); ·油冷却器脏,需采用专用清洗剂进行除油垢处理; ·油过滤器芯堵塞,需更换; ·温控阀故障(元件坏),清洗或更换; ·风扇电机故障; ·冷却风扇损坏; ·排风管道不畅通或排风阻力(背压)大; ·环境温度超过所规定的范围(38℃或46℃); ·温度传感器故障; ·压力表是否故障(继电器控制机组)。 2 、故障现象:机组油耗大或压缩空气含油量大 ·润滑油量太多,正确的位置应在机组加载时观察,此时油位应不高于一半; ·回油管堵塞; ·回油管的安装(与油分离芯底部的距离)不符合要求; ·机组运行时排气压力太低; ·油分离芯破裂; ·分离筒体内部隔板损坏; ·机组有漏油现象; ·润滑油变质或超期使用。 3 、故障现象:机组压力低 ·实际用气量大于机组输出气量; ·放气阀故障(加载时无法关闭); ·进气阀故障,无法完全打开; ·最小压力阀卡死,需清洗、重新调整或者更换新件; ·用户管网有泄漏;

·压力开关设置太低(继电器控制机组); ·压力传感器故障; ·压力表故障(继电器控制机组); ·压力开关故障(继电器控制机组); ·压力传感器或压力表输入软管漏气。 4 、故障现象:机组排气压力过高 ·进气阀故障,需要清洗或更换; ·压力开关设置太高(继电器控制机组); ·压力传感器故障; ·压力表故障(继电器控制机组); ·压力开关故障(继电器控制机组)。 5 、故障现象:机组电流大 ·电压太低; ·接线松动,检查有无发热烧焦的痕迹; ·机组压力超过额定压力; ·油分离芯堵塞,需更换; ·接触器故障; ·主机故障(可拆下皮带用手盘车数转检查); ·主电机故障(可拆下皮带用手盘车数转检查),并且测量电机的启动电流。 6 、故障现象:机组无法启动 ·熔断丝坏; ·温度开关坏; ·检查主电机或者主机是否有卡死的现象,以及电机是否反转; ·主电机热继电器动作,需复位; ·风扇电机热继电器动作,需复位; ·变压器坏; ·故障未消除(PLC 控制机组); · PLC 控制器故障。

空压机常见故障及处理方法

本文详细分析了空气压缩机的常见故障现象、故障原因及处理方法。如,在发动机运转,空气压缩机向储气罐充气的情况下,气压表指示气压达不到起步压力值(空气压力不足)。出现这种情况的原因可能是: 1、气压表失灵。 2、空气压缩机与发动机之间的传动皮带过松打滑或空气压缩机到储气罐之间的管路破裂或接头漏气。 3、油水分离器、管路或空气滤清器沉积物过多而堵塞。 4、空气压缩机排气阀片密封不严,弹簧过软或折断,空气压缩机缸盖螺栓松动、砂眼和气缸盖衬垫冲坏而漏气。 5、空气压缩机缸套与活塞及活塞环磨损过甚而漏气。 那么相对应的处理方法是: 1、观察气压表,如果指示压力不足,可让发动机中速运转数分钟,压力仍不见上升或上升缓慢,当踏下制动踏板时,放气声很强烈,说明气压表损坏,这时应修复气压表。 2、如果上述试验无放气声或放气声很小,就检查空气压缩机皮带是否过松,从空气压缩机到储气罐、到控制阀进气管、接头是否有松动、破裂或漏气处。 3、如果空气压缩机不向储气罐充气,检查油水分离器和空气滤清器及管路内是否污物过多而堵塞,如果是堵塞,应清除污物。 4、经过上述检查,如果还找不到故障原因,则应进一步检查空气压缩机的排气阀是否漏气,弹簧是否过软或折断,气缸盖有无砂眼、衬垫是否损坏,根据所查找的故障更换或修复损坏零件。 5、检查空气压缩机缸套、活塞环是否过度磨损。 6、检查并调整卸荷阀的安装方向与标注(箭头)方向是否一致。 具体的各类空气压缩机的故障及排除方法详见下表1——1。 表1——1 空气压缩机的故障及排除方法 故障现象故障原因处理方法 空气压缩机空气压力不足 1、气压表失灵。 2、空气压缩机与发动机之间的传动皮带过松打滑或空气压缩机到储气罐之间的管路破裂或接头漏气。 3、油水分离器、管路或空气滤清器沉积物过多而堵塞。 4、空气压缩机排气阀片密封不严,弹簧过软或折断,空气压缩机缸盖螺栓松动、砂眼和气缸盖衬垫冲坏而漏气。 5、空气压缩机缸套与活塞及活塞环磨损过甚而漏气。 1、观察气压表,如果指示压力不足,可让发动机中速运转数分钟,压力仍不见上升或上升缓慢,当踏下制动踏板时,放气声很强烈,说明气压表损坏,这时应修复气压表。 2、如果上述试验无放气声或放气声很小,就检查空气压缩机皮带是否过松,从空气压缩机到储气罐、到控制阀进气管、接头是否有松动、破裂或漏气处。

螺杆制冷压缩机常见故障1(20200521075305)

LSLGF螺杆式制冷压缩机常见问题 启动负荷大,不能启动或启动后立即停车的故障原因及补救方法: 1、能量调节未至零位,减载至零位。 2、压缩机与电机同轴度过大,重新校正同轴度。 3、压缩机内充满油或液体制冷剂,盘动压缩机联轴节,将机腔内积液排出。 4、压缩机内机壳、转子磨损烧伤,拆卸检修。 5、电源断电或电压过低,(低于额定值8%),排除电路故障,按产品要求供电。 6、压力控制器或温度控制器调节不当,使触点常开,按要求调整触点位置。 7、压差控制器或热继电器断开后未复位,按下复位键。 8、电机绕组烧毁或短路,检修。 9、变压器、接触器、中间继电器线圈烧毁或触点接触不良,拆检、修复。 10、温度控制器调整不当或出故障不能打开电磁阀,调整温度控制器的调定值或更换温控器。 11、电控柜或仪表箱电路接线有误,检查、改正。 12、机组内部压力太高,连接均压阀。 压缩机在运转中突然停车怎么办? 1、吸气压力低于规定压力,应查明原因排除故障。 2、排气压力过高,使高压继电器动作。 3、温度控制器调的过小或失灵,调大控制范围,更换温控器。 4、电机超载使压差控制器或保险丝烧毁,排除故障更换保险丝。 5、油压过低使压差控制器动作,查明原因,排除故障。 6、控制电路故障,查明原因,排除故障。 7、仪表箱接线端松动,接触不良,查明后上紧。 8、油温过高,油温继电器动作,增加油冷却器冷却水量。 机组震动过大的故障原因及补救方法: 1、机组地脚未紧固,塞紧调整垫铁,拧紧地脚螺栓。 2、压缩机与电机同轴度过大,重新校正同轴度。 3、机组与管道固有震动频率相近而共振,改变管道支撑点位置。 4、吸入过量的润滑油或液体制冷剂,停机,盘动联轴节联将液体排出。 排气温度过高的故障原因及补救方法: 1、冷凝器冷却水量不足,增加冷却水量。 2、冷却水温过高,开启冷却塔。 3、制冷剂充灌量过多,适量放出制冷剂。 4、膨胀阀开启过小,适当调节。

相关主题
文本预览
相关文档 最新文档