当前位置:文档之家› shearlet 剪切波的构造

shearlet 剪切波的构造

shearlet 剪切波的构造
shearlet 剪切波的构造

剪切波的构造

Shearlet 是一类新的多尺度几何分析方法,该方法通过对基本函数的膨胀、剪切和平移变换来构造,体现了函数的几何和数学特性,如近几年来许多领域的研究学者所强调的函数的方向性、尺度和振荡等。Shearlet 可以在广义多分辨率分析的框架中研究,这样就可以获得像小波一样的迭代算法,并推广到经典的级联算法。因此Shearlet 变换作为一种新型的多尺度几何分析工具为图像处理领域的研究人员所广泛接受。

1、 Shearlet 及其变换的定义

函数f(x)的连续Shearlet 变换为:

,,(,,),f a s t SH a s t f ψ= (1.1)

其中,

3/411,,()(())a s t x a A B x t ψψ---=- (1.2)

为剪切波函数,a +∈R 为尺度参数,s ∈R 为剪切参数,2t ∈R 为平移参数,

()12,0;0,a a A =是各向异性膨胀矩阵, ()1,;0,1s B =是剪切矩阵。

对任何2121

?(,),0R ξξξξ=∈≠,令ψ满足 21121

???()()()ξ

ψ

ξψξψξ= (1.3) 其中,?ψ

为,,a s t ψ的傅里叶变换,1ψ为连续小波函数,1?ψ∞∈R C (),[][]1?54,1414,54ψ∈--?supp ,2ψ为bump 函数,2?ψ∞∈R C (),[]2?1,1ψ∈-supp ,在区间[]1,1-上20ψ>且21ψ=。由以上定义可得,,()a s t x ψ的傅里叶变换为

()()342122,,1121???i t

a s t a e a a s πξξψξψξψξ--????=+ ? ? ????

?

显然,剪切波的几何性质在频域上更为直观。由1?ψ

和2?ψ的支撑条件很容易看到,,?a s t ψ

有如下的频域支撑: (),,121212

112supp ,:,,,/22a s t s a a a a a ψξξξξξ∧

???????∈--+≤????????????

由上式可知,在不同尺度,,,?a s t ψ

支撑在以原点对称、以s 为斜率的梯形对上;改变剪切参数s , 支撑区域可获得保持面积不变的旋转;旋转区域由尺度参数a

控制,随着a →0,支撑区间逐渐变窄。

图1.1给出了)3,1(),0,4/1(),0,1(-======s a s a s a 时的,,?a s t ψ

频域支撑。 a=1,s=-3

a=1/4,s=0

a=1,s=0

1

ξ2

ξ

图1.1 不同a 和s 值时,,a s t ψ的频域支撑

连续剪切波变换的平移参数可检测到所有奇异点的位置,而剪切参数则可显示出奇异曲线的方向。

2、 Shearlet 的离散化

为了实现剪切波的离散化,令尺度参数()2j j a j =∈Z ,剪切参数

()122

,2j

j k s ka k k ==∈Z ,以及平移参数()2,,,,j k m a s j j m t D m =∈Z 。假定

()2

210

1

?21,

8

j j w w ψ-≥=≥∑ (2.1)

()22

2112?21,1j

j j

k w k w ψ

=--=≤∑

(2.2)

由式(2.1)和式(2.2)可知:对任何()120,ξξ∈C ,有

1

2

2

21

22

(0)

22

12001

00=-221

?

()(2)(2)1j j j

j

j k

j j

j j k k k ξψξψ

ξψξ--∧

---≥≥=-+-=∑∑∑

∑A B 其中,(){}

2012121

?,:18,1ξξξξξ=∈≥≤R C ,如图2.1(a )所示,即函数00()j k

ψξ∧

--A B 形成0C 的一个剖分,如图2.1(b )所示。

由以上的讨论,可知集合

3(0)(0)2224,,00()2():0,22,j

k j j j j k m x x m j k m ψψ??????=-≥-≤≤∈????????

B A Z

是222

00

?(){(

):supp }V L f L f =∈?C C 得一个紧框架。其中, 1022002??= ? ???

Α,01101??

= ???Β 由图2.1(b )可以看出,剪切波的每个元素,,j k m ψ支撑在梯形对上,每一个梯形包含在一个大小近似为222j j ?的盒子里,方向沿着斜率为2j l -的直线。

图2.1(a )水平锥0C 和垂直锥1C (b ) 剪切波的频域剖分图

同样可以构造一个21()V L C 的紧框架,其中,1C 是垂直锥

(){}

2112212

?,:18,1ξξξξξ=∈≥≤R C 。ψ由下式给定 (1)11222

???()()()ξ

ψ

ξψξψξ= (2.3) 则集合

3(1)(1)2224,,11()2():0,22,j

k j j j j k m x x m j k m ψψ??????=-≥-≤≤∈????????

B A Z 是21()V

L C 的一个紧框架。其中, 1

212002??=

? ???

Α, 11011??= ???Β。最后,令()22

L φ∈R 满足:对任何2

ξ∈R ,有

()21

21

2

2

2

(0)

(1)0

1100k=-2k=-2???()()1j j j

j

j

k j k j j φξψ

ξψξ------≥≥++=∑∑∑∑A B A B

上式暗含[]2?supp 18,18φ

∈-,且()2

?φξ=1。因此剪切波集合为 {}

{}

2()

2

2

2

,,()():():0,2

2

,,0,1

m d j j j k m

x x m m x j k m d φφψ

ψ==-∈????≥-≤≤∈=????Z Z

3、剪切波的主要性质

从上述可以看出,剪切波具有以下良好特性:

(1)剪切波具有非常好的局部化特性。在上述剪切波的构造中,剪切波在频域内是紧支撑的,并且在空域内具有快速的衰减特性。

(2)剪切波满足抛物线尺度化特性。每一个元素m k j ,,?ψ

支撑在一个梯形对上,且每个梯形对包含在一个大小近似为j j 222?的盒子内,如图2.1(b )所示。这是因为剪切波具有非常好的局部化特性,在空域内每个m k j ,,ψ本质上支撑在一个大小为j j 222--?的盒子里面。当∞→j 时,元素的支撑区间会逐渐变窄。

(3)剪切波体现了非常高的方向敏感性。元素m k j ,,?ψ

的方向是沿着斜率为j l --2的直线。相应的元素m k j ,,ψ的方向是沿着斜率为j l -2的直线,并且方向的数目随着尺度的不断细化而逐层加倍。

(4)剪切波是空域局部化的。对任意固定的尺度和方向,剪切波可以通过在格

2Z 上平移来获得。

(5)剪切波具有接近最优的稀疏表示性能。

15-天津地区的断裂构造特征-姜夫爵

天津地区的断裂构造特征 The Feature of Fault Structure in Tianjin 姜夫爵陈敏王正科 (Jiangfujue chenmin wangzhengke) 摘要:通过重磁力资料的处理解释,对天津地区的断裂有了一定的认识,认为主控断裂,具有规模大、控制性强、长期继承性活动的特点。Ⅱ、Ⅲ级断裂多为控制、分割构造单元内部不同类型构造(区带)的分界线,对局部构造单元的形成、发展、演化及沉积建造起着重要的控制作用。多数断裂的活动具有阶段性、长期继承活动的特征,其活动性在不同发展阶段或同一阶段内有所不同。 Abstract: The author considers that the fracture in Tianjin area is the main-controlled fault with the feature of large scale,strong control,long-term inherited activity.Ⅱand Ⅲ grade fault are mainly the boundary of different types structure in the interior of control and partition structural units , which play an important controlling roles in the formation, development, evolution and sedimentary formation of part structure units. Most fault activities with phased, long-term succession characteristics are different in different stages or in the same stage. 关键词:天津断裂构造特征 Key words:Tianjin, Fault Structure,Feature 天津地区的地质构造属渤海湾裂谷盆地,为典型的多旋回盆地,构造演化经历了结晶基底形成及沉积盖层发育的两大旋回。从区域上分析,前人以宝坻—宁河断裂为界,将天津地区的构造分为北区和南区(见插图01)。北区构造隶属于燕山褶皱带蓟宝隆褶带,构造主体呈近东西向展布,主控断裂为近东西向;南区构造主体为北东,次级构造发育。 一、布格重力场特征 由布格重力异常平面图(见插图02)上可以看出,布格重力场值宏观表现为东北、西南高,西北、东南低,布格重力场值在-55~14×10-5m/s2之间变化,重力场最高值位于团泊(西北约3㎞处),布格重力场值约为14×10-5m/s2,布格重力场最小值位于武清县北蔡村(北约3㎞)附近,布格重力场值约为-55×10-5m/s2。 由布格重力异常平面图可以看出,布格重力场值宏观形态表现为“两低、两高”,布格重力异常呈北东向高、低相间排列,它充分揭示了宝坻凸起、冀中坳陷(武清凹陷)、沧县隆起、黄骅坳陷的地质构造特征。依据布格重力场的变化特征

常用剪切波波速

常用剪切波 剪切波波速成果图 4 相关公式编辑 剪切波速测试单孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用竖向传感器记录的波形; (2)确定剪切波的时间,应采用水平传感器记录的波形。 压缩波或剪切波从振源到达测点的时间,应按下列公式进行斜距校正: 式中T ——压缩波或剪切波从振源到达测点经斜距校正后的时间( s)(相应于波从孔口到达测点的时间); TL ————压缩波或剪切波从振源到达测点的实测时间(s); K ——斜距校正系数; H ——测点的深度( m ); H0 ——振源与孔口的高差(m ), 当振源低于孔口时,H0 为负值; L ——从板中心到测试孔的水平距离(m)。 时距曲线图的绘制,应以深度H 为纵坐标,时间T 为横坐标。 波速层的划分,应结合地质情况,按时距曲线上具有不同斜率的折线段确定。 每一波速层的压缩波波速或剪切波波速,应按下式计算:

式中V ——波速层的压缩波波速或剪切波波速(m/s ); △H——波速层的厚度(m); △T——压缩波或剪切波传到波速层顶面和底面的时间差(s)。剪切波速测试跨孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用水平传感器记录的波形; (2)确定剪切波的时间,应采用竖向传感器记录的波形。 由振源到达每个测点的距离,应按测斜数据进行计算。 每个测试深度的压缩波波速及剪切波波速,应按下列公式计算: 式中 VP ——压缩波波速( m/s ); VS ——剪切波波速( m/s ); TP1 ——压缩波到达第 1 个接收孔测点的时间(s); TP2 ——压缩波到达第 2 个接收孔测点的时间(s); TS1 ——剪切波到达第 1 个接收孔测点的时间(s); TS2 ——剪切波到达第 2 个接收孔测点的时间(s); S1 ——由振源到第 1 个接收孔测点的距离(m) S2 ——由振源到第 2 个接收孔测点的距离(m) △S——由振源到两个接收孔测点距离之差(m)。[1] 卓越周期的计算 《高层建筑岩土工程勘察规程JGJ72 - 2004 》条文说明 [2]

超声剪切波弹性成像关键技术及应用中国科学院深圳先进技术研究院

超声剪切波弹性成像关键技术及应用 二、推荐单位意见 医学超声既是临床疾病诊断的重要手段,也是医疗影像设备产业中的主要支柱。该项目针对肝硬化和乳腺癌早期无创诊断的重大需求和技术瓶颈,发明了基于超声波力学效应的超声剪切波弹性成像技术,实现了剪切波弹性成像理论创新、技术突破和仪器研制。核心技术与器件经过临床测试和转化,形成了具有自主知识产权的专用超声弹性成像以及融合弹性成像的高端超声影像产品,广泛用于临床诊断,取得了突出的经济效益和社会效益。该项目受到专家和行业的高度评价,是源于基础、技术创新开发和产业转化的链条式重大创新成果。 该项目曾获得2015年度“广东省科学技术奖技术发明一等奖”和“中国科学院科技促进发展奖”。中国科学院决定推荐该项目申报2017年度国家技术发明奖。 推荐该项目为国家技术发明奖二等奖。

项目属生物医学工程学领域。肝脏和乳腺疾病是危害数以亿计国民健康的重大公共卫生问题,尤其是肝硬化和乳腺癌会引起很高致死率,早期诊断是提高治愈率和改善预后的关键。医学超声是肝脏和乳腺重大疾病早期影像筛查的首选方法,但传统B超成像存在肝硬化检测敏感性差、乳腺癌检测特异性差的瓶颈。超声弹性成像利用超声波力学效应实现对人体组织生物力学参数的无创定量测量,是超声影像技术的重大革新,可以为肝硬化和乳腺癌等疾病的临床早期诊断提供关键依据。研发符合我国国情的新一代超声弹性成像技术和装备,推动新型医疗检测诊断技术的广泛应用,对创制高端医疗设备和提高我国重大疾病防治水平均具有重大意义。该项目在国家自然科学基金和科技支撑计划等支持下,历经八年攻关,率先在我国创建了具有完全自主知识产权的“超声剪切波弹性成像关键技术及应用体系”,取得主要技术发明点如下: 1.发明了声辐射力诱导剪切波及定量超声弹性成像理论和方法,为成像设备研发提供理论基础和核心技术支持。首创基于时域有限差分法结合动量张量理论的生物组织中声辐射力计算方法,实现了对声辐射力诱导剪切波的精准控制;建立了基于剪切波传播速度的生物力学参数测量模型;发明了利用尺度不变特征点和希尔伯特变换的实时弹性成像方法,弹性模量测量精度可达±0.5kPa。 2.研制了剪切波超声弹性成像专用核心部件和系列产品,实现了国内自主创新高端超声设备的跨越发展。发明了“声辐射力-成像”双模超声探头,研制了新型快速散热结构,解决了探头在产生声辐射力时温度高、寿命短的难题;发明了低频振荡复合超声探头,解决了振动源干扰回波信号的难题,测量深度达15cm;研制了基于外源式和内源式剪切波的超声弹性成像原理样机;自主研发了具有弹性成像功能的新型超声肝硬化检测仪和彩色超声成像仪两大系列产品。 3.建立了利用超声弹性成像技术检测肝硬化和乳腺癌的方法和体系,为该类重大疾病的早期筛查和诊断开辟了新途径。通过产学研协同技术创新和推广应用,创建了基于超声弹性成像新技术的两种重大疾病早期筛查和诊断评估体系:面向中国人特征的肝硬化早期诊断标准和量化分级体系,及结合病变组织和其浸润边界硬度信息的乳腺癌判别体系,诊断准确率均达到90%以上。 该项目成果获知识产权56项,其中PCT专利5项,发明专利36项,实用新型10项,外观设计3项,软件著作权2项;发表SCI论文30余篇;起草国家标准1项;获2015年广东省科学技术奖一等奖、2015和2016年中国专利优秀奖和2014年中国产学研合作创新成果奖;完成人获2013年国家杰出青年科学基金和2014年陈嘉庚青年科学奖。 该项目产品取得国家三类医疗器械注册证、FDA和CE认证,被评为国家战略性创新产品;近3年累计销售约3800台,其中500余台进入三甲医院,出口1600余台,实现8.74亿元销售额和2.99亿元利润;在国内外1000余家医院推广应用,累计检查3000余万人次,诊断患者近20万人次。项目成果取得了显著的经济效益和社会效益,使我国高端医学超声设备步入世界前列。

【CN109961411A】非下采样剪切波变换医学CT图像去噪方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910186481.2 (22)申请日 2019.03.12 (71)申请人 浙江工业大学之江学院 地址 312030 浙江省绍兴市柯桥区柯华路 958号 (72)发明人 张聚 陈坚 周海林 吕金城  (74)专利代理机构 杭州天正专利事务所有限公 司 33201 代理人 王兵 黄美娟 (51)Int.Cl. G06T 5/00(2006.01) G16H 50/20(2018.01) (54)发明名称非下采样剪切波变换医学CT图像去噪方法(57)摘要非下采样剪切波医学CT图像去噪方法,包括如下步骤:步骤1)医学CT扫描图像模型建立;步骤2)对CT图像进行NSST多尺度分解和多方向分解得到一个低频子带和多个高频子带;步骤3)使用快速几何纹理分解将原图像分解为平滑的几何部分和包含噪声的纹理部分,并取几何部分分量和低频子带相融合;步骤4)采用三边滤波法降噪处理融合后的新低频分量,得到新的低频子带;步骤5)采用自适应阈值收缩法处理经剪切波变换后的高频子带系数;步骤6)结合处理后的低频分量和高频分量进行NSST重构,得到去噪后的医学CT图像。本发明通过实验分析与传统的去噪领域算法进行了对比,有效的应用在医学CT去噪领域, 能够更好的有利于医师的分析诊断。权利要求书3页 说明书8页 附图4页CN 109961411 A 2019.07.02 C N 109961411 A

1.非下采样剪切波变换医学CT图像去噪方法,包括以下步骤: 步骤1)医学CT扫描图像模型建立; 医学CT图像即计算机断层扫描,X射线从几个不同的方位和角度扫描人体固定部位交由计算机处理扫描得到的不同横断面建立图像,从而让医生和患者等看到特定检查区域的扫描对象,进而进行医学判断;但是强度过低的发射电流会产生大量的高斯噪声,使得图像质量降低,会影响观察判断结果; 可分两部分建立CT图像的模型,这两部分分别是医学观察所需的人体组织反射信号以及阻碍医学观察的噪声信号,其中噪声信号还可以分为乘性噪声和加性噪声,从影响观察的角度看来加性噪声相比与乘性噪声对CT图像的影响非常微小,所以在处理中一般忽略加性噪声;因此CT电信号的通用模型就表示为: o(x ,y)=p(x ,y)q(x ,y) (1) 式中,x表示CT图像的横坐标,y表示图像的纵坐标,p(x ,y)表示无噪信号,q(x ,y)表示乘性噪声; 由于相加的噪声模型比相乘噪声的模型更容易分离,所以对以上式(1)的模型进行对数变换变换成相加的模型,表示为: log(o(x ,y))=log(p(x ,y))+log(q(x ,y)) (2) 步骤2)对CT图像进行NSST多尺度分解和多方向分解; 首先把对数变换后的便于噪声分离的CT图像进行多尺度分解,多尺度分解后得到一张和原图等大小的低频CT图像分量和多张同样与原图等大小的高频CT图像分量;在这一步骤中不处理低频分量,对其处理将在步骤3)中进行,经尺度分解得到的各个高频分量子带使用剪切滤波器组处理,即使用剪切滤波器组对各个子带进行方向分解; 步骤3)使用快速几何纹理分解将原图像分解为平滑的几何部分和包含噪声的纹理部分; 快速几何纹理分解将原图像分解为平滑的几何部分以及包含噪声的纹理部分;快速几何纹理分解通过使用高通滤波器在保留图像的主要特征的基础上可以有效地提取纹理,通过建立一个包含局部指示器的非线性滤波器来确定图像的局部是属于纹理部分还是属于几何部分;其纹理部分和几何部分的主要区别是:纹理区域的主要特征是因为其振荡所造成的高度全变分差,相反几何局部区域的主要特点是其全变差不会受到低通滤波的影响;其局部全变分可以表示为如下式子: LTV σ(f)(x):=L σ*|Df|(x) (3) 其中σ表示纹理尺度,|Df|表示为变分差,L σ*|Df|即为局部范围的变分差,在利用局部 全变分降噪的过程中其相对局部折减率可以表示为: 反映在图像上的意义可以理解为函数的局部振荡行为, 当折减率接近于0的时候就有:也就是说在折减率接近于0的时候低通滤波器对局部全变差的减小影响非常小,如果 权 利 要 求 书1/3页2CN 109961411 A

土层等效剪切波速度

一、前言 受※的委托,※省※院于※年※月※日对※工程拟建场地进行单孔波速法、地脉动测试。该场地位于※路※号,根据场地条件及《建筑抗震设计规范》(GB50011-2001)等有关规定,本场地共完成K16#、K37#、K69#、K75#、K82#、K96#六个孔剪切波速及场地脉动测试工作。测试的目的是对拟建建筑场地土的类型及建筑场地类别进行划分,以确定建筑抗震有利、不利和危险地段。 本项目工作技术要求: 1、 测定场地20米以内的等效剪切波速; 2、 测定场地地脉动; 3、 确定场地土类型及建筑场地类别。 二、检测设备、基本原理 1、检测设备 检测设备采用武汉建科科技有限公司制造的WAVE2000场地振动测试仪,检测设备及现场联接见图1。 1-场地振动测试仪 2-重物 3-木板 4-外触发传感器 5-三分量探头 6-探头信号传输线 7-外触发传感器信号线 8-钢丝绳(或尼龙绳) 图1 单孔波速测试示意图 2、剪切波速及地脉动测试基本原理 单孔剪切波速法(检层法)测试基本原理: 用木锤或适宜的铁锤分别水平敲击水平放置孔口的木板两端,地表产生的剪切波经地层传播,由孔内三分量检波器的水平向检波器接收SH 波信号,然后读取正、反两方向的实测波形,找出波形交叉点,读取初至波传播时间,进而计算出各测点(层)剪切波速值及其它相关参数。 地脉动测试原理: 地脉动测试时应选择外界环境干扰极小的深夜进行。测试时将地脉动拾振器放置于平整场地地表土上,一般按东西向EW 、南北向SN 、垂直向VR 三个方向放置。测试时由三分量拾振器分别接收三个方向的脉动信号,信号再通过放大,采集仪记录,即可在时域曲线上分析信号幅值大小,从频率域曲线上分析其频率组成并确定场地卓越周期值。 土层的等效剪切波速,按下列公式计算: ∑=÷=÷=n i si i sc v d t t d v 10) (

基于图像质量评价参数的非下采样剪切波域自适应图像融合

第44卷 第1期吉林大学学报(工学版) Vol.44 No.12014年1月Journal of Jilin University(Engineering and Technology Edition) Jan.2014基于图像质量评价参数的非下采样 剪切波域自适应图像融合 高印寒1,陈广秋2,3,刘妍妍2,3 (1.吉林大学汽车仿真与控制国家重点实验室,长春130022;2.吉林大学仪器科学与电气工程学院,长春 130061;3.长春理工大学电子信息工程学院,长春130022) 摘 要:为了提升多源图像融合精度,提出了一种基于图像质量评价参数的非下采样剪切波 (NSST)域图像自适应融合方法。利用非下采样剪切波变换对源图像进行多尺度、多方向分 解,低频子带图像采用结构相似度与空间频率两种图像评价参数作为系数权值,高频子带图像 应用绝对值与邻域平均能量一致性选择的融合策略。应用非下采样剪切波逆变换重构图像。 采用多组多源图像进行融合实验,并对融合结果进行了客观评价。实验结果表明:本文方法在 主观和客观评价上均优于其他多尺度融合方法,具有更好的融合效果。 关键词:信息处理技术;非下采样剪切波;融合策略;客观评价;平移不变性 中图分类号:TN911 文献标志码:A 文章编号:1671-5497(2014)01-0225-10 DOI:10.13229/j.cnki.jdxbgxb201401037 Adaptive image fusion based on image quality assessment parameter in NSST system GAO Yin-han1,CHEN Guang-qiu2,3,LIU Yan-yan2,3 (1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun130022,China;2.Collegeof Instrumentation &Electrical Engineering,Jilin University,Changchun130061,China;3.School of Electronic andInformation Engineering,Changchun University of Science and Technology,Changchun130022,China) Abstract:To enhance the multi-source image fusion accuracy,an adaptive fusion method based onimage quality assessment parameter in Nonsubsampled Shearlet Transform(NSST)domain isproposed.The Source images are decomposed to subband images with multi-scale and multi-directionin NSST.The low frequency subband fusion rule is based on the structural similarity index withspatial frequency as coefficient weights.For the high frequency subands,the fusion rule of coefficientabsolute value with neighborhood average energy consistency selection is adopted.The fused low andhigh frequency coefficients are reconstructed to image by nonsubsampled shearlet inverse transform.Fusion experiments are conducted with several sets of different modality images,and the objectiveassessment of fused results is done.The experiment results show that the proposed algorithmperforms better in subjective and objective assessments than a few existing multi-scale fusion 收稿日期:2012-12-12. 基金项目:高等学校博士学科点专项科研基金项目(20110061110059);吉林省科技发展计划重点项目(20110326).作者简介:高印寒(1951-),男,教授,博士生导师.研究方向:车辆测试技术及机器视觉.E-mail:yinhan@jlu.edu.cn通信作者:陈广秋(1977-),男,讲师,博士研究生.研究方向:图像配准与融合.E-mail:guangqiu_chen@126.com

常用剪切波波速

剪切波速测试单孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用竖向传感器记录的波形; (2)确定剪切波的时间,应采用水平传感器记录的波形。 压缩波或剪切波从振源到达测点的时间,应按下列公式进行斜距校正: 式中T——压缩波或剪切波从振源到达测点经斜距校正后的时间(s)(相应于波从孔口到达测点的时间); TL————压缩波或剪切波从振源到达测点的实测时间(s); K——斜距校正系数; H——测点的深度(m); H0——振源与孔口的高差(m),当振源低于孔口时,H0为负值; L——从板中心到测试孔的水平距离(m)。 时距曲线图的绘制,应以深度H为纵坐标,时间T为横坐标。 波速层的划分,应结合地质情况,按时距曲线上具有不同斜率的折线段确定。 每一波速层的压缩波波速或剪切波波速,应按下式计算: 式中V——波速层的压缩波波速或剪切波波速(m/s); △H——波速层的厚度(m); △T——压缩波或剪切波传到波速层顶面和底面的时间差(s)。 剪切波速测试跨孔法

压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用水平传感器记录的波形; (2)确定剪切波的时间,应采用竖向传感器记录的波形。 由振源到达每个测点的距离,应按测斜数据进行计算。 每个测试深度的压缩波波速及剪切波波速,应按下列公式计算: 式中VP——压缩波波速(m/s); VS——剪切波波速(m/s); TP1——压缩波到达第1个接收孔测点的时间(s); TP2——压缩波到达第2个接收孔测点的时间(s); TS1——剪切波到达第1个接收孔测点的时间(s); TS2——剪切波到达第2个接收孔测点的时间(s); S1——由振源到第1个接收孔测点的距离(m) S2——由振源到第2个接收孔测点的距离(m) △S——由振源到两个接收孔测点距离之差(m)。[1]卓越周期的计算 《高层建筑岩土工程勘察规程JGJ72-2004》条文说明 [2] 规范重点摘录 剪切波速土的类型划分和剪切波速范围

离散可分离剪切波变换(DSST)及其数值计算

离散可分离剪切波变换及其数值计算 1、离散可分离剪切波变换DSST Wang-Q Lim 在2010年提出了离散可分离剪切波变换(Discrete Separable Shearlet Transform ,DSST ),其中一个主要特征就是可以选择可分离的尺度函数 ()22L φ∈R 及剪切波生成函数()(0)22L ψ∈R ( ()(1)22L ψ∈R ),即函数可表示为 ()()()1212,x x x x φφφ=,()()()(0)121112,x x x x ψψφ=,()()(1)(0)1221,,x x x x ψψ= 下面将在水平锥0C 上构造可分离剪切波生成函数()22L ψ∈R 以及与之相关的尺度函数()22L φ∈R ,垂直锥1C 同理。令()2L φ∈R 是一维紧支撑尺度函数,并选择某个相适的滤波器h (所需条件将在后面讨论)使其满足: 1111111()()2(2)n x h n x n φφ∈=-∑Z (1) 如果与之相关的一维紧支撑小波函数()2L ψ∈R ,可用相适的滤波器g 表示为: 1111 111()() 2(2) n x g n x n ψφ∈= -∑Z (2) 那么,此剪切波生成函数可表示为 ()()()121112,x x x x ψψφ= (3) 尺度函数可表示为 ()()()121112,x x x x φφφ= (4) 对于固定的J > 0,假设函数()22f L ∈R 可表示为 ()()()11222 22 ,2J J J J n f x f n x n x n φ∈= --∑Z (5) 这是一个数字实现的常规假设,尺度系数可被看做f 的抽样值,事实上,通过选择合适的φ可使()()2J J f n f n -=。由上面的讨论,可知剪切波系数 () ,,,0,1j k m f j J ψ=-可通过下式计算 ()() () ,,2,0,2 ,,j k m j j m k f f S ψψ-=?? (6) 若2j 不为整数,则需选取22j j ????????或。式(6)显示了剪切波系数,,,j k m f ψ

常用剪切波波速

常用剪切波 剪切波速测试单孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用竖向传感器记录的波形; (2)确定剪切波的时间,应采用水平传感器记录的波形。 压缩波或剪切波从振源到达测点的时间,应按下列公式进行斜距校正: 式中T ——压缩波或剪切波从振源到达测点经斜距校正后的时间(s)(相应于波从孔口到达测点的时间); TL ————压缩波或剪切波从振源到达测点的实测时间(s); K ——斜距校正系数; H ——测点的深度(m); H0 ——振源与孔口的高差(m),当振源低于孔口时,H0为负值; L ——从板中心到测试孔的水平距离(m)。 时距曲线图的绘制,应以深度H为纵坐标,时间T为横坐标。 波速层的划分,应结合地质情况,按时距曲线上具有不同斜率的折线段确定。 每一波速层的压缩波波速或剪切波波速,应按下式计算: 式中V——波速层的压缩波波速或剪切波波速(m/s); △H——波速层的厚度(m); △T——压缩波或剪切波传到波速层顶面和底面的时间差(s)。

剪切波速测试跨孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用水平传感器记录的波形; (2)确定剪切波的时间,应采用竖向传感器记录的波形。 由振源到达每个测点的距离,应按测斜数据进行计算。 每个测试深度的压缩波波速及剪切波波速,应按下列公式计算: 式中VP——压缩波波速(m/s); VS——剪切波波速(m/s); TP1——压缩波到达第1个接收孔测点的时间(s); TP2——压缩波到达第2个接收孔测点的时间(s); TS1——剪切波到达第1个接收孔测点的时间(s); TS2——剪切波到达第2个接收孔测点的时间(s); S1——由振源到第1个接收孔测点的距离(m) S2——由振源到第2个接收孔测点的距离(m) △S——由振源到两个接收孔测点距离之差(m)。[1]卓越周期的计算 《高层建筑岩土工程勘察规程JGJ72-2004》条文说明 [2] 规范重点摘录编辑 剪切波速土的类型划分和剪切波速范围

常用剪切波波速

常用剪切波波速 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

相关公式 剪切波速测试单孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用竖向传感器记录的波形; (2)确定剪切波的时间,应采用水平传感器记录的波形。 压缩波或剪切波从振源到达测点的时间,应按下列公式进行斜距校正: 式中T——压缩波或剪切波从振源到达测点经斜距校正后的时间(s)(相应于波从孔口到达测点的时间); TL————压缩波或剪切波从振源到达测点的实测时间(s); K——斜距校正系数; H——测点的深度(m); H0——振源与孔口的高差(m),当振源低于孔口时,H0为负值; L——从板中心到测试孔的水平距离(m)。 时距曲线图的绘制,应以深度H为纵坐标,时间T为横坐标。 波速层的划分,应结合地质情况,按时距曲线上具有不同斜率的折线段确定。 每一波速层的压缩波波速或剪切波波速,应按下式计算: 式中V——波速层的压缩波波速或剪切波波速(m/s); △H——波速层的厚度(m); △T——压缩波或剪切波传到波速层顶面和底面的时间差(s)。

剪切波速测试跨孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用水平传感器记录的波形; (2)确定剪切波的时间,应采用竖向传感器记录的波形。 由振源到达每个测点的距离,应按测斜数据进行计算。 每个测试深度的压缩波波速及剪切波波速,应按下列公式计算: 式中VP——压缩波波速(m/s); VS——剪切波波速(m/s); TP1——压缩波到达第1个接收孔测点的时间(s); TP2——压缩波到达第2个接收孔测点的时间(s); TS1——剪切波到达第1个接收孔测点的时间(s); TS2——剪切波到达第2个接收孔测点的时间(s); S1——由振源到第1个接收孔测点的距离(m) S2——由振源到第2个接收孔测点的距离(m) △S——由振源到两个接收孔测点距离之差(m)。[1]卓越周期的计算 《高层建筑岩土工程勘察规程JGJ72-2004》条文说明 [2] 规范重点摘录 剪切波速土的类型划分和剪切波速范围

高频面波方法

高频面波方法 摘要:自20世纪80年代起通过多道地震记录系统获取高频(≥2 Hz)瑞雷面波数据以求取近地表地球物理中剪切(S)波速度的方法开始被使用。这篇综述文章讨论的是最近15年来堪萨斯地质调查所与中国地质大学的科研团队在高频面波技术中取得的主要成果。面波的多道分析方法(MASW)是一种非入侵式的确定近地表剪切波速度的声波勘探方法。MASW 与直接测井方法的结果只有不到15%的差异。研究表明进行面波的高阶模式和基阶模式的同步反演能够提高模型分辨率和勘探深度。另外一个重要的地震参数,品质因子(Q),也能利用MASW方法通过反演瑞雷面波的衰减系数得到。一个反演模型可以通过阻尼最小二乘法求得,反演模型解范围内的最佳阻尼因子由模型分辨率矩阵和模型协方差矩阵加权求和的迹构成的目标函数所确定。目前的科技进展包括近地表介质中高频瑞雷面波建模,其为时间-偏移域中的浅层地震和瑞雷面波反演打下了基础。以任意检波器排列方式获取数据做频率-速度域的频散能量高分辨率成像的技术为3维面波勘探打开了窗口。成功的面波模式分离为获取高水平分辨率剪切波速度剖面提供了有价值的技术手段。 关键词:瑞雷面波,频散,高阶模式,模式分离,地震建模,模型验证 前言 面波具有导波和频散的性质。瑞雷面波是沿着自由表面传播的面波,例如大地-空气或者大地-水的交界面,并且往往以相对低的速度,低的频率,以及高振幅为特征。瑞雷面波是纵波和Sv波干涉行成的。在均匀介质中基阶模式瑞雷面波质点运动轨迹是从左到右沿着自由表面按照椭圆轨道逆时针方向运动。随着深度的增加,到了足够深度时质点运动轨迹变成了顺时针方向并且仍然是椭圆轨道。质点的运动轨迹被约束到了与波传播方向一致的垂直面上。由于固体的均匀半空间的原因,瑞雷面波不是频散的并且当泊松比等于0.25时以几乎0.9194Vs(剪切波速度)的速度传播,这里的Vs(剪切波速度)是半空间的横波速度(sheriff and Geldart,1983)。然而,由于在固体均匀半空间上覆盖了一层速度较低的层,当瑞雷面波的波长为该层厚度的1到30倍范围内是,瑞雷面波会发生频散现象(Stokoe et al。,1994)。在给定模型中更长的波长穿透更深的深度,一般具有更大的相速度,并且对深层的弹性性质更敏感(Babuska and Cara,1991)。相反地,相对短的波长对浅层的物理性质更敏感。因此,在一个特定阶数的面波中,出现了一个特定的相速度对应一个特定的波长的面波频散现象。 剪切波速度能够通过反演面波(瑞雷面波或者拉夫面波)的频散相速度得到(e.g., Dorman and Ewing, 1962)。近地表剪切波速度也能通过反演高频瑞雷面波得到。一些地震方法利用瑞雷面波的频散获取近地表介质的剪切波速度。Stokoe和Nazarian(1983)以及Nazarian et al.(1983)提出了一种面波勘探方法,面波的谱分析(SASW),其通过分析瑞雷面波的频散曲线生成近地表的剪切波速度剖面。Matthews et al.(1996)用详细的图表总结了SASW方法和连续面波法(CSW)(Tokimatsu et al.,1991; Abbiss, 1981)。在最近的15年,堪萨斯大学的堪萨斯地质调查所(KGS)开发了一种叫做面波多道分析(MASW)的方法,这种方法能追溯到Song et al.(1989)的研究成果中。这种方法包括高频(≥2 Hz)宽频瑞雷面波的采集,瑞雷面波中频散曲线的提取,获取近地表剪切波速度剖面的频散曲线反演。随着地球物理团队在地质和地球物理问题上的应用,MASW方法引起了越来越多的关注,因为这种方法具有非侵入性,非危险性,低成本,以及相对高的精度。它成为了近地表地质,环境,工程应用中获取剪切波速度的主要方法。 在地下水,工程,环境研究,以及石油勘探中,近地表介质的弹性性质与其对地震波传播的影响是重要的研究目标。剪切波速度是建筑工程中的关键参数。作为一个案例,Imai 和Tonouchi(1982)研究了路堤,以及冲击层,洪积层,和第三纪岩层中的纵波速度和剪切波速度,证明了在这些沉积层中剪切波速度与N值的一致性。(打桩的锤击数;Clayton et

建筑场地剪切波速及地脉动测试报告

武汉建科科技有限公司WA VE2000场地振动测试仪 (以下内容可根据实际情况进行增加,正式报告中须去掉本规定格式中的注释红字)建筑场地剪切波速及地脉动 测试报告 工程名称: 工程地点: 委托单位: 检测日期: 报告编号: ※省※研究院 ※年※月※日

※工程 单孔波速法地脉动测试报告测试人员: 负责人: 报告编写: 校核: 审核: 审定: ※省※研究院 (盖章) ※年※月※日

一、前言 受※的委托,※省※院于※年※月※日对※工程拟建场地进行单孔波速法、地脉动测试。该场地位于※路※号,根据场地条件及《建筑抗震设计规范》(GB50011-2001)等有关规定,本场地共完成K16#、K37#、K69#、K75#、K82#、K96#六个孔剪切波速及场地脉动测试工作。测试的目的是对拟建建筑场地土的类型及建筑场地类别进行划分,以确定建筑抗震有利、不利和危险地段。 本项目工作技术要求: 1、 测定场地20米以内的等效剪切波速; 2、 测定场地地脉动; 3、 确定场地土类型及建筑场地类别。 二、检测设备、基本原理 1、检测设备 检测设备采用武汉建科科技有限公司制造的W A VE2000场地振动测试仪,检测设备及现场联接见图1。 1-场地振动测试仪 2-重物 3-木板 4-外触发传感器 5-三分量探头 6-探头信号传输线 7-外触发传感器信号线 8-钢丝绳(或尼龙绳) 图1 单孔波速测试示意图 2、剪切波速及地脉动测试基本原理 单孔剪切波速法(检层法)测试基本原理: 用木锤或适宜的铁锤分别水平敲击水平放置孔口的木板两端,地表产生的剪切波经地层传播,由孔内三分量检波器的水平向检波器接收SH 波信号,然后读取正、反两方向的实测波形,找出波形交叉点,读取初至波传播时间,进而计算出各测点(层)剪切波速值及其它相关参数。 地脉动测试原理: 地脉动测试时应选择外界环境干扰极小的深夜进行。测试时将地脉动拾振器放置于平整场地地表土上,一般按东西向EW 、南北向SN 、垂直向VR 三个方向放置。测试时由三分量拾振器分别接收三个方向的脉动信号,信号再通过放大,采集仪记录,即可在时域曲线上分析信号幅值大小,从频率域曲线上分析其频率组成并确定场地卓越周期值。 土层的等效剪切波速,按下列公式计算: ∑=÷=÷=n i si i sc v d t t d v 10) (

剪切波报告汇总

道真自治县道真中学第二食堂单孔法Ps波速度检层测试报告 工程名称:道真自治县道真中学第二食堂 测试地点:工地现场 测试日期:2016年9月 勘察单位:贵州鼎盛岩土工程有限公司 证书等级:工程勘察专业类甲级 证书编号:B152004778-6/4 提交日期: 2016年9月

道真自治县道真中学第二食堂单孔法Ps波速度检层测试报告 项目负责:陈简 报告编写:罗仿超 审核:姚本焱 审定:曾昭涤 总工程师:秦启明 总经理:袁万骅 勘察单位:贵州鼎盛岩土工程有限公司 证书等级:工程勘察专业类甲级 证书编号:B152004778-6/4 提交日期: 2016年9月

目录 一、工程概况 二、场地工程地质简况及测试条件 1、场地工程地质简况 2、场地岩土体的微振动、Vs波特征及测试条件 三、仪器选用及测试方法 (一)仪器选用 (二)测试方法 四、测试分析结果 1、动弹性参数的计算 2、土层等效剪切波(Vse)的计算 3、场地类别划分 4、测试分析结果 五、结论 附件 1、单孔波速测试测点原始数据表 2、单孔波速测试测点计算数据表 3、单孔波速测试分层结果数据表 一、工程概况

拟建道真自治县道真中学第二食堂位于道真县城,交通便利,地理位置优越。受打钻自治县道真中学的委托,我公司测试人员于2016年8月对该场地具有代表性的2个勘探钻孔进行了Ps波测试(测试位置见钻孔平面布置图),其主要目的为: 1、测试纵、横波在钻孔土体的传播速度; 2、利用Vs、Vp值计算场地土体的小应变条件下的动弹参数,以供设计参考; 3、利用场地剪切波(Vs波)的等效波速值(Vse),对场地土的类型进行划分,进而对场地类别进行划分: 测试过程及资料处理的技术依据为: 《岩土工程勘察规范》(GB50021-2001)2009年版; 《工程岩体试验方法标准》(GB/T50266-99); 《建筑抗震设计规范》(GB50011—2010); 《地基动力特性测试规范》(GB/T50269-97); 《水电水利工程物探规程》(DL/T5010-2005); 《水利水电工程物探规程》(SL/326-2005)等。 二、场地工程地质简况及测试条件 1、场地工程地质简况 根据地质调查和钻探揭露,场地覆盖土层有素填土(Q4ml)红粘土(Q4el),下伏基岩为三叠系下统茅草铺组(T1m)石灰岩,岩层倾向100°,倾角8°。 2、场地岩土体的微振动、Vs波特征及测试条件 按《建筑抗震设计规范》(GB50011—2010),一般情况下,应按地面至剪切波速大于500 m/s,且其下卧各岩土的剪切波速均不小于500 m/s的土层顶面距离确定。 场地局部地段回填土结构较松散,对激发的应力波有较强的衰减和吸收作用,附近的车辆和施工作业也对测试数据带来一定的干扰,在资料分析过程中,通过调整信号增益和对信号进行滤波分析处理。 三、仪器选用及测试方法

剪切波速汇报

剪切波速 剪切波速是区别土动力学和土静力学的一个主要物理量。它反映了土在动力影响下的惯性作用和波传行为。因此也是反映土体在地震作用下行为反应的一个重要物理量。土层的剪切波速Vs只与组成土层的骨架的性质有关, 而与孔隙中的充填物无关, 这是由剪切波的运动特点所决定的, 剪切波是由介质的质点垂直于传播方向的振动形式向前运动的,即后一个质点的振动是由前一个质点的振动产生的剪切作用力所推的。剪切波的这一传播特性决定了它不能在气体或液体中传播, 因此, 剪切波速Vs与介性中是否含有气体或液体无关, 而只与土层骨架的性质有关。土层的骨架性质变化是一个漫长的缓慢的渐变过程, 其性质是相对稳定的。对于一种特定的土层而言, 它有比较稳定的剪切波速值, 它几乎不受时间及自然条件的影响。所以, 剪切波速是衡量土层物理力学性质的一项硬指标。 在工程试验中,通常假定所试验的土层位均匀土层,或者各层均匀土体,在这种土体中,远离任何边界的波动,存在两种基本莫泰:压缩波(P波)和剪切波(S波),他们的传播速度取决于弹性介质的刚度和质量密度,即: V p=M = E1?υ (1)V s= G ρ(2) 其中ρ为土体质量密度,M、G和E分别是约束、剪切模量和杨氏模量,υ为泊松比。 而在均质各向同性线弹性材料具有独特的弹性性质,因此知道弹性模量中的任意两种,就可由换算公式求出其他所有的弹性模量,由以上两公式知,我们以杨氏模量E和泊松比υ为变量,那么剪切模量G就可以表示为: G= E 2(1+υ)(3) 那么(2)式可变为: V s=E1 (4) 对比(1)式和(4)式,压缩波(P波)波速V p和和剪切波(S波)波速V s有公共因子 Eρ,因此归一化后,可得压缩波(P波)波速V p和和剪切波(S波)波速V s随泊松比变化的趋势图(图1),土层泊松比的取值范围是0.3~0.5。

FLAC3D动力分析中的人工透射边界和地震波施加方法

FLAC3D动力分析中的人工透射边界和地震波施加方法从动力学的角度上看,动力响应是确定惯性(质量效应)和阻尼起着重要作用时质点或质点系动力学特性和响应的技术,它包括自振、冲击、谐振动、随机振动等分支。动力学最早应用于结构抗震设计,自上世纪50年代逐步借鉴到岩土抗震设计中。动力发展历程可总结为静力理论,反应谱理论和时程分析理论三个阶段。我们知道,地震的三要素为振幅、频谱和持时。静力理论只考虑了地震引起的最大振幅,属于拟静力法;反应谱理论考虑了振幅和频谱,但在设计中仍然把地震惯性力视为静力,只能算准动力法;时程分析理论考虑了振幅、频谱和持时,是严格意义上的动力分析法。 通常时程动力分析选用的地震波来自:(1)根据设计反应谱人工合成的场地波;(2)场地附近地震台记录的实测地震波。由于实测地震波中掺杂了许多噪声和干扰信号,因此在使用前必须滤波去噪、频谱分析、积分变换和基线修正。滤波去噪是为了消除噪声和高频波,频谱分析是为了检测地震波持时内所含的频率分量和振幅,积分变换可以转换地震加速度波为速度波或位移波,基线修正则是为了消除非平稳地震波中的弹性位移零线漂移、基线偏移等现象,大崎顺彦在其著作《地震动的谱分析入门》中做了详细而生动的说明,并附出了地震波处理的Fortran源程序。鉴于FLAC3D软件是岩土领域广泛应用的时程动力分析软件,这里以著名的埃尔森特罗波(El Centro)为输入激励,研究基于FLAC3D软件的地震波处理和计算方法。网站“http://www. https://www.doczj.com/doc/af9142254.html,/data.htm”提供了31秒的El Centro加速度波数据。有兴趣者可按《地震动的谱分析入门》的方法选取了前8秒的地震加速度波(共401个记录),然后补零配成了512个记录的加速度波以采用快速傅里叶变换法,首先采用FLAC3D Fish函数库的filter函数进行滤波去噪,然后采用fft函数进行快速傅里叶变换,得到傅里叶加速度谱和功率谱,接着采用integrate函数积分两次求得速度波和位移波,并计算地震位移零线漂移值。具体可细查flac中的帮助和fish命令流。由于频谱分析,看似混乱无章的地震波也可以分解成不同频率不同振幅的简谐波的组合,因此,只要我们把握了最简单的简谐波动力响应,对地震波时程响应分析也一目了然了。 动力计算是较复杂的力学分析过程,影响因素包括:输入激励(频谱、振幅、持时)、岩土参数、本构模型、透射边界、模型网格、求解方法等。直接进行一个复杂边坡的动力计算,由于影响计算结果的因素较多,不利于工程师把握本质的规律,以致无法判定结果的适宜性。对于大型边坡工程来说,抗震分析需要引起足够的重视,每一步动力计算和响应模拟都必须经得起考证。因此,本文首先从概念模型出发(简单边坡模型),定量分析边坡的动力响应规律,采用理论解进行验证,考证动力计算过程的正确性。在此基础上,再计入更复杂的地质条件、边界条件和实际边坡模型,最终达到合理可靠地应用于实际边坡工程中的愿景。 此主题相关图片如下:边坡概念模型.jpg 可以从四种典型的概念边坡模型来理解边坡动力响应,①代表退化为一竖直柱体边坡;②代表发育有一个软弱夹层的竖直柱体边坡;③代表发育有一软弱夹层的边坡;④代表发育两组正交优势节理的边坡。①、②模型中坡顶仅一个自由面,是最简单的概念模型;①、②、③模型都是考虑少数结构面的连续介质模型,是目前数值方法中最常用的形式,本文拟采用Flac3D软件模拟;④模型考虑了较多的结构面,常规有限

相关主题
文本预览
相关文档 最新文档