当前位置:文档之家› FLAC3D动力分析中的人工透射边界和地震波施加方法

FLAC3D动力分析中的人工透射边界和地震波施加方法

FLAC3D动力分析中的人工透射边界和地震波施加方法
FLAC3D动力分析中的人工透射边界和地震波施加方法

FLAC3D动力分析中的人工透射边界和地震波施加方法从动力学的角度上看,动力响应是确定惯性(质量效应)和阻尼起着重要作用时质点或质点系动力学特性和响应的技术,它包括自振、冲击、谐振动、随机振动等分支。动力学最早应用于结构抗震设计,自上世纪50年代逐步借鉴到岩土抗震设计中。动力发展历程可总结为静力理论,反应谱理论和时程分析理论三个阶段。我们知道,地震的三要素为振幅、频谱和持时。静力理论只考虑了地震引起的最大振幅,属于拟静力法;反应谱理论考虑了振幅和频谱,但在设计中仍然把地震惯性力视为静力,只能算准动力法;时程分析理论考虑了振幅、频谱和持时,是严格意义上的动力分析法。

通常时程动力分析选用的地震波来自:(1)根据设计反应谱人工合成的场地波;(2)场地附近地震台记录的实测地震波。由于实测地震波中掺杂了许多噪声和干扰信号,因此在使用前必须滤波去噪、频谱分析、积分变换和基线修正。滤波去噪是为了消除噪声和高频波,频谱分析是为了检测地震波持时内所含的频率分量和振幅,积分变换可以转换地震加速度波为速度波或位移波,基线修正则是为了消除非平稳地震波中的弹性位移零线漂移、基线偏移等现象,大崎顺彦在其著作《地震动的谱分析入门》中做了详细而生动的说明,并附出了地震波处理的Fortran源程序。鉴于FLAC3D软件是岩土领域广泛应用的时程动力分析软件,这里以著名的埃尔森特罗波(El Centro)为输入激励,研究基于FLAC3D软件的地震波处理和计算方法。网站“http://www. https://www.doczj.com/doc/6413561956.html,/data.htm”提供了31秒的El Centro加速度波数据。有兴趣者可按《地震动的谱分析入门》的方法选取了前8秒的地震加速度波(共401个记录),然后补零配成了512个记录的加速度波以采用快速傅里叶变换法,首先采用FLAC3D Fish函数库的filter函数进行滤波去噪,然后采用fft函数进行快速傅里叶变换,得到傅里叶加速度谱和功率谱,接着采用integrate函数积分两次求得速度波和位移波,并计算地震位移零线漂移值。具体可细查flac中的帮助和fish命令流。由于频谱分析,看似混乱无章的地震波也可以分解成不同频率不同振幅的简谐波的组合,因此,只要我们把握了最简单的简谐波动力响应,对地震波时程响应分析也一目了然了。

动力计算是较复杂的力学分析过程,影响因素包括:输入激励(频谱、振幅、持时)、岩土参数、本构模型、透射边界、模型网格、求解方法等。直接进行一个复杂边坡的动力计算,由于影响计算结果的因素较多,不利于工程师把握本质的规律,以致无法判定结果的适宜性。对于大型边坡工程来说,抗震分析需要引起足够的重视,每一步动力计算和响应模拟都必须经得起考证。因此,本文首先从概念模型出发(简单边坡模型),定量分析边坡的动力响应规律,采用理论解进行验证,考证动力计算过程的正确性。在此基础上,再计入更复杂的地质条件、边界条件和实际边坡模型,最终达到合理可靠地应用于实际边坡工程中的愿景。

此主题相关图片如下:边坡概念模型.jpg

可以从四种典型的概念边坡模型来理解边坡动力响应,①代表退化为一竖直柱体边坡;②代表发育有一个软弱夹层的竖直柱体边坡;③代表发育有一软弱夹层的边坡;④代表发育两组正交优势节理的边坡。①、②模型中坡顶仅一个自由面,是最简单的概念模型;①、②、③模型都是考虑少数结构面的连续介质模型,是目前数值方法中最常用的形式,本文拟采用Flac3D软件模拟;④模型考虑了较多的结构面,常规有限

元法等无法模拟,则根据Edelbro(2003)的建议,采用离散元法(3DEC)更为合理。关于地震波的选择,①、②模型采用简谐波,以方便对比理论解;③、④模型采用实测地震波(如El Centro波)。

此主题相关图片如下:数值方法的选取.jpg

数值方法的选取,修改自Edelbro(2003)

简谐波或地震波的施加,一般来说可分为加速度波、速度波和应力波。这三种输入方法是等价的,采取哪种方法视岩土介质类型和动力边界条件而定。边坡基底岩土类型一般可分为刚性地基和柔性地基。如果基底为基岩或变形模量较大的岩土体,可以在底部直接施加加速度波或速度波。若基底为土体,尤其是软土,FLAC3d帮助手册中建议采用应力波更为合适。下面以一个简单的正弦加速度波来推导应力波的换算方法,然后笔算出应力波在①模型中的传播时间及产生的质点响应速度和剪应力大小,然后用FLAC3D数值解进行验证。

设正弦加速度波的周期为T、地震持时为t,加速度波为a(t)=(π/T)*Sin(2πt/T) ,则积分后可得速度波v(t)=0.5(1-cos(2πt/T),将速度波换算为压缩应力波σp(t)和剪切应力波σs(t)时,Lysmer和Kuhlemeyer(1969)的公式,则有σs(t)=-ρ*Cs*Vs=0.5(cos(2πt/T-1)*sqrt[Eρ/2(1+μ)]。E为岩土动弹模,ν为岩土动泊松比,ρ为岩土密度,Cs为岩土介质的S波(剪切波)波速。假设①边坡的高度H为50m,边坡动弹模E为180/7MPa,动泊松比υ为2/7,密度ρ为1000kg/m3,则剪切波在边坡中的传播速度为100m/s,剪切波从边坡底部到达边坡顶部的时间t为0.5s。无反射波叠加情形下,边坡的最大水平速度为1.0m/s。边坡遭遇的最大剪应力为0.1MPa。

采用flac3d计算①模型表明:0.25s时,完成一个周期剪切波的施加,随后,剪切波竖直向上传播,0.5s 时到达顶部,并在坡顶产生自由面放大效应和反射,即在0.5s~0.75s间蓝线的最大值约2.0m/s。剪切波返回模型底部后,由于没有施加人工透射边界,1.25s后剪切波在底部边界反射回顶部,之后反复振荡。分析边坡剪应力分布规律可知,最大剪应力为0.1MPa,其位置随着剪切波移动而移动。将加速度波换算为应力波,边坡底部设置了粘滞吸收边界,分析可知,在应力波反射回底部之前,与加速度波规律一致,不存在剪切波反射,1.25s后应力波被粘滞吸收边界吸收,不产生反射,剪应力衰减为0。综上所述,采用Fish命令流模拟的剪切波传播和反射规律与理论解一致,边坡最大剪应力分布规律与理论解吻合,剪切波在边坡自由面上产生放大效应,在约束边界产生地震波反射,采用粘滞吸收边界则消除了地震波反射现象。

此主题相关图片如下:无人工透射边界.bmp

无人工透射边界,采用速度波施加

此主题相关图片如下:黏滞吸收边界.bmp

设置黏滞吸收边界,采用应力波施加

new

confdyn

grid 1 1 50

gen zone copy 15 0 0

;;

def setup

omega = 2.0 * pi * freq

pulse = 1.0 / freq

end

set freq=4.0

setup

;

def wave

if dytime> pulse

wave = 0.0

else

wave = 0.5 * (1.0 - cos(omega * dytime)) endif

end

;

defdyn_time

array vec(3)

vec(1) = 18.0

vec(2) = 0.0

vec(3) = 5.0

oo = set_fontsize(1.0)

oo = draw_string(vec,'Time')

vec(3) = 0.0

oo = draw_string(vec,string(dytime))

vec(3) = 45.0

oo = set_fontsize(1.0)

oo = draw_string(vec,'stress')

vec(1) = 3.0

oo = draw_string(vec,'vel.')

end

set dyndt=2e-4

;;

;;;材料本构

mod elas

prop shear 1e7 bulk 2e7 dens 1000

;

range name bottom z -0.1 0.1

fix z range z .5 55

;;

;;;速度时程输入

apply nquietdquietsquiet range bottom

apply xvel 1.0 hist wave yvel 0.0 zvel 0.0 range bottom

;;----------------------------------------------------------------------

;;;施加粘滞边界(必须在自由场边界之后,否则失效),必须于应力或力时程合用。

;;apply dquietsquiet range bottom

;;

;;;等价于加速度时程输入

;apply sxz -2.0e5 hist wave syz 0.0 szz 0.0 range bottom

;;----------------------------------------------------------------------

;

;-------------------- 设置出图格式

his gpxvel 0 0 0

his gpxvel 0 0 25

his gpxvel 0 0 50

his dytime

plocreahaitang

plo add surf red

plo add vel max 0.5 range x -1 2

plo add bconsxzint 1e4 max 1e5 range x 5 18

plo add fish dyn_time black

plo set per off

plo set bac white

plo add hist 1 2 3 vs 4

plo show

Title ' 正弦波在无阻尼弹性岩基中的传播'

set movie avi size 2000 1000 frameperiod 100 file 01_ela_vel_quiet size 1024 768 step 50 movie start

;;------------------ 设置动力计算时间

solve age 1.5

movi finish

弹簧模型的动力学分析方法

弹簧模型的动力学分析方法 【例二】如图所示,劲度系数为21,k k 的轻质弹簧竖直悬挂,两弹簧之间有一质量为1m 的重物,最下端挂一质量为2m 的重物,用一力竖直向上缓慢托起2m ,当力为多少时,两弹簧的总长等于弹簧原长之和 解析: 两弹簧的总长等于弹簧原长之和,必定是弹簧1k 伸长,弹簧2k 压缩,且形变量21x x =1m 对1m 物体有g m x k x k 12211=+2k 对2m 物体有222x k g m F +=2m 【变式3静止时物块对箱顶P 的压力为2 G 箱顶P 【变式4】如图所示,在倾角为θ弹簧相连的物块B A ,,它们的质量分别为B A m m ,劲度系数为k ,C 为一固定挡板,现开始用一恒力F 方向拉物块A 使之向上运动,求物块B 刚要离开C 的加速度a 和从开始到此时物块A 的位置d (变式3图) (变式4图) 【变式5】如图所示,水平面上质量均为m 的两木块A ,弹簧连接,整个系统处于平衡状态,A 向上做加速度为a 的匀加速直线运动,取木块A 中实线部分表示从力F 作用在木块A 到木块B 块A 的位移x 之间的关系,则() 甲乙 【2】如图所示,B A ,两个物快的重力分别是N G A ,3=计,系统沿着竖直方向处于静止状态,此时弹簧的弹力的拉力和地板受到的有压力有可能是() 【5定在小车上,右端与一小球相连,

处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是() A.向右做加速运动 B.向右做减速运动 C.向左做加速运动 D.向左做减速运动 左右 【6】如图所示,质量均为m 的物体B A ,通过一劲度系数为k 的轻质弹簧相连,开始时B 放在地面上,B A ,都处于静止状态,现通过细绳缓慢地将A 向上提升距离1L 时,B 刚要离开地面,若将A 加速向上拉起,B 刚要离开地面时,A 上升的距离为2L A.k mg L L ==21 B.k mg L L 221==A 121,L L k mg L >=.121,2L L k mg L >=B 【10】一个弹簧秤放在水平地面上,Q 为与轻质弹簧上端连在一起的弹簧秤,P 为一重物,已知P 的质量kg M 5.10=,Q 的质量kg m 5.1=,弹簧的质量不计,劲度系数m N k /800=,系统处于静止状态,如图所示,现给P 施加一个方向竖直向上的力F ,使其从静止开始向上做匀加速运动,已知在前内F 为变力,后F 变为恒力,求力F 的最大值与最小值(g 取10m/2s ) 【8】一根劲度系数为k 、质量不计的轻质弹簧上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度,如图所示,现让木板由静止开始以加速度)(g a a <匀加速向下运动,求经过多长时间木板开始与物体分 离

动力学分析方法

1动力学分析方法 结构动力学的研究方法可分为分析方法(结构动力分析)和试验方法(结构动力试验)两大类。[7-10] 分析方法的主要任务是建模(modeling),建模的过程是对问题的去粗取精、去伪存真的过程。在结构动力学中,着重研究力学模型(物理模型)和数学模型。建模方法很多,一般可分为正问题建模方法和反问题建模方法。正问题建模方法所建立的模型称为分析模型(或机理模型)。因为在正问题中,对所研究的结构(系统)有足够的了解,这种系统成为白箱系统。我们可以把一个实际系统分为若干个元素或元件(element),对每个元素或元件直接应用力学原理建立方程(如平衡方程、本构方程、汉密尔顿原理等),再考虑几何约束条件综合建立系统的数学模型。如果所取的元素是一无限小的单元,则建立的是连续模型;如果是有限的单元或元件,则建立的是离散模型。这是传统的建模方法,也称为理论建模方法。反问题建模方法适用于对系统了解(称黑箱系统——black box system)或不完全了解(称灰箱系统——grey box system)的情况,它必须对系统进行动力学实验,利用系统的输入(载荷)和输出(响应——response)数据,然后根据一定的准则建立系统的数学模型,这种方法称为试验建模方法,所建立的模型称为统计模型。 在动力平衡方程中,为了方便起见一般将惯性力一项隔离出来,单独列出,因此通常表达式为: u I M&& (2) = - +P 其中M为质量矩阵,通常是一个不随时间改变的产量;I和P是与位移和速度有关的向量,而与对时间的更高阶导数无关。因此系统是一个关于时间二级导数的平衡系统,而阻尼和耗能的影响将在I和P中体现。可以定义: + = (3) I&& C u Ku 如果其中的刚度矩阵K和阻尼矩阵C为常数,系统的求解将是一个线性的问题;否则将需要求解非线性系统。可见线性动力问题的前提是假设I是与节点位移和速度是线性相关的。 将公式(2)代入(1)中,则有

三种不同方法解决数制转换问题

/////////////////方法一 #include #define S 10 void zh(int N,int r) { int L[S],top; int x; top=-1; while(N) { L[++top]=N%r; N=N/r; while(top!=-1) { x=L[top--]; printf("%d",x); } } printf("\n"); } main() { int w,z; scanf("%d%d",&w,&z); zh(w,z); } ///////////////////////////方法二 #include #include #define maxsize 50 void conversion(int n,int r) { int ss[maxsize]={0}; int i=0; int j; while(n) { ss[i]=(n%r); i++; n=n/r; } for(j=0;j

}//数制转换 void main() { int n=37; int r=4; printf("十进制数%2d转换为%d进制数。\n",n,r); conversion(n,r); } /////////////////方法三 #include #include #define maxsize 5 typedef struct { int data[maxsize]; int top; }seqstack; void init_seqstack(seqstack *s) { s->top=-1; }//栈的初始化 int empty_seqstack(seqstack *s) { if(s->top==-1) return 1; else return 0; }//空栈的判断 int push_seqstack(seqstack *s,int x) { if(s->top==maxsize-1) return 0; else { (s)->data[++(s)->top]=x; return (1); } }//进栈 int pop_seqstack(seqstack *s,int *x)

结构动力学心得汇总

结构动力学学习总结

通过对本课程的学习,感受颇深。我谈一下自己对这门课的理解: 一.结构动力学的基本概念和研究内容 随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。这门课的主要内容包括运动方程的建立、单自

由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。 二.动力分析及荷载计算 1.动力计算的特点 动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与

静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。 荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。 在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。而

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方 法的优缺点 Pushover分析法 1、Pushover分析法优点: (1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。 (2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。 2、Pushover分析法缺点: (1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。 (2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。(3)只能从整体上考察结构的性能,得到的结果较为粗糙。且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。不能完全真实反应结构在地震作用下性状。 二、弹塑性时程分析法 1、时程分析法优点: (1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量

对高层建筑的不利影响。 (2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。 (3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。 (4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。 2、时程分析法缺点: (1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。 (2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。所以此法的计算工作十分繁重,必须借助于计算机才能完成。而且对于大型复杂结构对计算机要求更高,耗时耗力。 (3)对工程技术人员素质要求较高,工程应用要求较高。从结构模型建立,材料本构的选取、地震波选取,到参数控制及庞大计算结果的整理及甄别都要求技术人员具有扎实的专业素质以及丰厚的工程经验。

四连杆机构分析代码动力学--精简

平面连杆机构的运动分析和动力分析1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 第一组(2代一套)四杆机构L1=125.36mm,L2=73.4mm,L3=103.4mm,L4=103.52mm 最短杆长度+最长杆长度(125.36+73.4) ≤其余两杆长度之和(103.4+103.52) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第二组(2代二套)四杆机构L1=125.36mm,L2=50.1mm,L3=109.8mm,L4=72.85mm 最短杆长度+最长杆长度(125.36+50.1) ≤其余两杆长度之和(109.8+72.85) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第三组(3代)四杆机构L1=163.2mm,L2=61.6mm,L3=150mm,L4=90mm 最短杆长度+最长杆长度(163.2+61.6) ≤其余两杆长度之和(150+90) 最短杆为连架杆,四杆机构为曲柄摇杆机构 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。 1.3 机构的数学模型的建立 图1机构结构简图 在用矢量法建立机构的位置方程时,需将构件用矢量来表示,并作出机构的封闭矢量多边形。如图1所示,先建立一直角坐标系。设各构件的长度分别为L1 、L2 、L3 、L4 , 其方位角为、、、。以各杆矢量组成一个封闭矢量多边形,即ABCDA。其个矢量之和必等于零。即:

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

各种进制之间转换方法

各进制转换方法(转载) 一、计算机中数的表示: 首先,要搞清楚下面3个概念 ?数码:表示数的符号 ?基:数码的个数 ?权:每一位所具有的值 请看例子: 数制十进制二进制八进制十六进制 数码0~9 0~1 0~7 0~15 基10 2 8 16 权10o,101,102,…2o,21,22,…8o,81,82,…16o,161,162,…特点逢十进一逢二进一逢八进一逢十六进一 十进制4956= 4*103+9*102 +5*101+6*10o 二进制1011=1*23+0*22 +1*21+1*2o 八进制4275=4*83+2*82 +7*81+5*8o 十六进制81AE=8*163+1*162 +10*161+14*16o

二、各种进制的转换问题 1.二、八、十六进制转换成十进制 2.十进制转换成二、八、十六进制 3.二进制、八进制的互相转换 4.二进制、十六进制的互相转换 1、二、八、十六进制转换成十进制 方法:数码乘以相应权之和 2、十进制转换成二、八、十六进制 方法:连续除以基,直至商为0,从低到高记录余数

3、二进制、八进制的互相转换 方法: ?二进制转换成八进制:从右向左,每3位一组(不足3位左补0),转换成八进制 ?八进制转换成二进制:用3位二进制数代替每一位八进制数 例(1101001)2=(001,101,001)2=(151)8 例 (246)8=(010,100,110)2=(10100110)2 4、二进制、十六进制的互相转换 方法: ?二进制转换成十六进制:从右向左,每4位一组(不足4位左补0),转换成十六进制 ?十六进制转换成二进制:用4位二进制数代替每一位十六进制数 例(11010101111101)2=(0011,0101,0111,1101)2=(357D)16 例 (4B9E)16=(0100,1011,1001,1110)2=(100101110011110)2 三、各种进制数的运算

结构动力学大作业

结构动力学作业 姓名: 学号:

目录 1.力插值法 (1) 1.1分段常数插值法 (1) 1.2分段线性插值法 (4) 2.加速度插值法 (7) 2.1常加速度法 (7) 2.2线加速度法 (9) 附录 (12) 分段常数插值法源程序 (12) 分段线性插值法源程序 (12) 常加速度法源程序 (13) 线加速度法源程序 (13)

1.力插值法 力插值法对结构的外荷载进行插值,分为分段常数插值法和分段线性插值法,这两种方法均适用于线性结构的动力反应计算。 1.1分段常数插值法 图1-1为一个单自由度无阻尼系统,结构的刚度为k ,质量为m ,位移为y (t ),施加的外力为P (t )。图1-2为矩形脉冲荷载的示意图,图中t d 表示作用的时间,P 0表示脉冲荷载的大小。 图1-1 单自由度无阻尼系统示意图 图1-2 矩形脉冲荷载示意图 对于一个满足静止初始条件的无阻尼单自由度体系来说,当施加一个t d 时间的矩形脉冲荷载,此时结构在t d 时间内的位移反应可以用杜哈梅积分得到: 0()sin ()2 (1cos )(1cos ) (0) t st st d P y t t d m t y t y t t T ωττω πω=-=-=-≤≤? (1-1) 如果结构本身有初始的位移和速度,那么叠加上结构自由振动的部分,结构的位移反应为: 02()cos sin (1cos ) (0 )st d y t y t y t t y t t T πωωω =+ +-≤≤ (1-2)

图1-3 分段常数插值法微段示意图 对于施加于结构任意大小的力,将其划分为Δt 的微段,每一段的荷载都为一个常数(每段相当于一个矩形的脉冲荷载),如图1-3所示,则将每一段的位移和速度写成增量的形式为: 1cos t sin t (1cos t)i i i i y P y y k ωωωω +=?+ ?+-? (1-3) i+1/sin t cos t sin t i i i y P y y k ωωωωω =-?+ ?+ ? (1-4) 程序流程图如下

粘弹性人工边界在ANSYS中实现

从半空间无限域取一4X2的矩形平面结构,顶部中间一定范围内受随时间变化的均布荷载,荷载如下 p(t)=t 当0< DIV> p(t)=2-t 当1<=t<=2时 p(t)=0 当t>2时 材料弹性模量E=2.5,泊松比0.25,密度1 网格尺寸0.1X0.1,在网格边界上所有结点加法向和切向combin14号单元用以模拟粘弹性人工边界(有关理论可参考刘晶波老师的相关文章)。combine14单元的两个结点,其中一个与实体单元相连,另一个结点固定。网格图如图1所示 时程分析的时间步长为0.02秒,共计算16秒。计算得到四个控制点位移时程图如图2所示,控制点坐标A(0,2)、B(0,1)、C(0,0)、D(2,2). 计算所用命令流如下: /PREP7 L=4 !水平长度 H=2 !竖起深度 E=2.5 !弹性模量 density=1 !密度 nu=0.25 !泊松比 dxyz=0.1 !网格尺寸 G = E/(2.*(1.+nu)) !剪切模量 alfa = E*(1-nu)/((1.+nu)*(1.-2.*nu)) !若计算平面应力,此式需要修改 Cp=sqrt(alfa/density) !压缩波速 Cs=sqrt(g/density) !剪切波速 R=sqrt(L*L/4.+H*H/4.) !波源到边界点等效长度 KbT=0.5*G/R*dxyz KbN=1.0*G/R*dxyz CbT=density*Cs*dxyz CbN=density*Cp*dxyz

ET, 1, plane42,,,2 !按平面应变计算 et, 2, combin14, ,, 2 !切向 et, 3, combin14, ,, 2 !法向 r, 2, KbT, CbT r, 3, KbN, CbN MP, EX, 1, E MP, PRXY, 1, nu MP, DENS, 1, density rectng,-L/2.,L/2,0.,H asel, all aesize, all, dxyz mshape,0,2D mshkey,1 amesh, all !以下建立底边界法向和切向弹簧阻尼单元 nsel,s,loc,y,0. *get,np,node,,count !得到选中的结点数,存入np *get,npmax,node,,num,maxd !得到已经定义的最大结点数,存入npmax *do,ip,1,np npnum=node((ip-1)*dxyz-L/2.,0.,0.) x=nx(npnum) y=ny(npnum) z=nz(npnum) npmax=npmax+1 n,npmax,x.,y-dxyz/2,z !定义底边界法向结点以便与边界点形成法向单元type,3

结构动力分析

【结构工程的软件时代】 结构工程已全面进入软件时代,结构工程师要从繁琐的重复劳动中解脱出来,培养结构概念和体系,锻炼结构整体思维。 《结构概念和体系》是国际著名的结构大师林同炎广为流传的著作。相信大多数从事建筑结构的工程人员都或多或少读过这本书。其实,这本书可以说是结构工程师的必修课。从事结构工作,很重要的一点就是在工作中培养结构概念体系和整体性思维的方法。这对于结构工程师来讲,是十分重要的。 如今的软件技术已相当发达,很多繁琐的工作都可以通过软件完成,甚至于智能化到了“一键式完成”的地步。设想,如果在软件再这么智能化而且功能强大下去,到时候,只要输入基本的设计参数和经济指标,按一个回车键,软件就将建筑方案设计、结构方案设计、施工图设计全部一条线完成出来了,那么对结构工程师来说不是一场灾难嘛。软件取代所有主要工作,技术人员不就要下岗了啊。所以,我认为,从一个角度来讲,结构工程软件时代的到来,意味着结构工程师的一场“危机”。如何在这场即将到来的危机面前“明哲保身”,做软件所不能做到的事情是很关键和重要的,什么最关键而重要,我认为就是结构的概念和体系思维,这个才是将来结构工程师的价值所在,而这恰恰是软件所难以做到的。 闲话暂放,言归正传。这篇博客将粗浅地探讨结构动力学问题的概念和体系问题。之所以关注结构动力学问题,一是因为结构静力学研究已比较成熟,林同炎前辈的《结构概念和体系》一书中已阐明很完善精辟了,二是因为现阶段工程结构抗震问题是研究的热点和前沿,这个时代里不懂工程抗震概念的结构工程师很难成为一个好工程师。 构件→结构→结构体系,整体性思维,需要工程实践的锻炼以及不断思考的积累。在实践中,反复向自己提问是培养结构概念的一个好方法。比如,问自己什么叫振型分解法?有哪些假定?什么叫时程分析法?有哪些优缺点?……这样积累下来,很多概念就越辩越明,结构的概念也就逐渐得到建立。 【结构动力分析的分类】 结构动力分析主要包括:特征值分析、反应谱分析、时程分析三大块。特征值分析也称结构自振特性分析,主要求解结构的自振周期和振型向量。反应谱分析基于振型分解反应谱理论,是一种工程上最常用的计算地震作用下结构动力响应方法,但这种方法只限于线弹性结构,弹塑性阶段振型分解法不再适用。时程分析包括线弹性时程分析和弹塑性时程分析两大类,与振型分解法的主要区别在于采用实测的地震波输入结构计算结构的响应,弹塑性时程分析具体还可分为静力弹塑性时程分析(也称Pushover分析)和动力弹塑性时程分析两类。 上述结构动力分析中,特征值分析和反应谱分析比较常用。而时程分析一般仅针对重要建筑以及体型非常复杂的建筑。小震水准下可进行结构线弹性时程分析,大震水准下需要采用结构弹塑性时程分析方法。现阶段,弹塑性时程分析还属于工程上比较前沿的分析内容,还属于一部分实力较强的设计院和科研机构的“专利业务”。当然,我认为随着结构技术人员水平的不断提高,以及软件技术的发达,结构弹塑性时程分析在将来将会越来越普及,甚至成为结构设计人员的“家常便饭”。 【特征值分析】 特征值分析也称结构自振特性分析,因为在数学上这个问题属于齐次线性方程组特征值的求解问题,故亦称特征值分析。其目的是求解结构的自振周期和振型。以前曾经碰到这样一个很有意思的概念问题:结构的阻尼比越大,那么结构的自振周期是减小还是增大呢?概念不清就很容易产生混乱。其实,结构的自振特性均是指无阻尼自由振动的特性值,因此不存在阻尼的影响问题。还有一个问题就是什么是振型?虽然我们经常提振型这个概念,不少人一时半会答不上来。从概念上讲,振型是结构发生无阻尼自由振动时各质点的相对位移,

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

二进制 各种转化

C语言中二进制十进制十六进制各是什么意思? 学按位要用到这些知识但又不懂! 匿名| 浏览1240 次问题未开放回答 推荐于2016-05-22 01:54:54 最佳答案 计算机中常用的数的进制主要有:二进制、八进制、十六进制,学习计算机要对其有所了解。2进制,用两个阿拉伯数字:0、1; 8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7; 10进制,用十个阿拉伯数字:0到9; 16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。字母不区分大小写。 以下简介各种进制之间的转换方法:

一、二进制转换十进制 例:二进制“1101100” 1101100 ←二进制数 6543210 ←排位方法 例如二进制换算十进制的算法: 1*26 + 1*25 + 0*24 + 1*23 + 1* 22 + 0*21 + 0*20 ↑↑ 说明:2代表进制,后面的数是次方(从右往左数,以0开始) =64+32+0+8+4+0+0 =108 二、二进制换算八进制 例:二进制的“10110111011” 换八进制时,从右到左,三位一组,不够补0,即成了: 010 110 111 011 然后每组中的3个数分别对应4、2、1的状态,然后将为状态为1的相加,如:010 = 2 110 = 4+2 = 6 111 = 4+2+1 = 7 011 = 2+1 = 3 结果为:2673

三、二进制转换十六进制 十六进制换二进制的方法也类似,只要每组4位,分别对应8、4、2、1就行了,如分解为:0101 1011 1011 运算为: 0101 = 4+1 = 5 1011 = 8+2+1 = 11(由于10为A,所以11即B) 1011 = 8+2+1 = 11(由于10为A,所以11即B) 结果为:5BB 四、二进制数转换为十进制数 二进制数第0位的权值是2的0次方,第1位的权值是2的1次方…… 所以,设有一个二进制数:0110 0100,转换为10进制为: 计算:0 * 20 + 0 * 21 + 1 * 22 + 0 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100 五、八进制数转换为十进制数 八进制就是逢8进1。 八进制数采用0~7这八数来表达一个数。 八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方…… 所以,设有一个八进制数:1507,转换为十进制为: 计算:7 * 80 + 0 * 81 + 5 * 82 + 1 * 83 = 839

第三章 瞬态动力学分析

§3.1瞬态动力学分析的定义 瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。载荷和时间的相关性使得惯性力和阻尼作用比较重要。如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。 瞬态动力学的基本运动方程是: 其中: [M] =质量矩阵 [C] =阻尼矩阵 [K] =刚度矩阵 {}=节点加速度向量 {}=节点速度向量 {u} =节点位移向量 在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和 阻尼力([C]{})的静力学平衡方程。ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。两个连续时间点间的时间增量称为积分时间步长(integration time step)。 §3.2学习瞬态动力学的预备工作 瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。例如,可以做以下预备工作:

1.首先分析一个较简单模型。创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。 2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。在某些场合,动力学分析中是没必要包括非线性特性的。 3.掌握结构动力学特性。通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。同时,固有频率对计算正确的积分时间步长十分有用。 4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。<<高级技术分指南>>中将讲述子结构。 §3.3三种求解方法 瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。ANSYS/Professional产品中只允许用模态叠加法。在研究如何实现这些方法之前,让我们先探讨一下各种方法的优点和缺点。 §3.3.1完全法 完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减)。它是三种方法中功能最强的,允许包括各类非线性特性(塑性、大变形、大应变等)。 注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。 完全法的优点是: ·容易使用,不必关心选择主自由度或振型。 ·允许各种类型的非线性特性。 ·采用完整矩阵,不涉及质量矩阵近似。 ·在一次分析就能得到所有的位移和应力。 ·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。 ·允许在实体模型上施加的载荷。 完全法的主要缺点是它比其它方法开销大。

粘弹性人工边界在ABAQUS软件中的实现

粘弹性人工边界在ABAQUS 软件中的实现(一) 由于粘弹性人工边界是在粘性边界发展而来的,所以为了更加精确的模拟粘弹性边界,我从粘性边界的ABAQUS 实现开始。 首先在粘性边界下的波源问题: 应用ABAQUS 建立二维均匀弹性半空间进行分析, 考虑半无限介质模型, 介质密度为1 700 kg /m 3, 杨氏模量E 为1. 70×108 Pa, 泊松比v 为0. 25, 在顶面处入射脉冲波, 初始压缩波速Vp 为200 m / s, 周期为0.1 s, 幅值为1g, 加速度时程如图1所示。计算范围为100 m × 20 m, 单元大小为1m ×1m 。模型示意图如图2。 0.000.020.040.060.080.10 0.0 0.2 0.4 0.6 0.8 1.0 振幅脉冲 波 加速度时程 图1 图2 通过ABAQUS 软件模拟,得到结果文件:Job-huwei6131

然后解决波源问题: 取一个长为 8m ,深为 4m 的土层为地基,地基土的弹性模量取 2.5Pa ,泊松比取 0.25,剪切模量取 1Pa ,密度取 1kg/m 3,剪切波速取 1m/s ,压缩波速取 3m/s ,输入一个频率为 4Hz ,最大幅值为 1m 的剪切正弦波,持时去一个周期约为 1.57s. 输入脉冲波: -1.0 -0.5 0.0 0.5 1.0 位移(m )时间(s ) 图3 同样采用粘性人工边界 网格划分为0.1m ×0.1m ,侧向人工边界采用和波源问题相同的方法即释放脉冲波作用方向,约束其他方向。 图4

通过数值软件模拟得到的结果:Job-huwei6141

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性得概念; 2、掌握线性稳定性得分析方法; ?3、掌握奇点得分类及判别条件; ?4、理解结构稳定性及分支现象; 5、能分析简单动力系统得奇点类型及分支现象. 二、教学重点 1、线性稳定性得分析方法; ?2、奇点得判别。 三、教学难点 ?线性稳定性得分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 ?学习本章内容之前,学生要复习常微分方程得内容。 六、教学过程 本章只介绍一些非常初步得动力学分析方法,但这些方法在应用上就是十分有效得。 1、1相空间与稳定性 ?一、动力系统 在物理学中,首先根据我们面对要解决得问题划定系统,即系统由哪些要素组成。再根据研究对象与研究目得,按一定原则从众多得要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量得微分方程,这些微分方程构成得方程组通常称为动力系统。研究这些微分方程得解及其稳定性以及其她性质得学问称为动力学. 假定一个系统由n个状态变量,,…来描述。有时,每个状态变量不但就是时间t得函数而且也就是空间位置得函数。如果状态变量与时空变量都有关,那么控制它们变化得方

程组称为偏微分方程组.这里假定状态变量只与时间t有关,即X =X i(t),则控制它们 i 得方程组为常微分方程组。 ?????(1。1.1) … 其中代表某一控制参数.对于较复杂得问题来说,(i=l,2,…n)一般就是得非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于不明显地依赖时间t,故称方程组(1。1.1)为自治动力系统。若明显地依赖时间t,则称方程组(1、1、1)为非自治动力系统.非自治动力系统可化为自治动力系统. 对于非自治动力系统,总可以化成自治动力系统。 例如: 令,,上式化为 上式则就是一个三维自治动力系统。 又如: 令,则化为 它就就是三微自治动力系统、 对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。 能严格求出解析解得非线性微分方程组就是极少得,大多数只能求数值解或近似解析解。 二、相空间 ,X2,…Xn)描述得系统,可以用这n个状态变量为坐标轴支由n个状态变量=(X 1 起一个n维空间,这个n维空间就称为系统得相空间。在t时刻,每个状态变量都有一个确定得值,这些值决定了相空间得一个点,这个点称为系统状态得代表点(相点),即它代表了系统t时刻得状态。随着时间得流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线.它代表了系统状态得演化过程。 三、稳定性 把方程组(1。1.1)简写如下

人工边界转换方法解读

静-动力分析中人工边界转换方法的研究 摘要:通过将粘弹性动力人工边界应用于同时考虑静力效应和动力效应的工程算例,阐明了此类问题静-动力分析人工边界转换时保证模型为静力平衡体的必要性。通过将粘弹性静-动力统一人工边界应用于半无限空间体有限元模型的静力分析中,验证了静力计算中的误差将使模型动力分析的稳态反应出现相近的误差。在此基础上,系统阐述了适用于同时考虑静力效应和动力效应的工程问题的静-动力分析人工边界转换方法。 关键词:人工边界,静力分析,动力分析,边界转换 Abstract:Though the application of dynamic viscous-spring artificial boundary to an engineering case with a consideration of both static and dynamic effect, and the application of the unified viscous-spring boundary for static and dynamic analysis to static analysis of a finite modal of half space, the problems of the applications of viscous-spring artificial boundary to this kind of engineering calculation was pointed out, and its corresponding solving method was proposed. On the base, a systematic switching method of these artificial boundaries was specified. Keywords: artificial boundary, static analysis, dynamic analysis, switching of boundaries 1 前言 人工边界从广义上可分为静力人工边界和动力人工边界。静力人工边界由来已久,通常有固定边界、滚轴边界等。动力人工边界经过几十年的研究发展,已形成具有全局人工边界和局部人工边界的两大类别,并应用于各自适应的工程计算中[1]。 动力人工边界发展到现在已有透射边界、粘性边界、粘弹性边界等几种类型。1994年,Deeks 提出粘弹性人工边界[11]。1998年,刘晶波等人发展了二维的黏弹性人工边界[3],又于2005年将其发展为三维时域黏弹性人工边界[4]。2006年,刘晶波等人再将二维黏弹性边界发展成一致粘弹性人工边界及其对应的粘弹性边界单元[5],并于2007年推导了三维一致粘弹性人工边界及等效粘弹性边界单元[6]。 目前对静-动力分析的普遍做法是采用静力人工边界和动力人工边界分别对静力问题和动力问题进行计算,将计算结果进行叠加后得到完整的结果[1]。但由于叠加原理仅在线弹性小变形范围内适用,原则上不能应用于涉及非线性或大变形问题的分析。 目前对涉及非线性或大变形问题的静-动力分析,常用的人工边界转换方法主要有以下几种:(1)静力分析和动力分析都采用滚轴边界或固定边界;(2)静力分析中采用滚轴边界或固定边界,动力分析采用粘弹性边界、透射边界、粘性边界等人工边界;(3)静力分析和动力分析都采用静-动力统一边界,如粘弹性静-动力统一人工边界。 对第(1)种方法,由于固定边界使波动全部反射,已有许多文献证明其具有放大振动效应的作用,目前已经使用得不多。刘晶波等人基于黏弹性动力人工边界和半无限空间中静力问题的基本解,建立了对动力问题和静力问题均适用的三维黏弹性静-动力统一人工边界,从而上述第(3)种方法得以解决[1]。 然而,在使用人工边界对地下结构进行动力分析时,还存在一些问题。如第(2)种方法,由于在静-动力分析的人工边界转换时的方法存在问题,致使产生错误的结果。在第(3)种方法中,将粘弹性静-动力统一人工边界应用于地下结构的静力分析时,其解与准确值存在误差。本文将就此两问题进行论证和分析,并阐述合理的地下结构静-动力分析人工边界转换方法。 2 静力和动力有限元分析原理

相关主题
文本预览
相关文档 最新文档