当前位置:文档之家› 量子力学中的超算符概念

量子力学中的超算符概念

量子力学中的超算符概念
量子力学中的超算符概念

万方数据

万方数据

万方数据

量子力学中的超算符概念

作者:白音布和, 仲志国, 李根全, BAI Yin-bu-he, ZHONG Zhi-guo, LI Gen-quan

作者单位:白音布和,BAI Yin-bu-he(通辽职业学院机电工程系,内蒙古通辽,028000), 仲志国,李根全,ZHONG Zhi-guo,LI Gen-quan(南阳师范学院物理与电子工程学院,河南南阳,473061)

刊名:

南阳师范学院学报

英文刊名:JOURNAL OF NANYANG NORMAL UNIVERSITY

年,卷(期):2011,10(3)

本文链接:https://www.doczj.com/doc/ad5310884.html,/Periodical_nysfxyxb201103008.aspx

量子力学习题

量子力学复习题量子力学常用积分公式 (1) (2) (3) (4) (5) (6) (7 ) ( ) (8) (a<0) ( 正偶数) (9) =

( 正奇数) ( ) (10) ( ) (11)) ( ) (12) (13) (14) (15) (16) ( )

( ) 一、简答题 1. 束缚态、非束缚态及相应能级的特点。 2. 简并、简并度。 3. 用球坐标表示,粒子波函数表为 ,写出粒子在立体角 中被测到的几率。 4. 用球坐标表示,粒子波函数表为 ,写出粒子在球壳 中被测到的几率。 5. 一粒子的波函数为 ,写出粒子位于 间的几率。 6. 写出一维谐振子的归一化波函数和能级表达式。 7. 写出三维无限深势阱 中粒子的能级和波函数。 8. 一质量为 的粒子在一维无限深方势阱 中运动,写出其状态波函数和能级表达式。 9. 何谓几率流密度?写出几率流密度

的表达式。 10. 写出在 表象中的泡利矩阵。 11. 电子自旋假设的两个要点。 12. 的共同本征函数是什么?相应的本征值又分别是什么? 13. 写出电子自旋 的二本征态和本征值。 14. 给出如下对易关系: 15. 、 分别为电子的自旋和轨道角动量, 为电子的总角动量。证明: ,[ ]=0,其中 。 16. 完全描述电子运动的旋量波函数为 , 准确叙述 及 分别表示什么样的物理意义。 17. 二电子体系中,总自旋 ,写出(

)的归一化本征态(即自旋单态与三重态)。 18. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应? 19. 给出一维谐振子升、降算符 的对易关系式;粒子数算符 与 的关系;哈密顿量 用 或 表示的式子; (亦即 )的归一化本征态。 20. 二粒子体系,仅限于角动量涉及的自由度,有哪两种表象?它们的力学量完全集分别是什么?两种表象中各力学量共同的本征态及对应的本征值又是什么? 21. 使用定态微扰论时,对哈密顿量 有什么样的要求? 22. 写出非简并态微扰论的波函数(一级近似)和能量(二级近似)计算公式。 23. 量子力学中,体系的任意态 可用一组力学量完全集的共同本征态 展开: , 写出展开式系数 的表达式。 24. 一维运动中,哈密顿量

量子力学中几种表象及其之间的关系

量子力学中几种表象及其之间的关系 摘要 体系的态可以用以坐标为变量的波函数ψ(x,t)来描写,力学量则以作用在这种波函数上的算符(量子力学中的算符代表对波函数的一种运算)来表示,这是量子力学中态和力学量的一种具体表述方式。态还可以用其他变量的函数作为波函数来描写体系的状态。 微观粒子体系的状态(量子态)和力学量的具体表示形式称为表象。 常用的表象有坐标表象、动量表象和能量表象。 而研究量子力学规律的各种表示形式以及这些不同形式之间的变换的理论,则称为表象理论。 关键词 态的表象 坐标表象 动量表象 Q 表象 算符表象 角动量表象 正文 体系的态既可用以x (表示全部坐标变量)为变量的波函数ψ(x,t)来描写,也可用以动量p 为变量的波函数c(p,t)来描写。ψ(x,t)和c(p,t)之间的变换关系是 式中 是动量的本征函数, dx x t x t p c dp x t p c t x p p )(),(),()(),(),(*ψ?=?=ψψψ /2 /1)2(1)(ipx p e x -=πψ

称ψ(x,t)是在坐标表象中的波函数,而c(p,t)是同一态在动量表象中的波函数。 由ψ(x,t)可知,粒子坐标在x 到x+dx 之间的概率 c 由(p,t )可知,粒子动量在p 到p+dp 之间的概率 如果ψ(x,t)所描写的状态是具有动量p ’的自由粒子的状态,即ψ(x,t)=ψp ’(x,t),则 在动量表象中,粒子具有确定动量p ’的波函数是以动量p 为变量的δ函数。 那么,态在任意力学量Q 的表象中的描写方式又是什么样呢? 设力学量Q 具有分立的本征值Q1,Q2,…Qn …,对应的本征函数为u1(x),u2(x),…,un(x),…,并组成正交归一的完全系。将态在坐标表象中的波函数ψ(x,t)按{un(x)}展开成 dx t x dx t x w 2 ),(),(ψ=dp t p c dp t p w 2 ),(),(=dx e x x dx x t x t p c t iEp p p p p /''')()()(),(),(-**?=ψ?=ψψψ /')'(t iEp e p p --=δ) ()(),(x u t a t x n n n ∑=ψ

量子力学的基本概念

一、量子力学及其意义和作用 量子力学:是研究微观粒子运动、变化基本规律的科学。 由于宏观物质全部是由微观物质组成的,宏观世界全部建立在微观世界之上,量子力学便无处不在、普遍适用。“整个世界是量子力学的!” 物理学四大力学(理论力学、热力学与统计物理、电动力学、量子力学)之一。 自从量子理论诞生以来(1900年12月14日),它的发展和应用一直广泛深刻地影响、促进和触发人类物质文明的大飞跃。例如,可以把所有学科名称前面冠以“量子”————quantum二字,就会发现:已经形成或将要形成一门新的理论、新的学科。 光学—量子光学化学—量子化学 电子学—量子电子学生物学—量子生物学 电动力学—量子电动力学宇宙学—量子宇宙学 统计力学—量子统计力学网络—量子网络 经典场论—量子场论信息论—量子信息论 计算机—量子计算机 就连投机家所罗斯的基金会也时髦的冠以“量子”二字:“量子基金会”一百年(1901—2002)来总共颁发Nobel Prize 96 次(其中1916,1931,1934,1940,1941,1942共6年未颁奖)单就物理奖而言:直接由量子理论得奖或与量子理论密切相关而得奖的次数有57 次(直接由量子理论得奖25次 量子力学自20世纪20年代创立以来,直到现在,已逐步成为核物理、粒子物理、凝聚态物理、超流和超导物理、半导体物理、激光物理等众多物理分支学科的共同理论基础。自20世纪80年代以来,量子力学又有很大发展:量子信息科学(量子计算、量子通信)目前,它正在向材料科学、化学、生物学、信息科学、计算机科学大规模渗透。不久的将来它将会成为整个近代科学共同的理论基础。国家中长期科学技术发展规划:量子调控计划二、历史的回顾 19世纪末,一些物理学家认为:辉煌的物理学大厦已经建成! Kelvin勋爵:物理学的天空上漂浮着两朵乌云: 麦克尔逊—莫雷实验相对论 黑体辐射的“紫外灾难”量子力学 经典物理、近代物理 相对论:平地起高楼,伟大的头脑 量子力学:一点一滴的积累,Plank, Einstein, Bohr, Heisenberg, Born, Pauli, de Broglie, Schrodinger, Dirac 领袖:Niels Bohr, 哥本哈根学派

附录A:量子力学中常用的数学工具

附录A :量子力学中常用的数学工具 1. 常用数学符号 1.1 克雷内克符号 克雷内克(Kronecker )符号i j δ在物理中有广泛应用,其定义为 1,0,i j i j i j δ=?=? ≠? (A1-1) 可以用来简洁地表示基矢量或本征函数之间的正交归一性关系 *i j i j dx ψψδ=? (A1-2) 1.2 列维·西维塔符号 列维·西维塔(Levi-Civita )符号i j k ε又称为三阶反对称张量,其定义为 1,123,231,312 1,132,213,3210,i j k i jk i jk ε+=?? =-=??? 其它 (A1-3) 可以用来简洁地表示矢量积的分量关系 ,,,(), k i j k i j i j k i j k i j i j k A B A B A B C A B C εε?=??=∑∑v v v v v (A1-4) 1.3. 微分算符 在坐标表象下,动量对应梯度算符,梯度算符在直角坐标和球坐标中的表示形式为 11 sin x y z r e e e e e e x y z r r r θ?θθ? ???????=++=++??????v v v v v v (A1-5) 利用球坐标表达式r r re =v v ,得到 1sin r e e ?θθθ? ????=-??v v v (A1-6) 上式决定了角动量在球坐标中的表示形式。 (A1-6)式的平方为球面拉普拉斯算符 2 22 11sin sin sin θθθθθ?Ω????=+ ??? (A1-7) 与角动量平方相对应。拉普拉斯算符在直角坐标和球坐标中的表示形式为 22222 22222 11 r x y z r r r Ω?????=?=++=+????? (A1-8) 与动能相对应。

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学思考题及解答

量子力学思考题 1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 — 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r 无关的复数,但可能是时间t 的函数。这种理解正确吗 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

第一讲 量子力学

第二章波函数与Schr?dinger 方程微观粒子具有波粒二象性,经典牛顿力学及波动理论不再适用,必须从全新的观点和理念来认识微观世界,建立新的理论(既容许波动性)也容许粒子性)。内容概要:物质波概念1.1 物质波概念1.2 波函数及量子态叠加原理波动力学形式E.Schr?dinger 1.3 Schr?dinger方程 E. Schr?dinger 1887—1961

1.1 物质波的提出 11 Planck,Einstein 光量子论: λ/ E= hv = ,h p Bohr 量子论: 1. 原子具有能量不连续的定态; 1原子具有能量不连续的定态; 2. 两个定态间量子跃迁及频率条件 贡献:原子辐射能级和原子两个定态能级差联系起来,打开了人类认识原子结构的大门。1922年,Bohr诺贝尔奖。缺点:人为性太强,并未从根本上解决不连续本质。 人为性太强并未从根本上解决不连续本质。

1924年法国大学生1924年,法国大学生德布罗意在他向巴黎 大学理学院提交的博士论文中建议,既然, 知道光有波动和粒子双重性质,那么,物质粒子——特别是电子——或许也有波动和粒 子双重性质。这种建议是出于高度的推测, 因为当时并没有任何实验证据。德布罗意根据光子满足的方程用类比的方式提出物质粒德布罗意根据光子满足的方程,用类比的方式提出物质粒子也具有波粒二象性(物质波), de Broglie 关系

de Broglie把原子中的定态与驻波的频率及波长不连续性联系起来。 性联系起来 意义:1. 物质存在的两种形式,光和实物粒子统一起来。 2. 更深刻地理解微观粒子能量不连续性,克服 Bohr理论人为性质的缺陷。 Bohr理论人为性质的缺陷

量子力学基础概念题库

一、概念题:(共20分,每小题4分) 1、何为束缚态? 2、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能 值及其几率的方法。 3、设粒子在位置表象中处于态),(t r ? ψ,采用Dirac 符号时,若将 ψ(,)?r t 改写为ψ(,)? r t 有何不 妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 4、简述定态微扰理论。 5、Stern —Gerlach 实验证实了什么? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1. 束缚态: 无限远处为零的波函数所描述的状态。能量小于势垒高度,粒子被约束在有限的空间内运动。 2. 首先求解力学量F 对应算符的本征方程:λλλφφφλφ==F F n n n ??,然后将()t r ,? ?按F 的本征态展开: ()?∑+=λφφ?λλd c c t r n n n ,? ,则F 的可能值为λλλλ,,,,n 21???,n F λ=的几率为2 n c ,F 在λλλd +~范围内 的几率为λλd c 2 3. Dirac 符号是不涉及任何表象的抽象符号。位置表象中的波函数应表示为?r ? 。 4. 求解定态薛定谔方程ψψE H =∧ 时,若可以把不显含时间的∧ H 分为大、小两部分∧ ∧ ∧ '+=H H H ) (0, 其中(1)∧ ) (H 0的本征值) (n E 0和本征函数)(n 0ψ 是可以精确求解的,或已有确定的结果)(n )(n )(n ) (E H 0000ψ ψ =∧,(2)∧ 'H 很小,称 为加在∧ ) (H 0上的微扰,则可以利用) (n 0ψ和) (n E 0构造出ψ和E 。 5. Gerlack Stein -实验证明了电子自旋的存在。 一、概念题:(共20分,每小题4分) 1、一个物理体系存在束缚态的条件是什么? 2、两个对易的力学量是否一定同时确定?为什么? 3、测不准关系是否与表象有关? 4、在简并定态微扰论中,如?()H 0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 5、在自旋态χ12 ()s z 中,?S x 和?S y 的测不准关系(?)(?)??S S x y 22?是多少? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1、条件:①能量比无穷远处的势小;②能级满足的方程至少有一个解。 2、不一定,只有在它们共同的本征态下才能同时确定。 3、无关。 4、因为作为零级近似的波函数必须保证()()()()()()()()011 1 00E H E H n n n n ??φφ--=-有解。 5、16 4η。 一、概念题:(共20分,每小题4分) 1、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger &&方程的解?同一能量对

量子力学教程-周世勋-课程教案(轻松学量子力学)

量子力学讲义

一、量子力学是什么? 量子力学是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论。 研究对象:微观粒子,大致分子数量级,如分子、原子、原子核、基本粒子等。 二、量子力学的基础与逻辑框架 1.实验基础 ——微观粒子的波粒二象性: 光原本是波 ——现在发现它有粒子性; 电子等等原本是粒子 ——现在发现它有波动性。 2.(由实验得出的)基本图象 —— de Broglie 关系与波粒二象性 Einstein 关系(对波动):E h ν=,h p λ = de Broglie 关系(对粒子): E =ω, p k = 总之,),(),(k p E ω? 3.(派生出的)三大基本特征: 几率幅描述 ——(,)r t ψ 量子化现象 —— ,,,321E E E E = 不确定性关系 ——2 ≥ ???p x 4.(归纳为)逻辑结构 ——五大公设 (1)、第一公设 ——波函数公设:状态由波函数表示;波函数的概率诠释;对波函数性质的要求。 (2)、第二公设 ——算符公设 (3)、第三公设 ——测量公设 ?=r d r A r A )(?)(* ψψ (4)、第四公设 ——微观体系动力学演化公设,或薛定谔方程公设 (5)、第五公设 ——微观粒子全同性原理公设 三、作用 四、课程教学的基本要求 教 材:《量子力学教程》周世勋, 高等教育出版社 参考书:1. 《量子力学》,曾谨言,2. 《量子力学》苏汝铿, 复旦大学出版社 3. 《量子力学习题精选与剖析》钱伯初,曾谨言, 科学出版社

第一章 绪论 §1.1 辐射的微粒性 1.黑体辐射 所有落到(或照射到)某物体上的辐射完全被吸收,则称该物体为黑体。G. Kirchhoff (基尔霍夫)证明,对任何一个物体,辐射本领)T ,(E ν与吸收率)T ,(A ν之比是一个与组成物体的物质无关的普适函数,即 )T ,(f )T ,(A )T ,(E ν=νν (f 与物质无关)。 辐射本领:单位时间内从辐射体表面的单位面积上发射出的辐射能量的频率分布,以)T ,(E ν表示。在t ?时间,从s ?面积上发射出频率在 ν?+ν-ν 范围内的能量为: ν???νs t )T ,(E )T ,(E ν的单位为2 /米焦耳;可以证明,辐射本领与辐射体的能量密度分布的关系为 )T ,(u 4 c )T ,(E ν=ν ()T ,(u ν单位为秒米 焦耳3 ) 吸收率:照到物体上的辐射能量分布被吸收的份额。由于黑体的吸收率为1,所以它的辐射本领 )T ,(f )T ,(E ν=ν 就等于普适函数(与物质无关)。所以黑体辐射本领研究清楚了,就把普适函数(对物质而言)弄清楚了。我们也可以以)T ,(E λ来描述。 ????λ λ ν=λλλν=λλ νν=ννd c )T ,(E d d c d ) T ,(E d d d ) T ,(E d )T ,(E 2 )T ,(E c )T ,(E 2 νν = λ (秒米焦耳?3 ) A. 黑体的辐射本领 实验测得黑体辐射本领 T ,(E λ与λ的变化关系在理论上, ① 维恩(Wein )根据热力学第二定律及用一模型可得出辐射本领 h 32 e c h 2)T ,(E ν-νπ= ν ?? ?=π=k h c c h 2c 22 1(k 为Boltzmann 常数:K 1038.123 焦耳-?)

量子力学基本原理

量子力学基本原理 量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。 状态函数 物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。(一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。 根据狄拉克符号表示,状态函数,用<Ψ|和|Ψ>表示,状态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。 状态函数可以表示为展开在正交空间集里的态矢比如 ,其中|i>为彼此正交的空间基矢, 为狄拉克函数,满足正交归一性质。态函数满足薛定谔波动方程, ,分离变数后就能得到不显含时状态下的演化方程 ,En是能量本征值,H是哈密顿算子。 于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

量子力学教程高等教育出版社周世勋课后答案详解

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:

011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学第三章算符

第三章算符与力学量算符 3、1 算符概述 设某种运算把函数u变为函数v,用算符表示为: (3、1-1) 称为算符。u与v中得变量可能相同,也可能不同。例如,,,,,,则,x,,,都就是算符。 1.算符得一般运算 (1)算符得相等:对于任意函数u,若,则。 (2)算符得相加:对于任意函数u,若,则。算符得相加满足交换律。 (3)算符得相乘:对于任意函数u,若,则。算符得相乘一般不满足交换律。如果,则称与对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u,若u=u,则称为单位算符。与1就是等价得。 (2)线性算符 对于任意函数u与v,若,则称为反线性算符。 (3)逆算符 对于任意函数u,若则称与互为逆算符。即,。 并非所有得算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:,其中为与函数构成得线性算符,a为常数。其解u可表示为对应齐次方程得通解u。与非齐次方程得特解之与,即。因,所以不存在使。一般说来,在特解中应允许含有对应齐次方程得通解成分,但如果当a=0时,=0,则中将不含对应齐次方程得通解成分,这时存在使,从而由得:。从上述分析可知,就是否存在逆算符还与算符所作用得函数有关。 (4)转置算符 令,则称与得转置算符,就是一个向左作用得算符。若算符表示一般函数(或常数),由于函数得左乘等于右乘,所以函数得转置就等于它本身。 定义波函数与得标积为: (3、1-2) 与得标积以及与得标积为:

若上两式中得与都就是任意波函数,则称上两式中得与为任意标积中得算符。下面考虑在任意标积中得性质。 波函数与在无限远点也应满足连续性条件: [可都等于零],,所以得: 可见在任意标积中,。 (5)转置共轭算符(也称为厄密共轭算符)与厄密算符 转置共轭算符通常也就是向左作用得算符,同时算符本身要取共轭。以标记得转置共轭算符,则若在任意标积中,,则称为厄密算符。即厄密算符得定义为: 或写为(3、1-3) 可以证明,位置算符与动量算符都就是厄密算符。因x就是实数,而,所以。在任意标积中,因,所以。也可以直接从定义式(3、1-3)出发,来证明就是厄密算符。 ,所以就是厄密算符。 (6)幺正算符 若在任意标积中,,则称为幺正算符。设,若为厄密算符,则必为幺正算符。 (7)算符得函数 设函数F(A)得各阶导数都存在,则定义算符得函数F()为: (3、1-4) 其中表示n个得乘幂,即。例如 3、2 算符得对易关系 定义算符得泊松(Poisson)括号为: (3、2-1) 一般说来,例如,这样得关系或称为对易关系式。就是对易关系式中得特例,这时,称与就是对易得。 1.量子力学中基本对易关系 在位置表象中,,即,此式对任意得都成立,所以得: 在动量表象中 ,即,此式对任意得都成立,所以得: 可见在位置表象中与动量表象中都得:

量子力学第三章算符

第三章 算符和力学量算符 算符概述 设某种运算把函数u 变为函数v ,用算符表示为: ?Fu v = () ? F 称为算符。u 与v 中的变量可能相同,也可能不同。例如,11du v dx =,22xu v =3 v =, (,) x t ?∞ -∞ ,(,)x i p x h x e dx C p t -=,则d dx ,x dx ∞ -∞ ,x i p x h e -?都是算符。 1.算符的一般运算 (1)算符的相等:对于任意函数u ,若??Fu Gu =,则??G F =。 (2)算符的相加:对于任意函数u ,若???Fu Gu Mu +=,则???M F G =+。算符的相加满足交换律。 (3)算符的相乘:对于任意函数u ,若???FFu Mu =,则???M GF =。算符的相乘一般不满足交换律。如果????FG GF =,则称?F 与?G 对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u ,若?I u=u ,则称?I 为单位算符。?I 与1是等价的。 (2)线性算符 对于任意函数u 与v ,若**1212 ???()F C u C v C Fu C Fv +=+,则称?F 为反线性算符。 (3)逆算符 对于任意函数u ,若????FGu GFu u ==则称?F 与?G 互为逆算符。即1??G F -=,111??????,1F G FF F F ---===。 并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:?()()Fu x af x =,其中?F 为d dx 与函数构成的线性算符,a 为常数。

量子力学基本概念讨论_661207186

《近代物理新进展(第一讲)》(2011年春季学期) 量子力学基本概念讨论 考虑电子的双缝干涉实验。 实验过程和观察结果的动画演示(doubleslit_exp.wmv)。 一幅有趣的漫画。 BTW, New Yorker还发表过另一幅著名的漫画“On the internet, nobody knows you're a dog.” 讨论题: 1、为什么说在电子的双缝干涉实验中电子是自己和自己发生了干涉?

2、在电子的双缝干涉实验中,电子是怎样穿过狭缝的?(A )穿过了其中的某一条狭缝;(B )同时穿过了两条狭缝;(C )不知道是怎么穿过去的;(D )这个问题没意义。 3、下面是观察电子穿过了哪个狭缝的实验(which-way experiments )。 实验的结果如何?(A )仍然出现干涉条纹;(B )不再出现干涉条纹。由此你得到什么推论? 用电子的双缝干涉不难说明Feynman 的 path integral 的基本原理,即 1122.x s x s x s =+ 4、考虑电子带有自旋。让自旋向上的电子射向双缝,并且在双缝处加一个磁场,使电子在穿过缝的时候自旋方向可能发生翻转,设自旋不翻转的几率振幅是a ,自旋翻转的几率振幅是b (假设都是实数)。问自旋向上和自旋向下的电子在观察屏上的几率分布各是什么?如果磁场只加在缝1处,所以当电子穿过缝1的时候自旋有可能翻转,其中不翻转的几率振幅是a ,翻转的几率振幅是b ,但穿过缝2的时候电子的自旋总不翻转。那么自旋向上和自旋向下的电子在观察屏上的几率分布又各是什么?(用12,P P 和12P 表出) 5、用单光子光源进行光的双缝干涉实验(光子一个一个地射向双缝),会看到什么现象?(A )和电子的双缝干涉现象类似;(B )不出现干涉条纹。由此你得到什么推论? 6、所以,对于微观粒子的“波粒二象性”(particle-wave duality )的涵义,下面的哪一种说法更合适一些?(A )既是波也是粒子;(B )既不是波也不是粒子;(C )在一些实验中表现为波,在另一些实验中表现为粒子;(D )有些特征像波,有些特征像粒子。 7、为什么必须假设波函数是复函数而不能限定它为实函数?(不要从波函数满足Schr?dinger 方程出发) 8、波函数的单值性是对谁的要求?(A )波函数本身就必须是单值的;(B )只要波函数的模平方是单值的就够了。 关于量子测量的讨论。 9、量子力学中的几率与经典几率(数学的概率论)在哪些地方相同,哪些地方不同? 10、“波函数的模平方代表粒子的坐标测量几率密度”是不是波函数的几率解释的全部内容? (A )是全部;(B )不是全部。 11、众所周知,若电子的自旋向上(/2)z s =+=的态记为+,自旋向下(/2)z s =?=的态记为?,则电子自旋的一般状态为a b ψ=++?。问:测量在这个状态下电子的z s 的几率分布能够(或不能)得到关于a 和b 的什么信息?为了得到更多的信息,可以再测量什么量(几率分布)?我们最多能得到关于a 和b 的哪些信息?类似的分析用于波函数()x ψ的时候,结论是什么? 12、什么是量子测量中的波包坍缩(wave-packet collapse )?为什么说量子测量的过程会导致波包坍缩?

量子力学简明教程

量子力学教案 主讲周宙安 《量子力学》课程主要教材及参考书 1、教材: 周世勋,《量子力学教程》,高教出版社,1979 2、主要参考书: [1] 钱伯初,《量子力学》,电子工业出版社,1993 [2] 曾谨言,《量子力学》卷I,第三版,科学出版社,2000 [3] 曾谨言,《量子力学导论》,科学出版社,2003 [4] 钱伯初,《量子力学基本原理及计算方法》,甘肃人民出版社,1984 [5] 咯兴林,《高等量子力学》,高教出版社,1999 [6] L. I.希夫,《量子力学》,人民教育出版社 [7] 钱伯初、曾谨言,《量子力学习题精选与剖析》,上、下册,第二版,科学出版社,1999 [8] 曾谨言、钱伯初,《量子力学专题分析(上)》,高教出版社,1990 [9] 曾谨言,《量子力学专题分析(下)》,高教出版社,1999 [10] P.A.M.Dirac,The Principles of Quantum Mechanics (4th edition), Oxford University Press (Clarendon),Oxford,England,1958;(《量子力学原理》,科学出版社中译本,1979) [11]https://www.doczj.com/doc/ad5310884.html,ndau and E.M.Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (2nd edition),Addison-Wesley,Reading,Mass,1965;(《非相对论量子力学》,人民教育出版社中译本,1980)

第一章绪论 量子力学的研究对象: 量子力学是研究微观粒子运动规律的一种基本理论。它是上个世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它不仅在进到物理学中占有及其重要的位置,而且还被广泛地应用到化学、电子学、计算机、天体物理等其他资料。 §1.1经典物理学的困难 一、经典物理学是“最终理论”吗? 十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段。那时,一般物理现象都可以从相应的理论中得到说明: 机械运动(v<

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

量子力学基本概念及理解

量子力学基本理论及理解 基本概念 概率波 量子力学最基础的东西就就是概率波了,但我认为对概率波究竟就是什么样一种“波”,却并不就是很容易理解的,这个问题直到理查德,费恩曼(而不就是海森伯或者伯恩)提出了单电子实验,才让我们很清楚的瞧到什么就是概率波?有为什么就是概率波。 什么就是概率波?为什么就是概率波? 要回答这些问题,其实很简单,我们只需瞧下费恩曼的理想电子双缝干涉实验(刚开始时理想实验,不过后来都已经过证明了)就行了,我相信大家都会明白的。 下面我们再瞧一下费恩曼给出了什么结果: 1.单独开启缝1或者缝2都会得到强度分布或者符合衍射的图样, 缝1与缝2都开启时得到强度符合干涉图样 2.由两个单缝的图样无论如何得不到双缝的图样,即 3.每次让一个电子通过,长时间的叠加后就得到一个与一次让很多电子 通过双缝完全相同的图案 4.每次得到的就是“一个”电子 其实从这些结果中我们很容易得到为什么必须就是概率波,并且我们也很容易去除那些对概率波不对的理解,也就就是所谓的向经典靠拢的理解,从而得到必须就是概率波的事实。 概率波从字面上来理解,也就就是这种波表示的就是一种概率分布,还就是在双缝干涉中我们瞧一下很简单的一些表现,若果就是概率波的话,我们很关心的就就是这个粒子分布的具体形状,粒子位置的期望值等,在这里我们可以瞧出来波函数经过归一化之后,就就是说电子还就是只有那一个电子,但就是它的位置不确定了,这才形成在一定的范围内的一个云状分布,您要计算某一个范围内的电荷就是多少,这样您会得到一个分数的电荷量,但这只能告诉您电子在您研究的范围内分布的概率有多大,并不就是说在这一范围内真正存在多少电子。

量子力学习题第一部分

量子力学习题第一部分 一基本概念: Plank量子论,Bohr量子论,德布罗意关系,Bohr量子化条件,波函数的统计诠释,量子力学基本假设,坐标波函数和动量波函数的关系,不确定关系,定态,守恒量,全同性原理。 二基本实验现象及规律: 黑体辐射,光电效应,Davisson和Germer 实验,正常Zeeman效应,反常Zeeman效应,光谱精细结构,Stark 效应,自旋存在的实验证据,Stern-Gerlach实验,自旋单态,自旋三重态。 三简单证明: 1. 若坐标波函数是归一化的,则动量波函数也是归一化的。 2. 由薛定谔方程证明几率守恒。 3. 证明定态的叠加不是定态。 4. 证明在定态下,任意力学量的平均值不随时间改变。 5. 证明在定态下,任意力学量的测值几率分布不随时间变化。 6. 证明对一维运动,若一函数是薛定谔方程的解,则其复共轭也是 解,且对应于同一能级。 7. 证明对一维束缚态总可以取实函数描述。 8. 证明对于一维定态问题,若粒子处于有限阶梯形方势阱中运动, 则波函数及其一阶导数连续。

9. 证明对于一维运动,若势函数具有反射不变性,则体系有确定的宇称。 10. 证明坐标和动量的对易关系。 11. 证明角动量间的对易关系。 12. 证明坐标和角动量的对易关系。 13. 证明动量和角动量的对易关系。 14. 证明厄米算符的本征值是实数。 15. 证明在任何态下平均值为实数的算符必为厄米算符 16. 证明厄米算符的本征值必为实数。 17. 证明若体系有两个彼此不对易的力学量,则体系的能级一般是简 并的。 18. 证明书中求和规则(两题)。 19. 证明(σ ?A )(σ ?B ) =B A ?+ i σ ?(B A ?) 20. 证明a 和a + 分别为下降和上升算符,并求它们在占有数表象下的 表示。 四 计算: 1. 设一维运动粒子具有确定动量,验证不确定关系。 2. 设一维运动粒子具有确定位置,验证测不准关系。 3. 设一维运动粒子用gauss 波包描述,验证测不准关系。 4.一维自由运动粒子,求波函数。 5. 粒子处于一维无限深势阱中,求能级和波函数。

关于量子力学中的算符

关于量子力学中的算符 1对微观粒子的力学量不能用经典的方法来描述,而引入了一种新的数学手段——力学量用算符来表示,这实际上是量子力学的基本假设之一。 2在物理学中,只有其平均值为实数的算符才能表示量子力学中的力学量。厄米算符的平均值是实数,因此,表示力学量的算符必须是厄米算符。 3由于量子力学中的态满足迭加原理,所以表示力学量的算符还应当是线性的。 4线性厄米算符作用在波函数上,其物理意义为:在波函数所描述的状态下,对微观粒子的某个力学量F进行测量,在测量过程中可能会出现不同的结果,但对同一状态进行多次测量,力学量F的平均值将趋于一个确定的值A。而每一次测量结果相对于平均值都有一个误差 ? F- = F F ?来表示力学量的偏差,故力学量均方偏差的平均值为在量子力学中,引入算符F ?? F F- = 由力学量算符的厄米性,上式可写成 5在对微观粒子的不同力学量同时进行测量时,一般是不可能使每个力学量都获得准确的值的,即使是从理论上也是如此。这与所用实验仪器的精度或实验者的能力无关,而是微观粒子的二象性所带来的必然结果,这就是量子力学中的不确定关系。不确定关系指出了用经典方法描述微观粒子所产生误差的极限,以精炼的数学形式反映了微观粒子的二象性,是量子力学中的一个十分重要的原理。算符理论对此关系给出了严格的证明,并以其独特的表达方式给出了不同力学量和其算符间的联系:

6 所谓“力学量用算符表示”这一量子力学假设,包含着如下物理意义: (1) 力学量的平均值与算符的关系为: r d r F r F )(?)(*ψψ?= (2) 力学量的测量值与该力学量算符之间的关系:实验中测得的力学量的值,就是该力 学量所对应算符的一系列本征值; (3) 力学量之间的关系也可以通过算符之间的关系反映出来:相互对易的算符,它们对 应的力学量同时具有确定的测量值。 7 力学量在一般情况下不能同时确定,若系统处于某力学量的本征态中,这个力学量就有 确定值。对两个或多个力学量同时进行测量,只要系统同时处于每个力学量共同的本征态时,它们就同时具有确定值。由于力学量是用厄米算符表示的,两个力学量能否同时确定就反映在两个力学量的算符之间的关系上。可以证明两个算符具有同样的完全本征函数系,则这两个算符是对易的;它的逆定理也成立。推广到两个以上的情况,如果一组算符有共同的本征函数,而这些本征函数组成完全系,则这组算符中的任何一个和其余算符对易。 若两力学量的算符之间不对易,就不能同时确定,它反映在不确定度关系上,即由 K i F G G F ?????=- 可得一般表达式为: ()()4222K G F ≥??? 当0→?F 时,∞→?G ,而当0→?G 时,∞→?F 。它是微观粒子波粒二象性的反映,只要承认微观粒子有波动性的一面,就必有此规律。 在算符的对易关系中,其基本对易关系是x 与其相应的动量x p ?之间满足: i p p x x x =-?? 或 [] i p x x =?, 由此得到 [])(?),(x f x i p x f x ??= 其不确定度关系为 ()()4222 ≥???x p x 8 量子化是算符表示力学量的必然结果。至于为什么力学量要用算符表示,没有更深入的物理上的起源。有人认为(刘全慧,刘天贵,朱正华,曾永华,量子力学定态不是驻波,物理[J],33卷 (2004年)3期,223~224)量子力学定态是由波的干涉形成的驻波。但该文作者认为,量子力学中的定态和驻波实质上是有区别的。

相关主题
文本预览
相关文档 最新文档