当前位置:文档之家› 锌配合物的合成、表征

锌配合物的合成、表征

锌配合物的合成、表征
锌配合物的合成、表征

淮海工学院

优秀毕业设计(论文)

摘要

题目:锌配合物的合成、表征

作者:高镜学号:0503103409

系(院):化学工程系

专业班级:制药工程034班

指导者:许瑞波讲师

评阅者:

2007年6月连云港

锌配合物的合成、表征

作者高镜专业制药工程

教师许瑞波职称讲师

摘要:本文通过恒温水浴法合成了两种分别以1-苯基-3-甲基-5-吡唑酮、二乙烯三胺为配体的过渡金属锌的配合物:Zn(PMP)2Cl(1)和[Zn(dien)2]ZnCl4(2)。通过X-ray单晶衍射、红外光谱、紫外光谱和电化学对所得晶体进行组成、结构和性质分析。其中,配合物(1)是配

位聚合物,属单斜晶系,P2(1)/n空间群,晶胞参数:a=10.8498(17),b=17.578(2),c=10.9966(18)

?,V=2025.8(5)?3,Mr=448.21,Z=4,F(000)=920,Dc=1.470g/cm3,T=293(2)K,μ=1.367mm-1,λ=0.71073?,R1=0.0441和R2=0.0492。配合物(2)属四方晶体系,I-4空间群,晶胞参数:a=10.250(3),b=10.250(3),c=9.054(2)?,V=951.2(5)?3,Mr=486.95,Z=2,F(000)=504, Dc=1.700g/cm3,T=293(2)K,μ=3.083mm-1,λ=0.71073?,R1=0.0263和R2=0.0711。

关键词:吡唑酮二乙烯三胺过渡金属配合物合成表征

1引言

锌是重要的生命元素[1],是人类生长所必须的有益物质,具有抗菌、抗过滤性病原体作用,它是一些重要生物酶的活性中心,以超分子化合物形态参与各种新陈代谢。吡唑酮与锌等金属的配合物对大肠杆菌和金黄色葡萄球菌均有一定的抗菌作用,并表现出广谱抗菌、抗肿瘤、抗病毒等多种生物活性。吡唑酮含有活泼氢原子、氮原子、苯基等活性基团,两者配合可望获得具有良好生物活性的配合物。而二乙烯三胺作为三齿配体可生成一系列过渡金属配合物,通常是两个螯合的五元环,尤其是它与锌生成的配合物常用来模拟水解酶,因此研究锌与这两种配体通过配位反应所得到的配合物,具有重要的意义。本文报道了两个新的锌配合物的合成、组成和结构,其中吡唑酮-锌配合物是配位聚合物,它不是通过高温高压的水热反应合成的,而是用恒温水浴法合成的。要把相应的参考文献标示出来。2实验部分

2.1实验主要仪器及主要试剂

DF-1集热式磁力搅拌器,变倍体视解剖显微镜,WRS-2微机熔点仪,BRUKER SMART CCD-射线衍射仪.1-苯基-3-甲基-5-吡唑酮(以下简称吡唑酮)、二乙烯三胺、氯化锌等(均为分析纯)。

2.2配合物的合成及晶体培养

2.2.1配合物(1)的合成

称取0.348g PMP(0.5mol)置于250mL三口圆底烧瓶中,加入5mL的无水甲醇溶解,得浅黄白色溶液;将圆底烧瓶放入水浴锅中搅拌加热至55℃;称取0.5mol ZnCl2溶解于5mL 无水甲醇滴加进反应中的溶液里,继续搅拌恒温反应80min;冷却至室温过滤,滤液呈黄

色;套上保鲜膜扎孔;滤液静置蒸,等待结晶。有晶体长出后,挑选一颗晶体放在载玻片上,放上盖玻片,小心压碎,放在WRS-2微机熔点仪上测量,测得其熔点为291~293℃。由于配体的熔点是127~130℃,所以初步判定该晶体为配合物。经计算,产率约为82%。

2.2.2配合物(2)的合成

同上实验,加入ZnCl2搅拌10min后;将溶有2mmol二乙烯三胺的10mL无水甲醇滴加进以上溶液,在60℃下搅拌反应2h。收集白色沉淀用少量甲醇清洗,真空干燥;滤液静置几天让其缓慢蒸发结晶。滤液静置三天后,烧杯壁上有晶体长出。用相同方法测得其熔点为252~254℃。经计算,产率约为62%。

2.2.3晶体结构的测定

吡唑酮锌配合物的晶体结构测定:挑选尺寸为0.21mm×0.16mm×0.13mm的晶体放在玻璃片上。于293(2)K下在带有石墨单色器的BRUKER SMART CCD-射线衍射仪上进行衍射实验。用Mo-Kα(λ=0.71073?)射线,以ω-2θ方式扫描,在(2.24≤θ≤25.00°)范围内共收集了10317衍射数据,其中3526个为独立衍射数据(Rint=0.0700)。衍射数据经LP校正和吸收校正,以直接法进行晶体结构解析。随后用差值Fourier合成法确定除与碳原子相连的氢原子外的所有原子坐标,与碳原子相连的氢原子坐标由理论计算加入用SHELXL-97程序以全矩阵最小二乘法对非氢原子的原子坐标及其各项异性热参数进行修正。晶体属单斜晶系,P2(1)/n空间群,晶胞参数:a=10.8498(17),b=17.578(2),c=10.9966(18)?,V=2025.8(5)?3,Mr=448.21,Z=4,F(000)=920,T=293(2)K,μ=1.367mm-1,Dc=1.470g/cm3。

二乙烯三胺锌配合物的晶体结构测定:挑选一个尺寸为0.32mm×0.21mm×0.16mm的晶体用相同方法在(2.81≤θ≤24.99°)范围内共收集了2460衍射数据,其中833个为独立衍射数据(Rint=0.0245)。C(1)和C(1’)的占有因子固定为0.495和0.505,Cl(1)和Cl(1’)的占有因子固定为0.388和0.612。配合物中理论加氢全部非氢原子的各向导性根据理论模型进行修正收敛。属四方晶体系,I-4空间群,晶胞参数:a=10.250(3),b=10.250(3),c=9.054(2)?, V=951.2(5)?3,Mr=486.95,Z=2,F(000)=504,Dc=1.700g/cm3,T=293(2)K,μ=3.083mm-1,λ=0.71073?,R1=0.0263和R2=0.0711。

3结果与讨论

3.1配合物(1)的结果与讨论

3.1.1红外光谱分析

Cl红外光谱图

图1PMP红外光谱图图2Zn(PMP)

2

通过比较配体与配合物的红外谱图可以发现:配体中吡唑环上N-H峰值为3434cm-1,而在配合物中红移到3436cm-1,说明该基团N-H上的H已经参与了配位;配体中1599cm-1位C=O伸缩振动,在配合物中红移到1607cm-1,说明该羰基氧也参与了配位;配体中苯环的骨架振动吸收在1599cm-1、1498cm-1、1457cm-1,配合物中的苯环的骨架振动在1607cm-1、1549cm-1、1499cm-1,进一步说明配体参与了与金属离子的配位。

3.1.2核磁共振测定

图3PMP核磁共振图图4Zn(PMP)

Cl核磁共振图

2

图3中,δ4.87163:2-位N上的活泼H;δ3.30264:溶剂甲醇峰;δ2.21239:3位甲基峰;δ7.45698:苯环产生的峰;δ5.29493:吡唑环双键峰。图4中,δ2.4758:溶剂峰;δ3.35967:残留溶剂甲醇产峰;δ2.08943:甲基峰值;δ7.4593:苯环产生的峰。两图比较看出,反应前后配体上甲基和苯环上的质子位移发生了一定的变化,说明化学环境有了改变。而配合物图谱中无活泼氢NH的峰,说明吡唑环上NH与金属离子进行了配位。

3.1.3紫外光谱分析

Cl紫外光谱图

图5PMP紫外光谱图图6Zn(PMP)

2

比较PMP及其配合物的UV图谱可以看出:两者最大吸收波长均在242.5nm附近,摩尔吸光系数几乎没有变化,说明配合物紫外吸收主要由配体决定,可能是吡苯环的π-π*电子跃迁所产生的吸收峰。

3.1.4电化学研究

电化学测量采用三电极系统:饱和甘汞电极(SCE)为参比电极,铂丝电极为对电极,GC电极为工作电极。玻碳电极经金相砂纸打磨,然后依次用1.0μm和0.3μm粒度的α-Al2O3水浆抛光,用水冲洗后在乙醇和二次蒸馏水中超声清洗,取出后用水淋洗干净。以

DMF 为溶剂,0.1M 的四丁基高氯酸铵为支持电解质,配合物浓度为1×10-4mol·L -1,扫速50mV·s -1。于-0.2~0.7V 范围内进行扫描,循环伏安如图7。从图7可以看出,分别有2个氧化峰和2个还原峰,说明该配合物的电解过程是可逆过程。

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

210-1-2-3-4-5

-6-7-8-9i / μA

E/V (vs.SCE)

1

3

2

4

图7Zn(PMP)2Cl 电化学图

Ep 1=0.185V ;Ip 1=-5.85μA 、Ep 2=-0.513V ;Ip 2=-2.27μA Ep 3=0.421V ;Ip 3=1.34μA 、Ep 4=0.078V ;Ip 4=0.72μA

3.1.5晶体结构的描述及讨论

配合物Zn(PMP)2Cl 的主要键长、键角列于表1,氢键数据列于表2。

表1

Zn(PMP)2Cl 部分原子的键长(?)和键角(°)

Bond Length Bond Length Bond Length Zn(1)-O(2) 1.957(2)Zn(1)-N(2)#1 2.017(3)Zn(1)-Cl(1) 2.2104(11)Zn(1)-O(1) 1.986(2)N(2)-Zn(1)#2

2.017(3)N(3)-C(11) 1.377(4)Angle (o)Angle (o)Angle (o)O(2)-Zn(1)-O(1)96.25(11)N(2)#1-Zn(1)-Cl(1)115.96(9)C(6)-C(5)-C(10)119.9(4)O(2)-Zn(1)-N(2)#1106.38(12)C(3)-N(2)-Zn(1)#2125.1(2)C(6)-C(5)-N(1)121.3(4)O(1)-Zn(1)-N(2)#1109.82(11)N(1)-N(2)-Zn(1)#2119.4(2)C(10)-C(5)-N(1)118.7(4)O(2)-Zn(1)-Cl(1)114.08(8)N(4)-N(3)-C(11)108.1(3)C(5)-C(6)-C(7)120.2(5)O(1)-Zn(1)-Cl(1)

112.48(8)

C(11)-N(3)-C(15)

129.7(4)

C(5)-C(6)-H(6)

119.9

表2

氢键的键长、键角(?,°)D-H d D-H d H···A d D···A θDHA A Symmetry code N4-H4

0.860

1.899

176.23

2.758

O1

x+1/2,-y+3/2,z-1/2

图8Zn(PMP)2Cl分子结构图图9Zn(PMP)2Cl沿a轴晶胞堆积图

图10Zn(PMP)2Cl沿b轴晶胞堆积图图11Zn(PMP)2Cl沿c轴晶胞堆积图晶体结构测试表明:锌为四配位,分别与3个PMP配体中的1个N、2个O及1个Cl 配位,形成一个扭曲的四面体构型,配体PMP的N2、O1、O2为基面,Cl1为顶点。其中,Zn-N2,Zn-O1,Zn-O2,Zn-Cl的键长分别是2.017(3)?、1.986(2)?、1.957(2)?、2.2104(11)?,O(2)-Zn(1)-O(1)键角为96.25(11),O(2)-Zn(1)-N(2)#1键角为106.38(12)、O(1)-Zn(1)-N(2)#1键角为109.82(11)、O(2)-Zn(1)-Cl(1)键角为114.08(8)、O(1)-Zn(1)-Cl(1)键角为112.48(8)、N(2)-Zn(1)-Cl(1)键角为115.96(9)。

该分子为一配位聚合物,主链是由交错的PMP-Zn-PMP-Zn-PMP构成,其中的PMP为二齿配体,吡唑环上的C=O氧和脱掉H的NH氮桥联Zn。此外,侧链是由与Zn配位的另外的一个PMP和Cl组成。经过使用SHELXS-97软件计算,可知:主链上的PMP分子中吡唑酮环与苯环之间二面角为86.9°,几乎呈垂直。而主链上的苯环几乎平行。另外,支链上苯环与吡唑环的二面角为29.5°。通过a、c两个轴可以看出配合物结构为层状排列。层内分子间是通过氢键、氧与金属离子的弱作用力链接而成;层与层之间没有化学键链接,可以推测是靠π→π*堆积作用或范德华力作用而成。

3.2配合物(2)的结果与讨论

3.2.1红外光谱分析

图12[Zn(dien)2]ZnCl4红外光谱图

3331.8、3267.4、3228.5cm-1:二乙烯三胺上的N-H基振动吸收;1142.3cm-1:未裂解的ClO4-的吸收,证明其参与了配合物的反应;2942.6、2884.1cm-1:CH2基的弯曲振动; 1142.3、1118.2、1072.3cm-1:C-C单键的伸缩振动;1589.8:仲胺N-H键的弯曲振动吸收。

3.2.2晶体结构描述及讨论

表3[Zn(dien)2]ZnCl4部分键长(?)和键角(°)

Bond Length Bond Length Bond Length Zn(1)-Cl(1) 2.198(6)Zn(1)-Cl(1’) 2.315(4)Zn(2)-N(1) 2.113(5)

Zn(2)-N(2) 2.232(3)

Angle(o)Angle(o)Angle(o) Cl(1)-Zn(1)-Cl(1)#1119.6(2)Cl(1)-Zn(1)-Cl(1)#390.7(4)Cl(1)-Zn(1)-Cl(1’)14.25(17) Cl(1)-Zn(1)-Cl(1’)#2113.0(3)Cl(1)-Zn(1)-Cl(1’)#1108.9(3)Cl(1)-Zn(1)-Cl(1’)#3104.7(3) Cl(1’)-Zn(1)-Cl(1’)#1105.03(14)Cl(1)-Zn(1)-Cl(1’)#3118.8(3)N(1)-Zn(2)-N(1)#4180.000(1)

N(1)-Zn(2)-N(2)100.44(10)N(1)-Zn(2)-N(1)#579.56(10)N(2)#5-Zn(2)-N(2)91.88(4)

N(2)#6-Zn(2)-N(2)159.1(2)C(1)-N(1)-Zn(2)113.3(5)C(2)-N(2)–Zn(2)107.0(3)

Symmetry transformations used to generate the equivalent atoms:#1–y+2,x,-z+2;#2y,-x+2,-z+2;#3–x+2,-y+2,z;

#4y+1/2,-x+3/2,-z+3/2;#5–y+3/2,x-1/2,-z+3/2;#6–x+2,-y+1,z

表4氢键的键长、键角(?,°)

D-H···A d D-H d H···A d D···AθDHA Symmetry code N(2)-H(2A)...Cl(1)a0.900 2.432 3.304163(10)-y+3/2,x-1/2,-z+3/2

N(2)-H(2A)...Cl(1’)b0.900 2.776 3.647163.21-y+3/2,x-1/2,-z+3/2

N(2)-H(2B)...Cl(1’)b0.900 2.770 3.532143.18

N(2)-H(2B)...Cl(1)a0.900 2.870 3.656146.79

配合物(2)是一个对称晶体结构,由一个[Zn(dien)2]2+和一个阴离子[ZnCl4]2-组成,它

们通过分子内的氢键相连。配合物(2)的键长、键角和氢键的键长、键角分别列于表6、。

分子图见图13,沿着a、b、c轴的晶胞堆积图见图。

图13[Zn(dien)2]ZnCl4的结构图图14配合物轴的晶胞堆积图

图15配合物轴的晶胞堆积图图16配合物沿c轴晶胞堆积图

如图12所示,配合物由两个部分组成,Zn(1)离子和四个Cl-离子连接组成一个变形的四面体几何形状。其中Cl-离子是无序的,所有的Cl-和Zn(1)2+距离都是2.198(6)?,比其它键要短。Cl-Zn(1)-Cl键角分别为119.6(2)和90.7(4)。对于阳离子[Zn(dien)2]2+而言,Zn(2)2+与两个二乙烯三胺的六个氮原子相连接。其几何形状可以描述为一个不规则的八面体结构。赤道平面由Zn(2),N(1),N(1)#6,N(2)和N(2)#5组成。其中Zn(2),N(1),N(1)#6,N(2)#4和N(2)#6也共面,两个面之间的二面角为90°。Zn(2)-N(1)和Zn(2)-N(2)的键长分别是2.113(5)和2.232(3)?,N(1)-Zn(2)-N(1)#4,N(1)-Zn(2)-N(2),N(1)-Zn(2)-N(1)#5,N(2)#5-Zn(2)-N(2)和N(2)#6-Zn(2)-N(2)的键角分别是180.000°,100.44°,79.56°,91.88°和159.1°。[Zn(dien)2]2+的键长、键角数据与文献值是可比的。

N-H...Cl和C-H...Cl中存在两种类型的氢键。N-H...Cl和C-H...Cl。[Zn(dien)2]2+阳离子中的两个N,N(2)和N(2C)(或N(2A)和N(2B)),与阴离子[ZnCl4]2-中的Cl(1)(或Cl(lC))形成N-H…Cl分子内的氢键,而Cl(1)也能与另一个[Zn(dien)2]2+中的C(1C)和C(1A)形成分之内氢键。一个[ZnCl4]2-阴离子能够通过分子内和分子间的氢键与四个[Zn(dien)2]2+阳离子形成氢键。一个[Zn(dien)2]2+阳离子能与两个[ZnCl4]2-阴离子形成氢键。配合物的所有这些分子内和分子间的相互作用形成了一个稳定的无限的三维立体网状结构。

4结论

本论文以吡唑酮、二乙烯三胺为配体,分别与锌反应制备配合物。通过恒温水浴回流法进行合成研究,得到两种新的锌配合物晶体,并进行一系列的结构、性质表征。经过多次实验,得出最佳条件:溶剂为无水甲醇,温度在50℃~65℃之间,反应时间为1h~2.5h。

合成的配合物(1)Zn(PMP)2Cl为层状配位聚合物。该配合物分子中锌为四配位,分别与吡唑酮中的O1、O2、N2以及Cl形成配位键,构成变形的四面体结构,晶胞中层与层之间,通过π-π*堆积或范德华力作用固定。

而配合物(2)的合成方法是在(1)反应5分钟后加入二乙烯三胺,得到产物即成为[Zn(dien)2]ZnCl4。原因可能是锌离子与二乙烯三胺形成了六配位结构,这要比四配位的吡唑酮锌配合物结构要稳定。实验证明,二乙烯三胺与锌离子反应在不加吡唑酮的条件下是得不到该配合物的,因此,可推断吡唑酮在该配合物的生成过程中起到重要的空间支撑作用。配合物(2)是一个对称晶体结构,由一个[Zn(dien)2]2+和一个阴离子[ZnCl4]2-组成,它们通过分子内的氢键相连。其中[ZnCl4]2-的Zn(1)离子和4个Cl-离子连接组成一个变形的四面体几何形状;[Zn(dien)2]2+中Zn(2)2+与两个二乙烯三胺的六个氮原子相连接。其几何形状为不规则的八面体结构。

参考文献

[1]马卫兴,钱宝华,程青芳等.混配配合物[Zn(acac)2(C5H4NOH)]的合成、晶体结构及表征[J].无机化学学报,2006,22(11):2101~2104.

[1]张祥麟.配合物化学.北京:高等教育出版社,1991,4.

[2]徐延瓞.配位化学在工业中的应用.北京:高等教育出版社,1989,10.

[3]J.A.Joule,https://www.doczj.com/doc/ab12419489.html,ls.杂环化学.北京,科学出版社,2006,6.

[4]Albert Stwertka.化学元素遍览.河南科学出版社,2002,1.

[5]鲁源,杨慧,布仁等.吡唑类化合物的研究(X)1-苯基-3-羟基-4-酰基-5-吡唑酮的合成及

其性质[J].内蒙古医学院学报,2006,28(1):43~44.

[6]朱华玲,张欣,徐海珍.1-苯基-3-甲基-4-苯甲酰基-吡唑啉酮-5金属配合物的合成及抑

菌活性[J].天津师范大学学报,2003,6:13~15.

[7]杨正银,郑金福,杨春莉.PMBP-苯甲酰腙过渡金属配合物的合成与生物活性研究[J].

兰州大学学报,2004,12:51~56.

[8]江以桦,杨汝栋,闫兰.含吡唑啉酮三脚架结构的化合物及其稀土配合物的合成、表征

及荧光性能[J].中国稀土学报,2002,5(5):474~477.

[9]于群,薛卫星,李建宇.几种1,3-二苯基-4-酰基-5-吡唑酮结构讨论[J].北京轻工业学院

报,1997,15(1):83~88.

[10]Mamdouh S.M.,Ali A.E.,Mohameda R.H.Dielectric relaxation spectroscopy of

heteronuclear cobalt(II)–copper(II)complex of1-phenyl-3-methyl-5-pyrazolone[J].

Spectrochimica Acta Part A,2005,62:1114~1119.

Synthesis and Characterization of Pyrazolone Complexes Abstract::Two new complexes:Zn(PMP)2Cl(1)and[Zn(dien)2]ZnCl4(2)were synthesized Abstract

by constant temperature water bath methods with1-phenyl-3-methyl-5-pyrazolone(PMP),

Diethylenetriamine(Dien)as ligand respectively.The crystal structure and chemical composition of the complexes were characterized by IR,UV spectra,X-ray diffraction and electrochemical https://www.doczj.com/doc/ab12419489.html,plexes(1)is a polymeric complex,the crystal belongs to Monoclinic system with space group P2(1)/n,and a=10.8498(17),b=17.578(2),c=10.9966(18)?,V=2025.8(5)?3, Mr=448.21,Z=4,F(000)=920,Dc=1.470g/cm3,T=293(2)K,μ=1.367mm-1,λ=0.71073?,R1=0.0441and R2=0.0492。Complexes(2)crystallized in the tetragonal system,space group I-4,the cell dimensions are:a=10.250(3),b=10.250(3),c=9.054(2)?,V=951.2(5)?3,Mr =486.95,Z=2,F(000)=504,Dc=1.700g/cm3,T=293(2)K,μ=3.083mm-1,λ=0.71073?, R1=0.0263and R2=0.0711。

words::pyrazolone;diethylenetriamine;transitionmetal complexes;synthesis;Key words

characterization.

毕业环节期间已投稿件(正在审稿):

许瑞波,许兴友,高镜等.一个新的[Zn(dien)2]ZnCl4配合物的合成、晶体结构[J].结构化学.

《纳米氧化锌制备法》word版

氧化锌制备工艺2008-06-04 12:21阅读(4)评论 (0) D0208、氧化锌制备工艺(本技术资料含国家发 明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺流程等,全套价格260元) (氧化锌*制备 氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌 研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途

7、超声波-微波联合法从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌

22、改性的超细氧化锌及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法

固相配位反应及配合物性质表征

固相配位反应及配合物性质表征 摘要:本实验研究的是固相配位反应及其配合物的表征,在室温下将8-羟基喹啉与醋酸锌,按物质的量之比为2:1,在研钵中充分研磨,发生固相配位反应。混合物颜色逐渐由浅暗黄色变黄绿色,最后变为浅亮黄色。用IR、TG-DTA和XRD 对产物进行表征,其测定结果表明:配合物的反应级数n=1,活化能Ea=218.75kJ/mol,频率因子k =1.37×1012,速率系数k=5.83×10-3s-1。 关键词:8-羟基喹啉;醋酸锌;固相反应;表征 Abstract:The solid-phase reaction at room temperature was studied. The compounds were synthesized and characterized with eight -hydroxyquinoline and Zinc-accurate according to the molar ratio of 2:1 weighing. The Mixture colour gradually from dark yellow to yellow green, finally to light yellow. The products were characterized by IR, TG-DTA and XRD. Their results showed the complex reaction order is n = 1, the = the activation energy is Ea = 218.75 kJ/mol, the frequency factor k 0 1.37 * 1012, the rate coefficient is k = 5.83 * 10-3 and has no pair of electron. Keywords: 8-Quinolino1;zinc acetate;Coordination compound;Crystal structure

纳米ZnO的制备及表征

化学化工学院材料化学专业实验报告实验实验名称:纳米ZnO的制备及表征. 年级:2015级材料化学日期:2017/09/20 姓名:汪钰博学号:2220 同组人:向泽灵 一、预习部分 氧化锌的结构 氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为cm3,熔点为2070K,室温下的禁带宽度为. 如图1-1、图1- 2所示: 图1-1 ZnO晶体结构在C (00001)面的投影 图1-2 ZnO纤锌矿晶格图

2 氧化锌的性能和应用 纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻 器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。纳米氧化锌的制备是所有研究的基础。合成纳米氧化锌的方法很多, 一般可分为固相法、气相 法和液相法。本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。 3 氧化锌纳米材料的制备原理 不同方法制备的ZnO晶形不同,如: 共沉淀和成核/生长隔离法 借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。使合成材料的粒子尺寸和均分散性能受到很大影响,其晶体的尺寸也很难达到纳米量级,极大限制了此类材料的应用;成核/生长隔离制备采用强

棒状氧化锌纳米材料的制备及表征

第30卷第5期2009年10月 青岛科技大学学报(自然科学版) Jo urnal of Qing dao U niver sity o f Science and T echno lo gy (N atural Science Edition)V ol.30N o.5 O ct.2009 文章编号:1672-6987(2009)05-0384-03 棒状氧化锌纳米材料的制备及表征 彭红瑞1,王 宁1,丁 洁1,李桂村1,徐明正2 (1.青岛科技大学材料科学与工程学院,山东青岛266042; 2.青岛市建筑材料研究所,山东青岛266042) 摘 要:分别以Zn(Ac)2 2H 2O 和Zn(NO 3)2 6H 2O 为锌源,利用简易的低温液相法制备了2种不同形貌的ZnO 纳米棒状结构。XRD 衍射图谱表明,所得的ZnO 纳米棒具有六角纤维锌矿结构;通过SEM 观察可知,以Zn(Ac)2 2H 2O 为锌源制备的ZnO 纳米 棒,长度1~5 m ,直径50~100nm;以Zn(NO 3)2 6H 2O 为锌源制备的ZnO 纳米棒,长度0 5~1 m,直径40~60nm 。关键词:氧化锌;纳米棒;低温液相中图分类号:T B 383 文献标识码:A Synthesis and Characterization of ZnO Nanorods PENG Hong -rui 1 ,WANG Ning 1 ,DING Jie 1 ,LI Gu-i cun 1 ,XU Ming -zheng 2 (1.Colleg e of M aterials Science and Engineering,Qingdao U nivers ity of S cien ce an d T echnology,Qingdao 266042,C hina; 2.Qingdao In stitu te of Bu ilding M aterials,Qingdao 266042,C hina) Abstract:ZnO nanorods were synthesized by a low temperature solution method using Zn(Ac)2 2H 2O and Zn(NO 3)2 6H 2O as zinc sources,respectively.The products were characterized by X -ray diffractometer (XRD)and scanning electron microscopy (SEM ).The XRD pattern shows that ZnO nanorods synthesized using either Zn(Ac)2 2H 2O or Zn(NO 3)2 6H 2O as zinc sour ce have hex agonal w urtzite structur e.T he SEM imag es illustrate that ZnO nanorods sy nthesized using Zn(AC)2 2H 2O have 1~5 m leng ths and 50~100nm diameters;ZnO nanor ods synthesized using Zn(NO 3)2 6H 2O have 0 5~1 m lengths and 40~60nm diameters. Key w ords:ZnO;nanorods;low -tem perature solutio n metho d 收稿日期:2008-11-07 作者简介:彭红瑞(1962~),男,教授. 氧化锌纳米结构有纳米棒[1] 、纳米线 [2] 、纳米管[3] 、纳米带[4] 、纳米环 [5] 、纳米螺旋[6] 、纳米 片[7]、纳米盘 [8] 以及中空纳米球[9] 等,因具有特殊 的光学性质[10],其在压电器件[11]、紫外发光器件[12]、燃料电池[7]和光催化[8]上有潜在应用价值。纳米氧化锌常见的的制备方法有化学气相沉积(CVD)[2]、模板辅助合成[3]、热力学沉积[4-6]、电沉积 [13] 、仿生合成 [14] 以及水热合成 [15] 。但是目 前氧化锌纳米棒的低温液相法制备还鲜有报道。本研究采用简易的低温液相法,以2种不同的锌 源合成了不同形貌的氧化锌纳米棒结构。 1 实验部分 1.1 试剂和仪器 醋酸锌、硝酸锌、氨水,烟台三和化学试剂有限公司;十二烷基硫酸钠,淄博市淄博天德精细化工研究所;无水乙醇。所用试剂均为分析纯。 JSM -6700F 型场发射扫描电子显微镜,日本JEOL 公司;Rigaku D -max - A 型X 射线衍射仪,日本理学公司;水浴锅,天津泰斯特仪器有限公司。

综述---氧化锌制备

综述——————纳米氧化锌的制备 指导老师:翁永根 组员:周敏200921501146 周生鹏200921501147 朱亚南200921501148

前言:纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1~100纳米,又称为超微细氧化锌。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。 纳米氧化锌的制备技术 制备纳米氧化锌的方法主要是物理法和化学法。其中,化学法是常用的方法。Ⅰ、物理法 物理法包括机械粉碎法和深度塑性变形法。机械粉碎法是采用特殊的机械粉碎、电火花爆炸等技术 ,将普通级别的氧化锌粉碎至超细。其中张伟等人利用立 式振动磨制备纳米粉体 ,得到了α-Al 2O 3 ,ZnO、MgSiO 3 等超微粉 ,最细粒度达 到 0. 1μm此法虽然工艺简单 ,但却具有能耗大,产品纯度低 ,粒度分布不均匀 ,研磨介质的尺寸和进料的细度影响粉碎效能等缺点。最大的不足是该法得不到1—100nm 的粉体 ,因此工业上并不常用此法;而深度塑性变形法是使原材料在净静压作用下发生严重塑性形变 ,使材料的尺寸细化到纳米量级。这种独特的方法最初是由 Islamgaliev 等人于 1994 年初发展起来的。该法制得的氧化锌粉体纯度高,粒度可控,但对生产设备的要求却很高。总的说来 ,物理法制备纳米氧化锌存在着耗能大 ,产品粒度不均匀,甚至达不到纳米级,产品纯度不高等缺点,工业上不常采用,发展前景也不大。 Ⅱ、化学法 化学法具有成本低 ,设备简单 ,易放大进行工业化生产等特点。主要分为溶胶-凝胶法、醇盐水解法、直接沉淀法、均匀沉淀法等。 ⑴固相法 ①碳酸锌法 利用硫酸锌制得前驱物碳酸锌,在200℃烘1h,得纳米氧化锌初产品:经去离子水、无水乙醇洗涤,过滤,干燥可得纳米氧化锌产品。 ②氢氧化锌法 利用硝酸锌制得前驱氢氧化锌,在600℃保持2h,高温热分解得纳米氧化锌。 ⑵液相法 溶胶-凝胶法 溶胶-凝胶法制备纳米粉体的工作开始于 20 世纪60年代。近年来,用此法制备纳米微粒、纳米薄膜、纳米复合材料等的报道很多。它是以金属醇盐Zn(OR) 2为原料 ,在有机介质中对其进行水解、缩聚反应 ,使溶液经溶胶化得到凝胶 ,凝胶再经干燥、煅烧成粉体的方法。此法生产的产品粒度小、纯度高、反应温度低(可以比传统方法低 400 —500 ℃) ,过程易控制;颗粒分布均匀、团聚少、介电性能较好。但成本昂贵 ,排放物对环境有污染 ,有待改善。 醋酸锌,柠檬酸三铵,无水乙醇,保护胶,乳化剂,蒸馏水。 以醋酸锌为原料,柠檬酸三铵为改性剂,配置一定浓度的醋酸锌溶液,搅拌均匀后,置于恒温水槽中,在搅拌加热的条件下,均匀的加入无水乙醇,2h后醋酸锌完全溶解,生成氢氧化锌沉淀。 水解反应: Zn(OR) 2 + 2H 2 O →Zn(OH) 2 +2ROH

酰腙及其配合物的表征

对-二甲氨基苯甲醛缩对氯苯甲酰腙及其钴(Ⅱ )、镍(Ⅱ ) 配合物的合成与表征 姓名:**学号:********指导教师:*** 摘要合成了对-二甲氨基苯甲醛缩对氯苯甲酰腙(配体)及其钴(Ⅱ )、镍(Ⅱ )配合物, 并通过红外光谱、热重分析对对-二甲氨基苯甲醛缩对氯苯甲酰腙(配体)及配合物进行初步表征。 关键词对-二甲氨基苯甲醛缩对氯苯甲酰腙配合物表征 Synthesis and characterization of 4-(dimethylamino) Benzaldehyde 4 –chloro benzoylhydrazone and the Cobalt (Ⅱ) ,Nickel (Ⅱ) Complexes Abstract:The 4-(dimethylamino)Benzaldehyde 4-chloro benzoylhydrazone and its Cobalt (Ⅱ),Nickel (Ⅱ) complexes were synthesized and characterized by IR and TG. Keywords:4-(dimethylamino)Benzaldehyde 4- chloro benzoylhydrazone Complexes Characterization 引言:酰腙因其含有甲亚胺基(C=N)属于席夫碱类化合物,又因为羰基(C=O)的存在,构成活性亚结构基团,因而具有很强的配位能力[l-5],其广泛的生物和药物活性[ 6-7]、非线性光学性质[ 8 ]在分析、催化等方面有广泛的应用。这类配合物同时具有独特的抗结核病菌的药理活性和消炎、杀菌以及抗肿瘤等生理活性[ 9 ]。因此,酰腙及其配合物的合成与活性研究引起了人们的广泛关注。在不同的条件下席夫碱和不同的金属离子配位会呈现出不同的颜色。为了研究酰腙及其配合物的性质,本实验设计合成对-二甲氨基苯甲醛缩对氯苯甲酰腙及其Co(Ⅱ)、Ni(Ⅱ)配合物以做研究。 1.实验部分 1.1仪器与试剂 油浴加热装置;78-1型磁力加热搅拌器(江苏省金坛市荣华仪器制造有限公司);冷凝管;抽滤装置;Nexus2870型红外光谱仪(KBr压片,北京第二光学仪器厂);Q600同步热分析系统(美国TA

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

纳米氧化锌制备与表征

纳米氧化锌的制备与表征 1 前言 纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1-100纳米,又称为超微细氧化锌。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体快材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因此,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途: 可以作为硫化活性剂等功能性添加剂,提高橡胶制品的光洁性、耐磨性、 机械强度和抗老化性能性能指标,减少普通氧化锌的使用量,延长使用 寿命; 作为乳瓷釉料和助熔剂,可降低烧结温度、提高光泽度和柔韧性,有着 优异的性能; 纳米氧化锌具有很强的吸收红外线的能力,吸收率和热容的比值大,可 应用于红外线检测器和红外线传感器; 纳米氧化锌还可应用于新型的吸波隐身材料;具有良好的紫外线屏蔽性 和优越的抗菌、抑菌性能,添加入织物中,能赋予织物以防晒、抗菌、 除臭等功能。 现在制备氧化锌一般有沉淀高温煅烧法、水热合成法、溶胶-凝胶法和气相沉淀法。本次试验采用水热合成法。 2 实验过程 2.1 实验原理 本次纳米氧化锌的制备是以ZnAc 2为原料,NaOH 为沉淀剂制备纳米ZnO 的。 反应方程式如下: 2)(Ac Zn + 2NaOH = 2)(OH Zn ↓ + NaAc 2 热处理: 2)(OH Zn → ZnO + O H 2↑

2.2 实验仪器和药品 仪器:托盘天平,烧杯,量筒,电子天平,玻璃棒,布氏漏斗,滤纸,吸滤瓶,烘箱,高压釜FP-8500荧光,紫外-可见吸收光谱用 V-650 型紫外可见光度计测量。 药品:醋酸锌,蒸馏水,无水乙醇,固体氢氧化钠 2.3 实验步骤: 1)称量:分别在托盘天平上称取0.4g 氢氧化钠固体和在电子天平上称取 0.5478g ZnAc2于40mL 烧杯中 2)溶解:室温下,将所称取的氢氧化钠与ZnAc2装至烧杯中,然后向烧杯 中加入配置好的水和乙醇,分别加18ml水和18ml无水乙醇,其比值为 1:1,用玻璃棒搅拌溶解至出现浑浊。 3)将上述溶液转移至40 mL高压釜中,保持其填充度为80%。置于180 ℃反 应8小时后自然冷却至室温,抽滤并收集白色沉淀,然后用去离子水反 复冲洗以除去吸附的多余离子,在醇洗,之后将得到的产品放入60 ℃ 烘箱中烘烤4小时后取出。 4)用紫外可见吸收光谱和荧光光谱检测,并收集数据。 3实验数据处理与分析 3.1 纳米氧化锌的荧光测试 纳米氧化锌的室温荧光光谱如图1所示。

配合物的合成与表征

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 5-(3-吡啶基)四唑-2-乙酸根与Zn(II)配合物的合成与表征报告 班级:09化学(师范) 学号:8 姓名:蔡福东

目录 1. 前言...................................................................... 错误!未定义书签。 1配位化合物 .................................................... 错误!未定义书签。 1. 1配位化合物的组成 .............................. 错误!未定义书签。 1. 2配合物的种类 ...................................... 错误!未定义书签。 2配位化学发展简史 ........................................ 错误!未定义书签。 3配位化学的今天 ...................................... 错误!未定义书签。 2. 实验部分 ............................................................... 错误!未定义书签。 2.1药品................................................................. 错误!未定义书签。 2.2仪器................................................................. 错误!未定义书签。 2.3合成方法 ........................................................ 错误!未定义书签。 3. 结果与讨论 ......................................................... 错误!未定义书签。 3.1 结构分析 ................................................... 错误!未定义书签。 3.2 红外光谱 ................................................... 错误!未定义书签。 3.3 荧光光谱 ................................................... 错误!未定义书签。 4.小结....................................................................... 错误!未定义书签。

直接沉淀法制备纳米ZnO实验(论文)

沉淀法制备纳米ZnO与表征实验 ---以氯化锌为原料 系别:应用化学系 班级:1004班 :凯强 学号:2010080401 指导教师:唐玉朋

直接沉淀法制备纳米氧化锌实验 作者:凯强摘要:以氯化锌为原料, 直接沉淀法制备ZnO纳米粒子; 研究了制备过程中Zn离子浓度、焙烧温度等条件对ZnO纳米晶体粒径的影响, 并对其机理进行了分析。实验结果表明, 较小的反应浓度可以获得较小的晶体粒径; 在其它反应条件相同的情况下, 制备的纳米ZnO粒子, 其晶粒尺寸随着焙烧温度的增加, 晶粒逐渐增大, 为ZnO的应用开辟了更为广阔的前景。 关键词: 纳米氧化锌,直接沉淀法, 制备,表征。 引言 纳米氧化锌(粒子直径在1-100nm)是近年来已发现的一种高新技术材料,是一种新型的高功能精细无机材料,由于其具有量子尺寸效应,小尺寸效应、表面效应和宏观量子隧道效应[1],因而纳米ZnO产生了其体相材料所不具备的这些效应、展现了许多特殊的性质,由于其粒子的尺寸小,比表面积大,使其在化学,光学,生物和电学等方面表现出许多独特优异的物理和化学性能。与普通氧化锌相比,具有优良的光活性,电活性,烧结活性和催化活性,如无毒和非迁移性,荧光性,压电性,吸收和散射紫外线能力。 这一新的物质状态,赋予氧化锌这一古老产品在催化、滤光、光吸收、医药、磁介质、电等方面有着广阔的应用前景。如制造气体传感器,荧光体。紫外线屏蔽材料,变阻器,图像记录材料,压电材料,压敏电阻,磁性材料,高效催化剂和塑料薄膜等[2]。利用氧化锌的电阻变化,可制成气体报警器,吸湿离子传导温度计;利用纳米氧化锌的紫外屏蔽能力,可制成紫外线过滤器,化妆品;以氧

一种钴配合物的制备及表征

1 实验9 一种钴III配合物的制备及表征一、实验目的1. 掌握制备金属配合物的最常用的方法――水溶液中的取代反应和氧化还原反应2. 学习使用电导率仪测定配合物组成的原理和方法二、实验原理 1. 合成运用水溶液的取代反应来制取金属配合物是在水溶液中的一种金属盐和一种配体之间的反应。实际上是用适当的配体来取代水合配离子中的水分子。氧化还原反应是将不同氧化态的金属配合物在配体存在下使其适当的氧化或还原制得金属配合物。CoII的配合物能很快地进行取代反应是活性的而CoIII配合物的取代反应则很慢是惰性的。CoIII的配合物制备过程一般是通过CoII实际上是它的水合配合物和配体之间的一种快速反应生成CoII的配合物然后使它被氧化成为相应的CoIII配合物配位数均为六。常见的CoIII配合物有CoNH363黄色、CoNH35H2O3粉红色、CoNH35Cl2紫红色、CoNH34CO3紫红色、CoNH33NO23黄色、CoCN63-紫色、CoNO263黄色等。2. 组成分析用化学分析方法确定某配合物的组成提出先确定配合物的外界然后将配离子破坏再来看其内界。配离子的稳定性受很多因素影响通常可用加热或改变溶液酸碱性来破坏它。本实验先初步推断一般用定性、半定量甚至估量的分析方法。推定配合物的化学式后可用电导率仪来测定一定浓度配合物溶液的导电性与已知电解质溶液进行对比可确定该配合物化学式中含有几个离子进一步确定该化

学式。游离的CoII离子在酸性溶液中可与硫氰化钾作用生成蓝色配合物CoSCN42-。因其在水中离解度大固常加入硫氰化钾浓溶液或固体并加入戊醇和乙醚以提高稳定性。由此可用来鉴定CoII离子的存在。其反应如下Co2 4SCN CoNCS42-蓝色游离的NH4离子可由奈氏试剂来鉴定其反应如下NH4 2HgI42- 4OH O NH2I↓ 7I 3H2O 奈氏试剂红 褐色电解质溶液的导电性可以用电导G表示KG 式中γ为电导率常用单位为S·cm1K为电导池常数单位为cm1。电导池常数K的数值并不是直接测量得到的而是利用已知电导率的电解质溶液测定其电导然后根据上式即可求得电导池 常数。一般采用KCl溶液作为标准电导溶液Hg Hg 2 三、实验用品仪器与材料电子台秤、烧杯、锥形瓶、量筒、研钵、漏斗、铁架台、酒精灯、试管15mL、滴管、药勺、试管夹、漏斗架、石棉网、温度计、电导率仪、pH试纸、滤纸等。固体药品氯化铵、氯化钴、硫氰化钾液体药品浓氨水、硝酸浓、盐酸6 mol/L、浓、H2O230、AgNO32 mol/L、SnCl20.5 mol/L、新配、奈氏试剂、乙醚、戊醇等。四、实验内容 1. 制备CoIII配合物在锥形瓶中将1.0g氯化铵溶于6 mL浓氨水中待完全溶解后持锥形瓶颈不断振荡使溶液均匀。分数次加入2.0g氯化钴粉末边加边摇动加完后继续摇动使溶液呈棕色稀浆。再往其中滴加过氧化氢302-3mL边加边摇动加完后再摇动当溶液中停止起泡时慢慢加入6 mL浓盐

氧化锌制备方法

将mol·L-1的NaOH乙醇溶液缓慢滴加到含有mol·L-1的Zn(NO3)2·6H2O乙醇溶液中. 将混合溶液转移至高压反应釜中, 在130℃下反应12 h, 将反应产物经二次去离子水、乙醇等洗涤后, 在130 摄氏度下干燥,即可获得纯ZnO纳米棒. 在 ZnCl2 溶液 mol/L) 中加入一定量的 SDS, 搅拌下于 65 ℃将 Na2CO3 溶 液滴加到该溶液中 (120 滴/min, n(Na 2CO 3 )/n(ZnCl2) = 2),恒温反应 h. 将反 应液倒入聚四氟乙烯罐中, 在150~160 ℃进行水热反应 12 h, 自然冷却后离心分离, 用去离子水洗涤到无水Cl?离子, 再用无水乙醇洗涤 2~3 次, 50 ℃真空干燥 2 h, 300 ℃焙烧 3 h, 即制得 ZnO 纳米管. 将0. 1 L0. 1 mo l/ L二水合醋酸锌的乙醇溶液置于带冷凝管和干燥管的0. 5 L 圆底烧瓶中, 在80 ℃搅拌3 h, 不断收集冷凝物, 最后可获得0. 04 L 中间物和0. 06 L 冷凝物. 将中间物迅速用冷的绝对乙醇稀释至0. 1 L, 冷至室温, 得0. 1 mol/ L 中间产物. 氨水沉淀法制备纳米氧化锌 在水——乙醇介质中用氨水沉淀法制备出了纳米Zn(OH) 2 和ZnO材料,讨论了介质组成对沉淀产物ZnO微粒的粒径范围及形貌的影响,并研究出由Zn(OH)2分解为纳米ZnO的最佳干燥脱水条件为200℃、2h。表明本方法不需高温处理就可得到颗粒均匀且分布窄的ZnO纳米材料,粒径可达17~6nm。 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂。 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱。 二、试验方法 以水——乙醇为溶剂,其中醇的体积含量分别为0%(去离子水)、20%、60%、100%。将氯化锌、氨水配制成不同浓度的溶液(不同浓度是多少)。取一定体积(一定体积是多少)的氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度的氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应。控制氨水用量,调节pH值为左右,确定滴定终点。反应得到的白色沉淀物,经抽滤洗涤后自然风干 即为Zn(OH) 2纳米粉,Zn(OH) 2 经干燥(200℃、2h)脱水后,为ZnO纳米粉

沉淀法制备纳米氧化锌粉体讲义

沉淀法制备纳米氧化锌粉体 一、实验目的 1.了解沉淀法制备纳米粉体的实验原理。 2.掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3.了解实验产物粒度的表征手段,掌握激光纳米粒度仪的使用。 4.了解沉淀剂、实验条件对产物粒径分布的影响。 二、实验原理 氧化锌是一种重要的宽带隙(3.37eV)半导体氧化物,常温下激发键能为60meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。纳米氧化锌由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点,已经广泛的应用在陶瓷、化工、电子、光学、生物、医药等许多领域。纳米氧化锌的制备方法有物理法和化学法,物理法主要包括机械粉碎法和深度塑形变形法,化学法包括沉淀法、溶胶—凝胶法、水热法、微乳液法等方法。本实验采用沉淀法制备纳米氧化锌粉体。 沉淀法包括直接沉淀法和均匀沉淀法。直接沉淀法是制备纳米氧化锌广泛采用的一种方法。其原理是在包含一种或多种离子的可溶性盐溶液中,加入沉淀剂(如OH-,CO32-等)后,在一定条件下生成沉淀并使其沉淀从溶液中析出,再将阴离子除去,沉淀经热分解最终制得纳米氧化锌。其中选用不同的沉淀剂,可得到不同的沉淀产物。均匀沉淀法是利用某一化学反应使溶液中的构晶离子从溶液中缓慢地、均匀地释放出来,所加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌ZnAc2。常用的沉淀剂有氢氧化钠(NaOH)、氨水(NH3·H2O)、尿素(CO(NH2)2)等。一般情况下,锌盐在碱性条件下只能生成Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体需要进行高温煅烧。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH3·H2O与锌离子反应生成沉淀。反应如下: OH-的生成: CO32-的生成: 形成前驱物碱式碳酸锌的反应: 热处理后得产物ZnO: 用NaOH作沉淀剂一步法直接制备纳米氧化锌的反应式如下: 该实验方法过程简单,不需要后煅烧处理就可以得到氧化锌晶体,而且可以通过调控Zn2+/OH-的摩尔比控制氧化锌纳米材料的形貌。 三、实验仪器与试剂

纳米氧化锌的制备技及其表征

化学化工学院材料化学专业实验报告 实验名称:纳米ZnO的制备及其表征 年级: 2010级日期:2012年9月13日 姓名: 学号:22 同组人: 1、 预习部分 1、 纳米氧化锌: 1.1 简介 纳米氧化锌(ZnO)粒径介于1-100 nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。 1.2形态 纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。 1.3性质 氧化锌是一种半导体催化剂的电子结构,在光照射下,当一个具有一定能量的光子或者具有超过这个半导体带隙能量Eg的光子射入半导体时,一个电子从价带NB激发到导带CB,而留下了一个空穴。激发态的导带电子和价带空穴能够重新结合消除输入的能量和热,电子在材料的表面态被捕捉,价态电子跃迁到导带,价带的空穴把周围环境中的羟基电子抢夺过来使羟基变成自由基,作为强氧化剂而完成对有机物(或含氯)的降解,将病菌和病毒杀死。 1.4应用 橡胶工业中的应用 可以作为硫化活性剂等功能性添加剂,提高橡胶制品的光洁性、耐磨性、机械强度和抗老化性能性能指标,减少普通氧化锌的使用量,延

铁配合物的制备和表征

X射线单晶衍射:1.配合物晶体数据:

2.配合物的部分键长和键角: 3.配合物晶体结构:

紫外可见分光光度法: 图中实线代表配体H2L1的实验数据,虚线代表相应铁配合物的实验数据。实线在波长为282nm和268 nm处有吸收峰,将其归属为苯环π→π*跃迁。虚线在波长为495nm,340nm和281nm处有吸收峰,现将其进行归属。281nm处的吸收峰为苯环π→π*跃迁;340 nm处的吸收峰为电子由苯环上氧原子的最高占据轨道pπ跃迁到Fe(III)半充满轨道dx2?y2/d z2;495 nm处的吸收峰为电子由苯环上氧原子的pπ轨道跃迁到Fe(III)的d*轨道。

XRD: 普通PAN纤维的XRD谱线在16.84,21.42,23.74和29.06°处都有特征峰。而PAN 纳米纤维的XRD谱线与上述谱线较为相近,但是在22~30°范围内的特征峰有所不同。这说明PAN纳米纤维的结晶特征并未发生显著改变。经过反应后两种纤维的主要特征峰几乎全部消失。这说明改性和铁配位反应具有去晶化作用,使纤维表层的结晶度大为降低。

红外: 配合物Fe1和Fe2在3247cm-1处有强的吸收峰。因配合物Fe2和Fe5的结构中含有炔基,谱图中很明显的能够观察到配合物Fe2和Fe5在ν =2120 cm-1处有振动吸收峰,与配体L2 (ν =2100 cm-1)相比峰波向高波数方向移动约20 cm-1。配合物Fe4的红外谱图中同样能观察到羧酸酯的羰基吸收峰(ν =1731 cm-1)。

常规溶液法:是最常见、最简单的单晶培养方法。通过将金属盐和配体溶于合适溶剂中,静置,待其自然挥发而形成配合物。此方法适用于配体溶解性较好而配合物溶解性较差情况,通常在遇到配体溶解性较差的情况时,采用适当加热的方法于以处理。 扩散法:包括气相扩散法和液相扩散法。 气相扩散法:将金属盐和配体溶于适当的溶剂当中,使惰性易挥发溶剂或者碱性物质扩散其中,以减小配合物的溶解度或者加快反应的速度从而使配合物结晶产生。 液相扩散法:将金属盐和有机配体分别溶于不同的两种溶剂当中,将一种溶液置于另一种溶液之上或者在两种溶液分界面处加入另一种溶剂以减小其扩散速度,使反应物缓慢发生反应,从而使产物结晶产生。 水热/溶剂热法:水热法是指在特制密闭反应容器中(一般是内衬聚四氟乙烯不锈钢反应釜),以水作为溶剂,通过对反应容器加热以制造一个高温高压环境(100-1000℃,1-100MPa),使得通常难溶或者不溶的物质溶解从而重新结晶产生出来。溶剂热法与水热法类似。

氧化锌薄膜制备

实验报告 PB13203265 李颖杰19组实验题目:氧化锌薄膜的制备 实验目的:学习制备氧化锌薄膜 实验原理: 1 制备技术概论 溅射是制备透明导电薄膜的最主要的工艺之一。溅射过程包括在阴阳极之间加一定电压,使惰性气体(如Ar)产生等离子体,靶材为阴极,衬底为阳极,等离子体中的高能离子Ar+轰击靶材料,由于动量传输,使靶材粒子逸出表面,弥散开来,并沉积在衬底表面上形成薄膜,溅射时的气压通常为10-2至10-3tor。 目前已应用的有DC,RF和磁控溅射的反应和不反应形式。下左图表示在反应溅射中溅射速率与氧分压的典型关系(功率一定时).在低氧分压下,金属原子从靶上溅射下来,仅在衬底表面上发生氧化;在高的氧分压下,靶表面发生氧化,溅射速率明显下降,这是因为化合物的溅射通常要比金属的溅射慢得多。下右图表示在一定溅射功率下氧分压与氧流速的关系.直线表示等离子体点火之前的情况。而“磁滞”效应曲线发生在溅射之后.氧气流速达到B点时,靶表面的氧化发生,溅射速率下降,氧分压迅速增加;而当氧气流速重新退到C点时,靶表面氧化物耗尽,金属显露出来,溅射速率迅速上升氧分压迅速下降到金属溅射的情况。在AB段的溅射,形成富金属薄膜,需要在高浓度氧气中退火,形成ZnO,而在DC段溅射,形成氧化物薄膜,只需要较低氧气浓度中进行退火即可得到好的ZnO膜。为了保证薄膜的重复性生产,需尽量避免在过渡区附近工作。

2 直流溅射法和射频磁控溅射法生长ZnO 2.1 总论 用溅射工艺已制备了优质的ZnO薄膜,靶材为Zn-Al合金,也可为ZnO粉末和Al2O3粉膜的混合物烧结而成.靶中Al的含量通常为3-5wt%,Al掺入ZnO中通常使ZnO的结晶性质变坏,晶粒尺寸由200nm减至100nm.用合金靶生长的膜的沉积速率是O2分压和溅射功率的函数.随总压力变化很小,左下图表示在DC磁控溅射ZnO膜过程中,沉积速率与溅射功率的关系.在低溅射功率下,靶表面被非化学比地氧化了,溅射下来的粒子在输运和生长过程中进一步被氧化.如果功率增加,溅射下来的粒子数也增加。这意味要消耗更多的氧原子,使靶表面和溅射粒子氧化.随着功率的增加,可提供氧化靶表面的氧原子数目在减少,使靶的表面呈现更多的金属性。在氧气氛中600℃下退火30分钟,将改善薄膜质量,此与溅射沉积过程所使用的氧气分压无关.利用合金靶的DC反应溅射中,在较高的氧气分压下首先氧化靶表面,然后DC溅射氧化的靶表面.在溅射过程中,如维持DC电压不变,发现放电电流则随时间不断下降。如右下图所示 3.2 溅射制膜技术 (a)溅射的原理与设备结构 所谓溅射工艺,就是向高真空系统中充入少量所需的气体(如氩,氮,氧等)。气体分子在强电场作用下电离而产生辉光放电.气体电离后产生的带正电荷的离子受电场加速而形成高能量离子流,它们撞击在设置在阴极的靶表面上,使靶表面的原子飞溅出来,以自由原子形式或与反应气体分子形成化合物的形式淀积到衬底表面上形成薄膜层.这个过程就是溅射的基本原理.溅射设备的主体部分大致可分为两部分:即真空获得部分和电源部分。真空部分和镀膜机没有什么区别,所不同的是:溅射真空系统内装有永久性磁钢,用于产生垂直于靶表面的磁场。此磁场的主要功

纳米ZnO的制备

纳米ZnO的制备、表征及应用 摘要:本文比较和综述了纳米ZnO的各种制备方法,并对纳米ZnO的广泛应用进 行了分析和阐述。使用热重分析、扫描电镜分析(SEM)、透射电镜分析(TEM)、粒度分析、X射线衍射仪(XRD)、对所制得纳米ZnO的成分、晶型和形貌进行了表征, 并举例说明了纳米ZnO的一些实际应用。 关键词:ZnO 制备表征应用 纳米ZnO是一种新型的多功能的精细无机材料,出于其颗粒尺寸细小,比表面积较大,所以具有普通ZnO所无法比拟的特殊性能,如表面效应、量子尺寸效应和宏观量子隧道效应等。同时纳米ZnO也是一种自激活的半导体材料,室温下禁带宽度为3.27eV,激子束缚能为60meV,这就使得纳米ZnO材料从理论上具备了从紫外光至可见光稳定的发射本领。因此,纳米ZnO材料在光电转换、光催化及气体传感器等领域有着广阔的应用前景。 1 纳米ZnO的结构与性质 氧化锌晶体有三种结构:六边纤锌矿结构、立方闪锌矿结构,以及比较罕见的氯化钠式八面体结构。纤锌矿结构在三者中稳定性最高,因而最常见。立方闪锌矿结构可由逐渐在表面生成氧化锌的方式获得。在两种晶体中,每个锌或氧原子都与相邻原子组成以其为中心的正四面体结构。八面体结构则只曾在100亿帕斯卡的高压条件下被观察到。纤锌矿结构、闪锌矿结构有中心对称性,但都没有轴对称性。晶体的对称性质使得纤锌矿结构具有压电效应和焦热点效应,闪锌矿结构具有压电效应。纤锌矿结构的点群为6mm(国际符号表示),空间群是P63mc。晶格常量中,a = 3.25 埃,c = 5.2 埃;c/a比率约为1.60,接近1.633的理想六边形比例。在半导体材料中,锌、氧多以离子键结合,是其压电性高的原因之一。 由于纳米材料晶粒极小,表面积特大,在晶粒表面无序排列的原子分数远远大于晶态材料表面原子所占的百分数,导致了纳米材料具有传统固体所不具备的许多特殊。基本性质,如体积效应、表面效应、量子尺寸效应、宏观量子隧道效应和介电限域效应等,从而使纳米材料具有微波吸收性能、高表面活性、强氧化性、超顺磁性及吸收光谱表现明显的蓝移或红移现象等。除上述的基本特性,纳米材料还具有特殊的光学性质、催化性质、光催化性质、光电化学性质、化学反应性质、化学反应动力学性质和特殊的物理机械性质。 2纳米zno的制备方法 纳米ZnO的制备方法随着对ZnO性能研究的深入应运而生,概括起来一般分直接法和间接法。 2.1直接法 反应方程式: C+O2=CO2

相关主题
文本预览
相关文档 最新文档