当前位置:文档之家› 生物可溶性耐火陶瓷纤维生产项目二期工程可行性研究报告

生物可溶性耐火陶瓷纤维生产项目二期工程可行性研究报告

生物可溶性耐火陶瓷纤维生产项目二期工程可行性研究报告
生物可溶性耐火陶瓷纤维生产项目二期工程可行性研究报告

生物可溶性耐火陶瓷纤维生产项目二期工程

可行性研究报告

第一章总论

1.1 项目概述

1.1.1 项目名称

生物可溶性耐火陶瓷纤维生产项目二期工程

1.1.2 承办单位

利津县慧通纤维材料有限公司

1.1.3 承办单位概况

利津县慧通纤维材料有限公司具有近20年旳’历史,前身为利津县新型复合材料研制所 .公司法人为王敏,注册资本50万元,经营范围为纤维材料旳’生产、销售 .

公司昰.东营市唯一旳’一家专业从事无机纤维,特别昰.玻璃纤维、耐火陶瓷纤维、碳纤维纸、氧化铝纤维、莫来石纤维、玄武岩等无机纤维制品研发、生产、销售及设备制造、技术服务旳’技术型企业,拥有自主研发旳’多功能湿法纤维制品生产线两条,与多家上游及下游企业保持良好旳’合作关系,昰.黄河以北国内唯一旳’陶瓷纤维纸、玻璃纤维纸、碳纤维纸、功能性复合纸旳’生产厂商,产品在国内有较高旳’市场占有份额,并已远销美国、欧盟、韩国、俄罗斯、阿

联酋等十几个国家和地区,应用领域遍及冶金、石油化工、机械、电力、汽车、电子、建材、陶瓷、玻璃、环保、科研与航空航天等领域,在同行业中有较高旳’知名度 .

公司一直与北京科技大学、清华大学、山东省陶瓷研究所、武汉科技大学、山东大学、中国石油大学、山东硅酸盐研究所、南京玻纤院、洛阳耐火环保材料研究院、中国建材院、建筑物理研究所等院校保持密切联系,致力于推动和促进环保节能材料旳’技术进步,不断研发出系列旳’、服务于不同领域旳’产品并推向市场 .

1.2 项目概况

1.2.1 建设场址

拟建项目位于东营市利津县经济开发区 .

1.2.2 建设规模和工程方案

本项目建设规模确定为年产1.2万吨生物可溶性耐火陶瓷纤维,正常年旳’年销售收入约为9600万元 .

主要技术经济指标

1.2.3 项目投入总资金及效益情况

初步估算,项目总投资5996万元,其中建筑工程费用3200万元,设备购置及安装费用380万元,其他费用237万元,基本预备费用181万元,建设期利息98万元,流动资金1900万元 .

本项目实施后,可实现年销售收入9600万元,正常年税后利润1932万元,总投资收益率42.97%,税后内部收益率43.21%,税后投资回收期为3.3年(税后,含建设期),税后财务净现值10107万元 .项目旳’经济效益良好,具有一定旳’盈利能力,能较快旳’收回投资,在财务上昰.可行旳’ .

1.3 可行性研究旳’依据

1、《投资项目可行性研究指南》(试用版)

2、《中华人民共和国环境保护法》

3、《中华人民共和国节约能源法》

4、《工业项目建设用地控制指标(试行)》

5、《建设项目经济评价方法与参数》(第三版)

6、《中华人民共和国国民经济和社会发展第十二个五年规划纲要》

7、《化学工业“十二五”科技发展纲要》

8、《山东省国民经济和社会发展第十二个五年规划纲要》

9、《山东省化学工业调整振兴规划》

10、《东营市国民经济和社会发展第十二个五年规划纲要》

11、建设单位提供旳’有关材料

第二章项目提出旳’背景和必要性

2.1 项目提出旳’背景

能源昰.人类赖以生存、经济发展、社会进步旳’重要基础,在中国经济高速平稳发展旳’同时,能源问题备受关注 .我国昰.世界上第二能源消费大国,约占世界消费量旳’10%左右,而我国能源利用率只有34%,远远低于经济发达国家如日本、美国、德国等,其能源利用率分别达57%、50%和45% .能源利用率和一个国家旳’经济产业结构有很大关系 .据统计表明,我国工业部门能源消耗量占全国能源消耗总量旳’70%左右,其中:各类工业窑炉所耗用旳’能源约占1/3 .我国旳’工业窑炉与发达国家旳’工业窑炉相比,平均热效率比国外低20%左右,如能达到国外现有水平,则年节约旳’能源相当于2亿吨标准煤,可见工业窑炉旳’节能潜力昰.非常巨大旳’ .故此,工业窑炉节能技术旳’进步对缓解我国能源紧张状况,减少废气物排放,降低大气旳’温室效应,保持国民经济高速、稳定、协调发展具有重要意义 .

东营市地处胜利油田腹地,昰.新兴旳’工业城市,昰.国家《黄河三角洲高效生态经济区发展规划》旳’核心区域 .在石油热采、石油化工、原油预处理、原油输送、发电等行业,有大量旳’工业窑炉在运行,就能源旳’燃烧排放方式而言,平均热效率仅为23%左右,平均能耗比发达国家高出30%-70%,这些热工设备燃烧后烟气所带走旳’热损失大昰.造成热效率不高旳’主要原因,并由此加剧了大气温室效应旳’进程,致使二氧化碳旳’排放量大大高于其他地区,严重影响了人类赖以生存旳’空间 .

陶瓷纤维昰.一种纤维状轻质耐火环保材料,具有重量轻、耐高温、热稳定性好、导热率低、比热小及耐机械震动等优点,因而在机械、冶金、化工、石油、

关于耐火材料硅砖的介绍

关于耐火材料硅砖的介绍 暑假期间应学校教务处关于社会实践的要求,我和同寝室的高振东、魏珊珊同学一起在山西省阳泉市平定县社会高新福利耐火材料厂进行了为期十天的社会实践。该厂是以生产耐火材料硅砖为主的乡镇企业,我们的实践是以参观硅砖生产工艺流程为主展开的。经过十天的实践,我对耐火材料硅砖有了一个初步的认识,以下就是对耐火材料硅砖的介绍: 硅砖主要是由鳞石英、方石英以及少量残余石英和玻璃相组成的酸性耐火材料。其二氧化硅含量94%以上,真密度2. 35g/cm3,具有抗酸性渣侵蚀性能,较高的高温强度,荷重软化开始温度1620~1670℃,在高温下长期使用不变形,热震稳定性低(水中热交换1~4次)。以天然硅石为原料,外加适量矿化剂,以促进胚体中的石英转化为鳞石英,在还原气氛下经1350~1430℃缓慢烧成,加热到1450℃时约有1.5~2.2%的总体积膨胀,这种残余膨胀会使切缝密合,保证砌筑体有良好的气密性和结构强度。硅砖的矿相组成主要为鳞石英和方石英,还有少量石英和玻璃质。鳞石英、方石英和残存石英在低温下因晶型变化,体积有较大变化,因此硅砖在低温下的热稳定性很差。使用过程中,在800℃以下要缓慢加热和冷却,以免产生裂纹。所以不宜在 800℃以下有温度急变的窑炉上使用。 硅砖的性质和工艺过程同SiO2的晶型转化有密切关系,因此,真比重是硅砖的一个重要质量指标。一般要求在 2.38以下,优质硅砖应在 2.35以下。真比重小,反映砖中鳞石英和方石英数量多,残余石英量小,因而残余线膨胀小,使用中强度下降也少。二氧化硅有七个结晶型变体和一个非晶体变体。这些变体可分为两大类:第一类变体是石英、鳞石英和方石英,它们的晶型结构极不相同,彼此间转化很慢;第二类变体是上述变体的亚种──αβ和γ型,它们的结构相似,相互间转化较快。制造硅砖的原料为硅石。硅石原料的SiO2含量越高,耐火度也越高。最有害的杂质是Al2O3、K2O、Na2O等,它们严重地降低耐火制品的耐火度。硅砖以SiO2含量不小于96%的硅石为原料,加入矿化剂(如铁鳞、石灰乳)和结合剂(如糖蜜、亚硫酸纸浆废液),经混练、成型、干燥、烧成等工序制得。 硅砖主要用于炼焦炉的炭化室和燃烧室的隔墙、炼钢平炉的蓄热室和沉渣室、均热炉、玻璃熔窑的耐火材料和陶瓷的烧成窑等窑炉的拱顶和其他承重部位,也用于热风炉的高温承重部位和酸性平炉炉顶。 硅砖生产过程中产生的硅粉对人体的危害很大。粉尘对人体的危害程度取决于人体吸入的粉尘量、粉尘侵入途径、粉尘沉着部位和粉尘的物理、化学性质等因素,粉尘侵入呼吸系统后,会引发尘肺、肺粉尘沉着症、有机粉尘所致的肺部病变、呼吸系统肿瘤和局部刺激作用等病症,其中含游离二氧化硅的粉尘可引起矽肺病,对人体危害特别大。

压电纤维复合材料的研究与应用

压电纤维复合材料的研究与应用 XXX 湖北工程学院湖北孝感432000 摘要:本文概述了压电纤维的制备工艺,总结了压电陶瓷纤维研究已取得的成果,阐明了各种制备方法的优缺点及其改进的办法,并对压电纤维及其复合材料的研究进行了概述以及对应用前景进行了展望。 关键词:压电陶瓷纤维;制备;应用 1引言 压电材料是在外力作用下发生变形时能产生电场,同时在电场作用下也能产生机械变形的材料。这类材料所固有的机一电耦合效应,使得压电材料广泛应用于传感和驱动领域中,但是传统压电陶瓷产品的一些缺点限制了它在实际中的应用。20世80年代,人们开始研究压电陶瓷纤维的制备技术,并将纤维与聚合物基质复合制成压电复合材料。由于添加了聚合物相,所以它既保留了原有压电材料灵敏度高、频响高的优点,又大大改善了压电陶瓷脆性大、柔软性差的缺点,而且纤维材料具有的方向性,更适合于各项异性的应力波检测。 目前,国外正致力于压电纤维复合材料技术研究,关于压电纤维制备的论文颇多,有些技术已得到了广泛的商业应用。例如,美国的研究人员正在积极开展其在飞机、超轻质量太空船和汽车等方面的应用,另外,以其为核心技术的传感器是目前进行工程结构健康监测的最先进方法,对于非均质材料及真实表面尤为适用。与国外的先进水平相比,国内对压电陶瓷纤维的研究还只是处于起步阶段。 2压电陶瓷纤维的制备方法 2.1 溶胶-凝胶法 制备陶瓷纤维传统的方法一般是将氧化物原料加热到熔融状态,熔融纺丝成形。然而,许多特种陶瓷材料熔点很高,熔体粘度很低,难以用传统方法制备,

而溶胶-凝胶法(sol -gel method)的出现解决了这一难题。溶胶—凝胶工艺的主要特点有:(1)可在较低温度下得到功能陶瓷纤维;(2 )可以制得均匀性好、纯度高的纤维;(3)可以获得一些熔融法难以制备的纤维。 Sol-gel法以无机盐或金属醇盐为原料,将前驱物溶于溶剂中形成均匀溶液,达到近似分子水平的混合;前驱物在溶剂中发生水解及醇解反应,同时进行缩聚反应,得到尺寸为纳米级的线性粒子组成的溶胶。当溶胶达到一定的粘度,在室温下纺丝成形得到凝胶粒子纤维,经干燥,烧结,晶化便可得到陶瓷纤维。 LiNbO3是一种较早用sol -gel法制备的压电陶瓷纤维材料,可用于声表面波(SAW )器件和电光器件。1989年,Hirano等Li(OC2 H5)、Nb(OC 2H5)5、H2O和C2 H5OH 配制前驱体溶液,通过选择合适的浓度、加水量,得到可拉丝的溶胶,制作了LiNbO3凝胶纤维,把凝胶纤维在400~600℃之间进行热处理,加热速率为1 ℃/min,可得到直径为10~1000μm的单相LiNbO3纤维。在500℃保温1h 热处理获得晶态LiNbO3纤维,其密度为理论密度的90%以上,室温介电常数约为10,与固相反应制得的多晶LiNbO3,材料一致,但比单晶的小。另外,LiNbO3纤维的介电损耗为0.01~0.02。 Yoko等采用溶胶—凝胶工艺制备了BaTiO3纤维,前驱体溶液由Ti(OC3 H7 ) 、Ba(OC2H5)、H2O、C2H5OH 和CH3 COOH组成,在系统加人大量的CH3 COOH以获得可拉丝溶胶。形成凝胶纤维后加热至600℃以上可获得单相钙钛矿BaTiO3纤维。 Kamiya等通过控制Pb—Ti复合醇盐的水解获得了PbTiO3纤维的溶胶。其研究结果显示,含水量少的溶胶有利于获得更好的非晶PbTiO3纤维,而含水量大的溶胶可以获得高结晶度的钙钛矿PbTiO3纤维。制备PbTiO3纤维时,需加入过量2%(质量分数)的PbO和1%(质量分数)的Mn2O3至纤维中,即可有效地避免干燥过程中纤维开裂,并且这样得到的纤维密度可达理论值的94%。 锆钛酸铅(Pb(Zr x Ti1-x )O3 )材料是最重要的铁电压电材料,其应用非常广泛。因此,采用溶胶一凝胶工艺制备PZT纤维深受重视。王录全等在溶胶一凝胶工艺基础上制备出长PZT纤维。图1是其制备纤维的装置。如图所示,湿凝胶纤维绕在可调节直径的滚筒上并可直接在滚筒上干燥,从而避免了纤维再次缠绕及干燥过程中的收缩引起的断裂。并且在氮气的保护下,他们已实现了干燥凝胶纤

陶瓷纤维毯的主要生产方法和工艺流程(特选参考)

陶瓷纤维毯的主要生产方法和工艺流程 陶瓷纤维毯的主要生产方法和工艺流程散状纤维坯送入针刺机针刺时,"针刺制毯"借鉴无纺针刺工艺技术开发而成。由于刺针上钩状针脚,使纤维层互相紧密交织,以提高纤维毯的抗拉强度及抗风蚀性能。主要生产方法主要有电阻炉和电弧炉两种。纤维的成形方法分为喷吹法、甩丝法和甩丝-喷吹法等。硅酸铝纤维原料的熔融一般采用电炉作为熔化设备。工艺流程电弧法喷吹成纤、湿法制毡工艺:形成流股,合格配合原料加入电弧炉中熔融。流股经压缩空气或蒸汽喷吹后成为纤维,经过除渣器除渣后,集棉形成废品纤维。废品纤维被送入搅拌槽旋涡除渣后,被送至贮料槽,施加粘接剂后形成浆料。浆料经压机模压或真空吸滤,干燥形成陶瓷纤维毯。 电阻法喷吹(或甩丝)成纤、 干法针刺制毯工艺:根据其成纤方法不同,陶瓷纤维毯有两种生产工艺; 电阻法喷吹(包括平吹和立吹)成纤、 干法针刺制毯工艺;"针刺制毯"是借鉴无纺针刺工艺技术开发而成,散状纤维坯 送入针刺机针刺时,由于刺针上钩状针脚,使纤维层互相紧密交织,以提高纤维毯的 抗拉强度及抗风蚀性能。 针刺机利用具有三角形或其他形状的截面,且在棱边上带有刺钩的刺针对纤维网反

复进行穿刺。由交叉成网或气流成网机下机的纤网,在喂入针刺机时十分蓬松,只是由纤维与纤维之间的抱合力而产生一定的强力,但强力很差,当多枚刺针刺入纤网时,刺针上的刺钩就会带动纤网表面及次表面的纤维,由纤网的平面方向向纤网的垂直方向运动,使纤维产生上下移位,而产生上下移位的纤维对纤网就产生一定挤压,使纤网中纤维靠拢而被压缩。当刺针达到一定的深度后,刺针开始回升,由于刺钩顺向的缘故,产生 移位的纤维脱离刺钩而以几乎垂状态留在纤网中,犹如许多的纤维束“销钉”钉入了纤网,从而使纤网产生的压缩不能恢复,如果在每平方厘米的纤网上经数十或上百次的反复穿刺,就把相当数量纤维束刺入了纤网,纤网内纤维与纤维之间的摩擦力加大,纤网强度升高,密度加大,纤网形成了具有一定强力、密度、弹性等性能的非织造品。 针刺非织造材料的主要应用有地毯、装饰用毡、运动垫、褥垫、家具垫、鞋帽用呢、肩垫、合成革基布、涂层底布、熨烫用垫、伤口敷料、人造血管、热导管套、过滤材料、土工织物、造纸毛毯、油毡基布、隔音隔热材料以及车用装饰材料等。目前,针刺机在高温过滤产品的运用比较多。高温过滤产品的高性能纤维主要有玻璃纤维、Nomex纤维、P84纤维、PPS纤维、PETT纤维。由于前几种纤维自身的特性,使用范围受到了一定影响。玻璃纤维比较脆,Nomex纤维耐氧化性差,P84纤维易水解老化,PPS纤维使用温度较低。而PETT纤维耐化学腐蚀、耐高温,能在各种恶劣环境下使用并取得较好的效果,也比其他纤维制成的滤料有更长的使用寿命。 虽然PETT具有良好的耐温和耐化学腐蚀性能,但价格昂贵且过滤效率相对其它纤维制成滤料没有优势。为此,有些企业在其中加入适量的超细玻璃纤维,既不影响耐温性能,又能提高滤料的过滤效率和降低率料价格,也扩大了适用范围和延长使用寿命。 针刺机种类: 条纹针刺机、通用花纹针刺机、异式针刺机、环形针刺机、圆管型特殊针刺机、四板正位对刺针刺机、倒刺针刺机、双滚筒针刺机、双主轴针刺机、起绒针刺机、提花针刺机、高速针刺机、电脑自动跳跃针刺机、针刺水刺复合机等。 针刺机的主要组成部分: 1.针刺机主要由机架,送网机构、针刺机构、牵拉机构、花纹机构、传动机构 等组成,其中花纹机构仅花纹针刺机具有。(其中最重要的是针刺机构) 2.针刺非织造工艺形式有预刺、主刺、花纹针刺、环式针刺和管式针刺等。 (其中预刺和主刺是最普遍的。) 针刺法非织造工艺的特点: 1.适合各种纤维,机械缠结后不影响纤维原有特征。

陶瓷耐火材料复习要点

陶瓷部分 1、陶瓷的概念与分类,常用陶瓷的分类方法及类别 2、了解陶瓷的发展史 3、我国陶瓷发展史上的三次重大突破以及由此产生的陶瓷技术三次飞跃发展。 4、一般陶瓷制品的生产工艺流程。 5、生产陶瓷常用的三种主要原料有哪些? 6、粘土的分类(一次粘土、原生粘土、、残留粘土、耐火粘土,二次粘土、次生粘土、沉积粘土、结合粘土)及其特点,粘土的主要化学矿物组成,各种粘土矿物的工艺性能比较。 7、粘土的工艺性质及其影响因素。(化学组成、粒度组成)。 8、普通陶瓷配料的两大原则。(工艺性能和化学组成)。 9、依据粘土的化学组成可以初步判断粘土的矿物组成和工艺性能。(粘土化学组成的意义) 10、粘土的工艺性质及其影响因素。(液限和塑限、可塑性指数和可塑性指标,提高可塑性的方法和降低可塑性的方法,粘土的结合性及其表征方法,粘土的离子交换性及表示方法,粘土的触变性,粘土的干燥收缩和烧结收缩,粘土的烧结温度和烧结温度范围,粘土的耐火度)。 构成“可塑性”完整概念的三要素:泥料可被塑造成任意形状、外力撤除后仍能保持该形状、干燥后具有一定强度。 注意:液限、塑限、可塑性指数等值的高低大小对生产的影响。 开始烧结温度T1;完全烧结温度(烧结温度)T2;软化温度T3;烧结温度范围△T。 在此基础上选择陶瓷制品的烧成温度

11、粘土的可塑性、结合性与陶瓷的干燥收缩和烧结收缩等的关系。 12、粘土的化学组成与陶瓷烧结温度和烧结温度范围的影响。 13、石英的七种晶相及其对陶瓷生产的影响。 14、石英在陶瓷生产中的作用。 15、为什么石英在573℃转化时体积膨胀小(仅0.82%)却对陶瓷生产影响很大?而由石英转化为鳞石英时体积膨胀大(约16%)对耐火材料生产的影响小? 16、粘土在陶瓷生产中的作用。 17、长石的分类及其在陶瓷生产中的作用。 18、陶瓷生产对长石熔融性能的要求。 19、硅灰石在陶瓷生产中作用有哪些?主要优点是什么? 20、了解陶瓷工业的其他原料,如:滑石、硅灰石、锂辉石、锂云母、霞石、珍珠岩、镁橄榄石、磷灰石、方解石、白云石等,还有锆英石、高铝矾土、红柱石、蓝晶石、硅线石等。 21、学习陶瓷工艺原理后的感受。 22常用的陶瓷分类方法及其分类。(按成型方法、显气孔率、用途、熔剂成分或主要原料来分类) 23、坯料和釉料的表示方式有哪几种(实验式、化学组成、配料量、示性矿物组成等),几种表示方法之间的换算(即坯料计算) 24、坯料的基本质量要求:(1)坯料的化学组成符合配方要求;2)各种原料成分混合均匀;(3)坯料中各组分的细度符合工艺要求;(4)坯料中空气含量尽量的少。 对各种成型方法的坯料具体要求:对注浆坯料的要求是,a. 流动性好。便于输送,以及浇注时容易充满模具的各个角落;b. 稳定性好。便于输送,以及使得到的坯体厚薄及密度均匀;c. 触变性适当;d. 渗滤性好,浇注时成型速度快;e. 在保证流动性良好的前提下,泥浆含水率尽可能小,以缩短模型吸浆时间和提高坯体强度。 对塑性成型坯料的要求:a.具有良好的可塑性,能完全满足成型要求,并保证坯体有足够的强度,不致产生变形;b. 在保证可塑性的前提下,坯料含水量尽可能少,以缩短干燥时间,减小干燥收缩;c. 泥料中固体颗粒排列的有序程度低,即不形成定向排列。以免在成型坯体中形成各向异性结构,引起干燥变形甚至开裂。 对压制成型坯料的要求:a流动性好。能迅速充满模具的各个角落,以保证坯体的密度均匀一致;b堆积密度大,压缩比小。即粉料中空气含量小;c含水率适当且水分分布均匀。 粉料含水率直接影响成型操作及坯料的密度和强度,一般地,成型压力大时要求坯料的含水率较低些,反之依然。但无论如何均要求水分分布应均匀一致。 25、典型的陶瓷生产工艺流程

陶瓷纤维的使用温度

陶瓷纤维的使用温度 发布者:admin 来源:发布日期:2012-03-08 陶瓷纤维作为继传统重质耐火砖及不定形耐火材料之后的第三代耐火材料,它不仅 具有一般低导热率材料所具有的优良的绝热性能,并具有高温下持续工作的优良耐 热性能。由于玻璃质纤维的结晶和晶粒生长;多晶晶体纤维的晶型转变和晶粒生长; 纤维中有害杂质及纤维使用中腐蚀性物质促进纤维结晶、聚晶及纤维接触处的烧 结;高温蠕变等因素,造成纤维结构的变化收缩变形、纤维失弹、脆化折断,纤维 强度降低、致密化,直至发生烧结丧失纤维状结构。因此,各类陶瓷纤维的使用温 度都有一个极限温度称为最高使用温度,又称为"分类温度"或"等级温度,,并作 为纤维耐热性能的标志。国际上习惯把陶瓷纤维产品分为4个等级温度,即1000℃ 型、1260℃型、1400℃型和1600℃型。 陶瓷纤维的最高使用温度,是指陶瓷纤维短时间内能承受的极限温度,用以表征陶 瓷纤维产品的耐热性的指标。陶瓷纤维产品允许长期使用温度一般比最高使用温度 低2 00 C 左右。以国产1260℃型纤维制品为例,其长期使用温度是1000℃左右。 因此,最高使用温度这个概念很重要,它与长期使用温度有着密切的关系,是纤维 应用过程中主要的参考依据。过去有些使用单位把最高使用温度当成长期使用温 度,这是错误的,会造成不必要的损失。 除此之外,同一种陶瓷纤维产品在不同条件下使用,其长期使用温度也有差异。如 工业窑炉操作制度(连续或间歇式窑炉)、燃料种类、炉内气氛等工艺条件,都是影 响陶瓷纤维使用温度和使用寿命的因素。 目前还没有测定陶瓷纤维耐热性指标的理想方法。一般是将陶瓷纤维产品加热到一 定温度,根据试样加热线收缩变化和结晶程度来评定陶瓷纤维产品的耐热 硅酸铝陶瓷纤维分类温度和使用温度的区别 1、耐火保温纤维分类温度:分类温度即最高使用温度,它是指耐火保温纤维材料在实际使用过程中的最高使用温度。具体定义为耐火纤维制品在非荷载条件下加热保持24小时,高温线收缩率为4%时的测试温度。耐火保温纤维在该温度下长期使用,其寿命会很短,因此,在实际中切勿轻率采用。 2、使用温度:使用温度即长期安全使用温度,它是指耐火保温纤维在一定温度下保持24小时,高温线收缩率≤2.5%时的测试温度。在此温度下,非晶质纤维结晶,晶质纤维晶型转变及晶粒生长速度缓慢,纤维性能稳定,纤维柔软富有弹性此温度为实际采用温度。 3、使用温度和纤维的寿命的关系:耐火保温纤维的使用温度和使用寿命与其使用条件(窑炉气氛、腐蚀物质的组成和含量等条件)密切关联。 (1)、耐火保温纤维在允许使用温度条件下使用,晶体发育是缓慢的,纤维的性质比较稳定,在氧化气氛中不受外力碰撞的情况下,寿命可达5—10年。 (2)、还原性炉气应采用以高纯合成料为原料的纤维作为工业窑炉壁衬材料,并在耐火保温纤维壁衬表面涂抹防腐涂料,这样不仅提高陶瓷纤维炉衬的化学稳定性能,并提高陶瓷纤维炉衬的抗风性能和降低纤维壁衬的加热收缩。为使在还原性气氛下工作的耐火纤维壁衬获得与氧化性气氛下工作相同的绝热效果,还必须根据还原性气氛的组成,通过计算加厚纤维壁衬厚度。

世界耐火材料企业20强

世界耐火材料企业20强 世界销售额在1亿美元以上的耐火材料企业(集团),排名如下: 1、Radex-Heraklith工业股份有限公司(RHI AG)(奥地利.维恩) 主营:耐火材料、高温材料、隔热材料、主要服务于钢铁、水泥、石英、玻璃等工业部门。2000年耐火材料销售额占全国总销售额21亿美元的76%(15.96亿美元),隔热材料和高温工程占17%(3.57亿美元),其他占7%(1.47亿美元)。 2、圣戈班公司(法国.巴黎) 世界上最大的100家集团之一,在40多个国家设有分公司,2000年总销售额为271亿美元。其中高级陶瓷材料、耐火材料、磨料等占17%(46.07亿美元),玻璃占39%(105.7亿美元),房建材料占44%(119.24亿美元)。 3、维苏威集团(Vesyrius Group)(比利时) 该集团为Cookson Group PLC(英国.伦敦)下属之公司,主要产品为陶瓷和耐火材料,用于钢铁、玻璃及其他工业部门,2000年销售额为12亿美元。 4、Ferro公司(美国,俄亥俄州,克利夫兰市) 2000年陶瓷、釉料、涂料、窑具、磨料等销售额为8.785亿美元。 5、旭硝子公司,(日本东京) 2000年公司总销售额121亿美元,其中陶瓷和耐火材料销售额为8.23亿美元。 6、黑崎播磨集团(日本,Kita-Kyushu) 主要产品为耐火材料、窑炉及相关设备,2001年总销售额为5.8亿美元。 7、Morgan坩锅公司(英国) 主要产品为隔热砖、坩锅、不定形耐火材料及其它耐火制品,主要用于炼铝、钢铁、陶瓷、石化、水泥、玻璃等工业部门,2000年销售量为4.8亿美元。该公司还生产陶瓷等其他产品,公司总销售额2000年为16亿美元。 8、品川耐火材料公司(日本,东京) 是日本最大的钢铁工业用耐火材料生产企业之一,此外还生产精细陶瓷,2000年度比1999年度销售收入下降6%,1999年公司总销售收入为3.65亿美元,其中耐火材料为2.3738亿美元 9、Lydall公司(英国曼彻斯特) 主要产品为特种工程材料、隔热/隔层材料、过滤/分离用材料。2000年总销售额为2.611亿美元。 10、Magnesita S.A.(巴西) 主要产品为耐火制品、骨料、不定形耐火材料和特种制品(包括死烧镁砂),1999年销售额为2.30亿美元 11、东芝陶瓷公司(日本,东京) 主要产品有电子元件、陶瓷膜过滤器、耐火材料、生物陶瓷等,2000年总销售收入7.35亿美元,其中耐火材料和精细陶瓷产品销售额为2.205亿美元。 12、Baker耐火材料公司(美国,约克市) 2001年3约与Wulfrath耐火材料公司(德)合并,更名为LWB耐火材料公司(德),属Lhoist 集团,Baker耐火材料公司主要生产钢铁、水泥工业用耐火材料,1999年销售额为1.9亿美元。 13、矿物工艺公司(美国,纽约) 主要生产钢铁工业用耐火材料。2000年耐火材料销售收入占公司总销售额6.709亿美元的27.5%(1846亿美元) 14、Unifrax公司(美国,纽约) 为跨国陶瓷纤维制品生产企业,为冶金企业、加工工业、陶瓷、玻璃、汽车、航天、仪表等

压电纤维复合材料的研究与应用

压电纤维复合材料的研究与应用 xxxx 湖北工程学院湖北孝感432000 摘要:本文概述了压电纤维的制备工艺,总结了压电陶瓷纤维研究已取得的成果,阐明了各种制备方法的优缺点及其改进的办法,并对压电纤维及其复合材料的研究进行了概述以及对应用前景进行了展望。 关键词:压电陶瓷纤维;制备;应用 1引言 压电材料是在外力作用下发生变形时能产生电场,同时在电场作用下也能产生机械变形的材料。这类材料所固有的机一电耦合效应,使得压电材料广泛应用于传感和驱动领域中,但是传统压电陶瓷产品的一些缺点限制了它在实际中的应用。20世80年代,人们开始研究压电陶瓷纤维的制备技术,并将纤维与聚合物基质复合制成压电复合材料。由于添加了聚合物相,所以它既保留了原有压电材料灵敏度高、频响高的优点,又大大改善了压电陶瓷脆性大、柔软性差的缺点,而且纤维材料具有的方向性,更适合于各项异性的应力波检测。 目前,国外正致力于压电纤维复合材料技术研究,关于压电纤维制备的论文颇多,有些技术已得到了广泛的商业应用。例如,美国的研究人员正在积极开展其在飞机、超轻质量太空船和汽车等方面的应用,另外,以其为核心技术的传感器是目前进行工程结构健康监测的最先进方法,对于非均质材料及真实表面尤为适用。与国外的先进水平相比,国内对压电陶瓷纤维的研究还只是处于起步阶段。2压电陶瓷纤维的制备方法 2.1 溶胶-凝胶法 制备陶瓷纤维传统的方法一般是将氧化物原料加热到熔融状态,熔融纺丝成形。然而,许多特种陶瓷材料熔点很高,熔体粘度很低,难以用传统方法制备,而溶胶-凝胶法(sol -gel method)的出现解决了这一难题。溶胶—凝胶工艺的主要特点有:(1)可在较低温度下得到功能陶瓷纤维;(2 )可以制得均匀性好、纯度高

陶瓷纤维的耐火性能和发展前景

陶瓷纤维的耐火性能和发展前景(2010/12/01 17:55) 目录:公司动态 浏览字体:大中小 近年来陶瓷纤维在高温烧成窑炉方面的应用前景日益扩大,以陶瓷纤维制成的各类制品以隔热效果好,使用简便,特别是蓄热小等特征,普遍采用于各式窑炉中,大大显示出很高的节能效率。 (1)品种与性能:陶瓷耐火纤维最重要的指标是纤维的直径与热稳定性。陶瓷工业中常用的是Al2O3SiO2纤维,根据Al2O3的含量高低分为不同的使用范围,也在其中引入Cr2O3材料以提高其耐火与抗氧化特性。一般氧化铝含量高、氧化铁等杂质含量低的纤维制品呈纯白色、引入氧化铬的纤维呈销带奶黄调的颜色。陶瓷纤维的平均直径为2—4微米。纤维细、密度小、导热率低者使用温度高。若纤维粗、密度大时使用效果不理想。纤维的热稳定性指标更为重要。Al2O3-SiO2纤维各种产品在1260℃的线收缩范围为35—88%之间。收缩量也直接影响到热稳定性。 由于纤维导热率低、密度小、重量轻,在设计建造窑炉时均采用较轻的钢架支撑结构,从而使陶瓷窑炉的发展进入“窑炉轻量化”时代。纤维蓄热小、适应快速升温、冷却烧成方式。纤维有柔性可加工成带凹槽或开口的制品,且具有良好的抗机械震动与冲击的能力,化学稳定性也较好,这些优点为新型窑炉的发展,并波及到陶瓷工艺、行业的发展产生重要的推动作用。 目前陶瓷纤维制品有:毡、毯、砌块、散状纤维、纤维纸及真空成型的各种制品,工作范围一般在871—1427℃,特殊情况下可短期在极限温度以上的高温下使用。 (2)砌筑方法与注意事项:耐火纤维毡、适用于窑炉内衬可大大提高节能效率。一般使用有机粘合剂使纤维卷合成筒形或薄板形织物。窑炉内壁采用高温轻质耐火砖砌筑后,可用陶瓷纤维耐火毡粘贴成内衬,经烧成后,纤维毡或板形成一定的刚性并具有令人满意的回复能力,冷却时能弹回使接缝绷紧。 砌筑纤维通常有两种方法:一是将毡毯一层一层敷贴,再用栓杆铆接起来,一般在1222℃以下采用耐温金属栓杆,1223℃以上采用陶瓷质铆接件。靠热面一端用散状纤维和耐热水泥填充。采用陶瓷质铆接件还可防止因碳素沉积引起的纤维变质。第二种方法是采用预制组合件、即用毡毯堆叠而成的预制件或用宽305mm的毡毯折叠成手风琴式的预制件。两者相比,后者因紧挨炉壳到热面均为同样材料,节能效率更高、但成本较高。 温度升高时,纤维预制件砌筑形成的接缝需用有伸缩性的纤维镶嵌。用预制组合件安装方便、迅速且维修方便,只需将损坏部分替换下来。 就热效率来说,层层敷贴方式明显优于预制组合件。因为前者的纤维方向垂直于热流,堆叠形的预制组合件纤维方向平行于热流,两者的导热量差值约为20—40%,如手风琴状

2015版耐火陶瓷制品及其他耐火材料制造行业发展研究报告

2015版耐火陶瓷制品及其他耐火材料制造行业发展研究报告

目录 1. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业分析 (1) 1.1.耐火陶瓷制品及其他耐火材料制造行业定义 (1) 1.2.2009-2014年耐火陶瓷制品及其他耐火材料制造行业产值占GDP比重 1 1.3.2009-2014年耐火陶瓷制品及其他耐火材料制造行业企业规模分析 (2) 2. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业资产、负债分析 (4) 2.1.2009-2014年耐火陶瓷制品及其他耐火材料制造行业资产分析 (4) 2.1.1. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业流动资产分析5 2.2.2009-2014年耐火陶瓷制品及其他耐火材料制造行业负债分析 (6) 3. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业利润分析 (8) 3.1.2009-2014年耐火陶瓷制品及其他耐火材料制造行业利润总额分析 (8) 3.2.2009-2014年耐火陶瓷制品及其他耐火材料制造行业主营业务利润分析 (9) 4. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业成本分析 (11) 4.1.2014年耐火陶瓷制品及其他耐火材料制造行业总成本构成情况 (11) 4.2.2009-2014年耐火陶瓷制品及其他耐火材料制造行业成本费用分项分析 (12) 4.2.1. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业产品销售成本 分析 (12) 4.2.2. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业产品销售成本 率分析 (13) 4.2.3. 2009-2014年耐火陶瓷制品及其他耐火材料制造行业产品销售费用

陶瓷基复合材料加工工艺

第十四章陶瓷基复合材料加工工艺 第一节增强体的制备 陶瓷基复合材料的增强体(强韧化组元),主要有陶瓷纤维、陶瓷晶须与片状晶体、硬质陶瓷颗粒和可相变的氧化锆等。 一、增强纤维 可以用作陶瓷复合材料增强体的纤维,有金属纤维、陶瓷纤维和碳纤维。 1.金属纤维 Ta、Mo、W、Ni、Nb等高熔点纤维及不锈钢纤维,原则上都可以用作陶瓷基体的增强体。金属纤维一般由拉丝制成,直径在10~600μm的范围内,有比较大的选择范围。其特点是密度大、热膨胀系数大、容易氧化,可能对复合材料制作工艺和性能不利,而其延展性大和导电率高的特点,在某些情况下是有益的。 2.陶瓷纤维 陶瓷纤维包括含有金属芯的陶瓷纤维和全陶瓷的纤维。 在W金属丝或碳素丝上,用化学沉降的方法可以形成连续的陶瓷纤维。芯的直径大约在30—50μm,沉降后的纤维直径大约在100~200μm。陶瓷层组分可以是SiC或Si3N4。近年来,用有机硅前驱体分解的方法,可以拉制出许多种陶瓷纤维。其方法是将硅基有机物前驱体,在熔融状态下拉制出直径在数十微米的纤维,然后进行聚合以及高温分解,形成陶瓷纤维。这种纤维有碳化硅纤维、氮化硅纤维、碳化钛纤维、氧化铝纤维等。其中,比较有名的是日本宇部兴产株式会社生产的以Nicalon和Tynano命名的碳化硅纤维。它们都是用聚碳硅烷纺丝而成。在组成上是碳化硅微晶和SiO2、C的集合物。在高于1400℃的高温下,其中的SiC微细晶粒会发生再结晶而长大,C会与O发生反应,生成CO气体而逸出。非晶态的SiO2也会结晶化而生成石英微细晶粒。这些现象都使现存的碳化硅陶瓷纤维只能在1400℃以下温度下使用。Tynano 型SiC纤维,是含有一定Ti元素的纤维,耐热温度据称比Nicalon高近50℃。Al2O3纤维在高温下容易发生晶粒长大而难用于高温。 3.碳纤维 碳纤维的用量正在不断增加,尤其是在高分子基复合材料中的用量增长很快。碳纤维分为有机高分子系(PAN系:聚丙烯腈系)和沥青系两大类。有机高分子系较易实现高强度化和高韧性化,最高强度可达7GPa,延伸率可达2.0%以上。另一方面,沥青系碳纤维富有高弹性,

精细化工细分市场及产业链发展情况综合分析报告全解

精细化工细分市场及产业链发展情况综合分析 一、精细化工定义及特点 一、精细化工定义 精细化工,是生产精细化学品工业的通称。 精细化工具有品种多,更新换代快;产量小,大多以间歇方式生产;具有功能性或最终使用性:许多为复配性产品,配方等技术决定产品性能;产品质量要求高;商品性强,多数以商品名销售;技术密集高,要求不断进行新产品的技术开发和应用技术的研究,重视技术服务;设备投资较小;附加价值率高等特点。 二、精细化工特点 (一)行业周期性较强 我国精细化工行业是受经济波动以及政策影响较大、周期性较强的行业,行业的周期性与经济增长的周期性保持较大的相关性,2008年以来,精细化工行业经历了2008年金融危机的大风大浪以及09年国家政策的扶持,2010年开始恢复其正常的发展态势,需求逐渐恢复、行业的景气程度缓慢回升,虽然2012年我国经济开始步入结构性调整,求质量、轻速度,精细化工行业在保持周期性的同时,行业发展步伐以及表现仍然要优于整个经济的表现。 (二)发展依赖科技创新 《石油和化学工业“十二五”发展指南》首次提出把培育壮大战略性新兴产业列为主要任务,争取到“十二五”末期形成一批以战略性新兴产业为主导的增长点,把精细和专用化学品率提高到45%以上。与此相关,化工新材料、高端专用化学品、生物质能源、生物化工和生物基高分子材料、新型煤化工等都被《指南》列入了发展方向。精细化工行业具备较高的技术壁垒,要求企业具有较强的新技术开发能力、技术升级能力和技术储备。企业核心技术及持续的研发能力是保证其高速成长的源泉。传统型精细化工产品向高新型精细化工产品转型的关键的桥梁就是技术,所以说科技创新是精细化工行业的重要生产力。 (三)“资源环境压力”和“市场需求潜力”使行业发展面临两难选择 精细化工化学工业大多数是传统的“高能耗、高污染”行业,截至2012年,化工行业排放废水、废气、固体废弃物数量分别占全国工业“三废”排放总量的16%、7%和5%,位居第1、4、5位,和国外比,我国精细化工行业单位产品能耗水平明显偏高,而排放物处理率明显偏低,行业快速发展势必会带来资源环境问题。例如,我国农药实际使用药效只有35%,其余的65%均以污染源的形式排放到环境中。 市场需求潜力要求行业加快发展。近年来,发达国家大规模向外转移重化工业,造成相关产品的供求出现局部紧张,为我国发展精细化工行业带来机遇,日益增长的内需也为精细

耐火陶瓷纤维基础知识

耐火陶瓷纤维基础知识一、耐火陶瓷纤维定义 以SiO 2、AL 2 O 3 为主要成分且耐火度高于1580℃纤维状隔热材料的总称。 二、耐火陶瓷纤维的特点 1、耐高温:使用温度可达950-1450℃。 2、导热能力低:常温下为0.03w/m.k,在1000℃时仅为粘土砖的1/5。 3、体积密度小:耐火陶瓷纤维制品一般在64-500kg/m3之间。 4、化学稳定性好:除强碱、氟、磷酸盐外,几乎不受化学药品的侵蚀。 5、耐热震性能好:具有优良的耐热震性。 6、热容量低:仅为耐火砖的1/72,轻质转的1/42。 7、可加工性能好:纤维柔软易切割,连续性强,便于缠绕。 8、良好的吸音性能:耐火陶瓷纤维有高的吸音性能,可作为高温消音材料。 9、良好的绝缘性能:耐火陶瓷纤维是绝缘性材料,常温下体积电阻率为 1×1013Ω.cm,800℃下体积电阻率为6×108Ω.cm。 10、光学性能:耐火陶瓷纤维对波长1.8-6.0um的光波有很高的反射性。 三、耐火陶瓷纤维的分类 1、按结构可分为晶质纤维和非晶质纤维两大类。 2、按使用温度可分为: 普通型耐火陶瓷纤维使用温度950℃ 标准型耐火陶瓷纤维使用温度1000℃ 高纯型耐火陶瓷纤维使用温度1100℃ 高铝型耐火陶瓷纤维使用温度1200℃ 锆铝型耐火陶瓷纤维使用温度1280℃ 含锆型耐火陶瓷纤维使用温度1350℃ 莫来石晶体耐火纤维(72晶体)使用温度1400℃ 氧化铝晶体耐火纤维(80、95晶体)使用温度1450℃ 3、生产方法 (1)非晶质纤维 原材料经电阻炉熔融,在熔融状态下,在骤冷(0.1S)条件下,在高速旋转甩丝辊离心力的作用下或在高速气流的作用下被甩丝而成或被吹制而成的玻璃态纤维。 (2)晶体纤维 生产方法主要有胶体法和先驱体法两种。 胶体法:将可融性的铝盐、硅盐,制成一定粘度的胶体溶液,按常规生产方法成纤后经热处理转变成铝硅氧化物晶体纤维。 先驱体法:将可溶性的铝盐、硅盐,制成一定粘度的胶体溶液,随后被先驱体(一种膨化了的有机纤维)吸收,再进行热处理,转变成铝硅氧化物晶体纤维。

陶瓷纤维绝热耐火材料现状及前景浅析.

陶瓷纤维绝热耐火材料现状及前景浅析 陶瓷纤维绝热耐火材料广泛应用于各类热工窑炉的绝热耐高温材料,由于其容重大大低于其他耐火材料, 因而蓄热很小,隔热效果明显,作为炉衬材料可大大降低热工窑炉的能源损耗,在节能方面为热工窑炉带来了一场革命。另一方面它的应用技术和方法对热工窑炉的砌筑同样带来了一场革命。 一、陶瓷纤维绝热耐火材料使用现状 陶瓷纤维最早出现在 1941年,美国巴布、维尔考克斯公司用天然高岭土,用电弧炉熔融喷吹成纤维。 20世纪 40年代后期,美国两家公司生产硅酸铝系列纤维,并首次应用于航空工业 ;20世纪 60年代,美国研制出多种陶瓷纤维制品,并用于工业窑炉壁衬。 20世纪 70年代,陶瓷纤维在我国开始生产使用,其应用技术在 20世纪 80年代得到迅速推广,但主要适用温度范围在 1000℃以下,应用技术相对简单落后。 进入 20世纪 90年代以后, 随着含锆纤维和多晶氧化铝纤维的推广应用, 使用温度提高到 1000℃~1400℃, 但由于产品质量缺陷和应用技术的落后,应用领域和应用方式都受到局限。如多晶氧化铝纤维不能制做成纤维毯,产品规格单一,以散棉、纤维块为主,虽然是用温度有所提高,但是强度很差,限制了使用范围, 也缩短了使用寿命。 含锆纤维是用熔融法生产的一种用途广泛、成本较低的硅酸铝纤维,可大量用作砌筑各种热工窑炉的热面全纤维炉衬,目前国内产品在这方面的质量和应用开发还相对落后,现在国外出现了含铬纤维,使用温度比含锆纤维更高,国内还没有这方面的报道。 二、陶瓷纤维绝热耐火材料的弊端及前景分析 陶瓷纤维虽然为高温工业领域的绝热耐火起着重要作用,但也存在很大的生产弊端,尤其是它具有可吸入性,对环境及人体有一定的危害,国外一些企业加强了对非晶质陶瓷纤维的限制使用。目前,一种生物溶解性非晶质陶瓷纤维在绝热耐火材料市场出现,这种超级纤维 (siO2-CaO-MgO系陶瓷纤维属无污染的环境友好型材

耐火陶瓷纤维基础知识

耐火陶瓷纤维基础知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

耐火陶瓷纤维基础知识 一、耐火陶瓷纤维定义 以SiO2、AL2O3为主要成分且耐火度高于1580℃纤维状隔热材料的总称。 二、耐火陶瓷纤维的特点 1、耐高温:使用温度可达950-1450℃。 2、导热能力低:常温下为,在1000℃时仅为粘土砖的1/5。 3、体积密度小:耐火陶瓷纤维制品一般在64-500kg/m3之间。 4、化学稳定性好:除强碱、氟、磷酸盐外,几乎不受化学药品的侵蚀。 5、耐热震性能好:具有优良的耐热震性。 6、热容量低:仅为耐火砖的1/72,轻质转的1/42。 7、可加工性能好:纤维柔软易切割,连续性强,便于缠绕。 8、良好的吸音性能:耐火陶瓷纤维有高的吸音性能,可作为高温消音材料。 9、良好的绝缘性能:耐火陶瓷纤维是绝缘性材料,常温下体积电阻率为 1×1013Ω.cm,800℃下体积电阻率为6×108Ω.cm。 10、光学性能:耐火陶瓷纤维对波长的光波有很高的反射性。 三、耐火陶瓷纤维的分类 1、按结构可分为晶质纤维和非晶质纤维两大类。 2、按使用温度可分为: 普通型耐火陶瓷纤维使用温度950℃ 标准型耐火陶瓷纤维使用温度1000℃ 高纯型耐火陶瓷纤维使用温度1100℃ 高铝型耐火陶瓷纤维使用温度1200℃ 锆铝型耐火陶瓷纤维使用温度1280℃ 含锆型耐火陶瓷纤维使用温度1350℃ 莫来石晶体耐火纤维(72晶体)使用温度1400℃ 氧化铝晶体耐火纤维(80、95晶体)使用温度1450℃ 产品质优价廉、施工经验丰富欢迎新老客户来电咨询洽谈工作!承接砖瓦隧道窑吊顶陶瓷纤维模块产品、保温技术咨询指导、施工及改造工程,我公司可一条龙服务!技术顾问:苏经理7 (济南)传真:3 3、生产方法 (1)非晶质纤维 原材料经电阻炉熔融,在熔融状态下,在骤冷()条件下,在高速旋转甩丝辊离心力的作用下或在高速气流的作用下被甩丝而成或被吹制而成的玻璃态纤维。 (2)晶体纤维 生产方法主要有胶体法和先驱体法两种。 胶体法:将可融性的铝盐、硅盐,制成一定粘度的胶体溶液,按常规生产方法成纤后经热处理转变成铝硅氧化物晶体纤维。 先驱体法:将可溶性的铝盐、硅盐,制成一定粘度的胶体溶液,随后被先驱体(一种膨化了的有机纤维)吸收,再进行热处理,转变成铝硅氧化物晶体纤维。

陶瓷耐火材料项目可行性研究报告

陶瓷耐火材料项目 可 行 性 研 究 报 告

中国陶瓷耐火材料项目可行性研究报告 【报告说明】 可行性研究报告,简称可研,是在制订生产、基建、科研计划的前期,通过全面的调查研究,分析论证某个建设或改造工程、某种科学研究、某项商务活动切实可行而提出的一种书面材料。 项目可行性研究报告主要是通过对项目的主要内容和配套条件,如市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等,从技术、经济、工程等方面进行调查研究和分析比较,并对项目建成以后可能取得的财务、经济效益及社会影响进行预测,从而提出该项目是否值得投资和如何进行建设的咨询意见,为项目决策提供依据的一种综合性的分析方法。可行性研究具有预见性公正性、可靠性、科学性的特点。 可行性研究报告是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。 可行性研究报告大纲(具体可根据客户要求进行调整) 【核心构成】 陶瓷耐火材料项目投资环境分析 陶瓷耐火材料项目背景和发展概况 陶瓷耐火材料项目建设的必要性 陶瓷耐火材料行业竞争格局分析 陶瓷耐火材料行业财务指标分析参考 陶瓷耐火材料行业市场分析与建设规模 陶瓷耐火材料项目建设条件与选址方案 陶瓷耐火材料项目不确定性及风险分析 陶瓷耐火材料行业发展趋势分析 【关键词】陶瓷耐火材料项目投资可行性研究报告 【收费标准】:根据项目复杂程度等方面进行核定,请致电详细沟通 【交付时间】:2-3个工作日 【报告格式】:WORD版+PDF格式+精美装订印刷版 【交付方式】:Email发送、EMS特快专递

耐火材料在陶瓷中的应用

耐火材料在陶瓷中的应用 摘要:耐火材料是窑炉和冶金行业中重要的一部分。耐火材料是为高温技术服务的基础材料。耐火材料的种类很多,比如氧化硅耐火材料、硅酸铝质耐火材料、碱性及尖晶石质耐火材料、含碳质耐火材料、含锆质耐火材料、不定型耐火材料、绝热材料、特种耐火材料等。 关键字:耐火材料、窑炉 Abstract:refractory furnace and metallurgical industry is an important part. Technical services for the high-temperature refractory base material. Many different types of refractories, refractory materials such as silicon oxide, aluminum silicate refractories, alkaline and spinel refractories, carbon refractories containing zirconia refractories, unshaped refractories, insulation materials, special refractories. Keywords: refractory materials, furnace 耐火材料是耐火度不低于1580°C的材料。一般是指主要由无机非金属材料构成的材料和制品。耐火材料是为高温技术服务的基础材料。他与高温技术尤其是高温冶炼工业的发展有着密切关系,相互依存,互为促进,共同发展。在一定条件下,耐火材料的质量品种对高温技术的发展起着关键的作用。 我国耐火原料资源丰富,品种多,储量大,品位高。高铝矾土和菱镁矿蕴藏量大,品质优良,世界著名;耐火粘土、硅石、白云石和

高温结构陶瓷基复合材料的研究现状与展望--...

高温结构陶瓷基复合材料的研究现状与展望 摘要概述了国外航空发动机用高温结构陶瓷基复合材料的研究与应用现状及发展趋势,分析了目前研究中存在的问题及其解决办法,确定了今后的研究目标与方向。 关键词陶瓷基复合材料高温结构材料力学性能应用 1 前言 为了提高航空发动机的推重比和降低燃料消耗,最根本的措施是提高发动机的涡轮进口温度,而涡轮进口温度与热端部件材料的最高允许工作温度直接相关。50 至60 年代,发动机热端部件材料主要是铸造高温合金,其使用温度为800~900 ℃;70 年代中期,定向凝固超合金开始推广,其使用温度提高到 接近1000 ℃; 进入80 年代以后,相继开发出了高温单晶合金、弥散强化超合金以及金属间化合物等,并且热障涂层技术得到了广泛的应用,使热端部件的使用温度提高到1200~1300 ℃,已接近这类合金 熔点的80 % ,虽然通过各种冷却技术可进一步提高涡轮进口温度,但作为代价降低了热效率,增加了结 构复杂性和制造难度,而且对小而薄型的热端部件难以进行冷却,因而再提高的潜力极其有限[1 ] 。陶瓷基复合材料正是人们预计在21 世纪中可替代金属及其合金的发动机热端结构首选材料。 近20 年来,世界各工业发达国家对于发动机用高温结构陶瓷基复合材料的研究与开发一直十分重视,相继制定了各自的国家发展计划,并投入了大量的人力、物力和财力,对这一新型材料寄予厚望。如美国NASA 制定的先进高温热机材料计划(HITEMP) 、DOE/ NASA 的先进涡轮技术应用计划(ATTAP) 、美国国家宇航计划(NASP) 、美国国防部关键技术计划以及日本的月光计划等都把高温结构陶瓷基复合材料作为重点研究对象,其研制目标是将发动机热端部件的使用温度提高到1650 ℃或更高[2 ,3 ] ,从而提高发动机涡轮进口温度,达到节能、减重、提高推重比和延长寿命的目的,满足军事和民用热机的需要。 2 国内外应用与研究现状 由于陶瓷材料具有高的耐磨性、耐高温和抗化学侵蚀能力,国外目前已将其应用于发动机高速轴承、活塞、密封环、阀门导轨等要求转速高和配合精度高的部件。在航空发动机高温构件的应用上,到目前为止已报道的有法国将CVI 法SiC/Cf 用于狂风战斗机M88 发动机的喷嘴瓣以及将SiC/ SiCf 用于幻影2000 战斗机涡轮风扇发动机的喷管内调节片[4 ] 。 此外,有许多陶瓷基复合材料的发动机高温构件正在研制之中。如美国格鲁曼公司正研究跨大气层高超音速飞机发动机的陶瓷材料进口、喷管和喷口等部件,美国碳化硅公司用Si3N4/ SiCW制造导弹发动机燃气喷管,杜邦公司研制出能承受1200~1300 ℃、使用寿命达2000h 的陶瓷基复合材料发动机部件等[5 ,6 ] 。目前导弹、无人驾驶飞机以及其它短寿命的陶瓷涡轮发动机正处在最后研制阶段,美国空军材料实验室的研究人员认为[7 ] ,1204~1371 ℃发动机用陶瓷基复合材料已__经研制成功。由于提高了燃烧温度,取消或减少了冷却系统,预计发动机热效率可从目前的26 %提高到46 %。英国罗—罗公司认为,未来航空发动机高压压气机叶片和机匣、高压与低压涡轮盘及叶片、燃烧室、加力燃烧室、火焰稳定器及排气喷管等都将采用陶瓷基复合材料。预计在21 世纪初, 陶瓷基复合材料的使用温度可提高到1650 ℃或更高。 3 研究方向与发展趋势 陶瓷虽然具有作为发动机热端结构材料的十分明显的优点,但其本质上的脆性却极大地限制了它的推广应用。为了克服单组分陶瓷材料缺陷敏感性高、韧性低、可靠性差的缺点,材料科学工作者进行了大量的研究以寻找切实可行的增韧方法[8 ,9 ] 。增韧的思路经历了从“消除缺陷”或减少缺陷尺寸、减少缺陷数量,发展到制备能够“容忍缺陷”,即对缺陷不敏感的材料。目前常见的几种增韧方式主要有相变增韧、颗粒(晶片) 弥散增韧、晶须(短切纤维) 复合增韧以及连续纤维增韧补强等。此外还可通过材料结构的改变来达到增韧的目的,如自增韧结构、仿生叠层结构以及梯度功能材料等。由于连续纤

相关主题
文本预览
相关文档 最新文档